mirror of
https://github.com/ArthurFerreira2/reinette.git
synced 2025-01-03 01:30:55 +00:00
577 lines
15 KiB
C
577 lines
15 KiB
C
// Reinette, emulates the Apple 1 computer
|
|
// Copyright 2018 Arthur Ferreira
|
|
// Last modified 9th of March 2019
|
|
|
|
#include <ncurses.h>
|
|
#include <unistd.h> // for usleep()
|
|
|
|
#include "woz.h"
|
|
|
|
|
|
// modified to run the klaus Test suite : romless
|
|
// #define RAMSIZE 0xC000 // 48KB
|
|
#define RAMSIZE 0x10000 // 64KB
|
|
|
|
|
|
uint8_t ram[RAMSIZE];
|
|
|
|
#define CARRY 0x01
|
|
#define ZERO 0x02
|
|
#define INTERRUPT 0x04
|
|
#define DECIMAL 0x08
|
|
#define BREAK 0x10
|
|
#define UNDEFINED 0x20
|
|
#define OVERFLOW 0x40
|
|
#define SIGN 0x80
|
|
|
|
struct Operand{
|
|
bool setAcc;
|
|
uint16_t value, address;
|
|
}ope;
|
|
|
|
struct Register{
|
|
uint8_t A,X,Y,SR,SP;
|
|
uint16_t PC;
|
|
}reg;
|
|
|
|
uint8_t key, keyRdy;
|
|
|
|
|
|
// MEMORY AND I/O
|
|
|
|
static uint8_t readMem(uint16_t address){
|
|
static uint8_t queries=0; // slow down emulation when waiting for a keypress
|
|
|
|
if (address < RAMSIZE) return (ram[address]);
|
|
if (address >= ROMSTART) return (rom[address - ROMSTART]);
|
|
|
|
if (address == 0xD011 ){ // is there a keypressed ?
|
|
if (keyRdy) return(keyRdy); // yes
|
|
if (! ++queries) usleep(100); // else sleep 100ms every 256 iterations
|
|
return(0); // and return 0 (no keypressed)
|
|
}
|
|
if ((address == 0xD010) && keyRdy){ // is there a key waiting us ?
|
|
keyRdy = 0; // yes, reset the keyRdy flag
|
|
return(key | 0x80); // and return the key
|
|
}
|
|
return(0); // catch all
|
|
}
|
|
|
|
static void writeMem(uint16_t address, uint8_t value){
|
|
if (address < RAMSIZE) ram[address] = value;
|
|
|
|
else if (address == 0xD012){ // DSP, display one char
|
|
value &= 0x7F;
|
|
if (value == 0x7F) value = '@'; // make DEL printable
|
|
if (value == 0x0D) value = 0x0A; // CR (\r) to LF (\n)
|
|
if (value == 0x5F) // erase the previous character
|
|
printw("%c%c%c",0x08,0x20,0x08); // BackSpace, Space , BackSpace
|
|
else printw("%c",value);
|
|
}
|
|
}
|
|
|
|
|
|
// RESET
|
|
|
|
static void reset(){
|
|
reg.PC = readMem(0xFFFC) | (readMem(0xFFFD) << 8);
|
|
reg.SP = 0xFF;
|
|
reg.SR |= UNDEFINED;
|
|
ope.setAcc = false;
|
|
ope.value = 0;
|
|
ope.address = 0;
|
|
keyRdy = 0;
|
|
}
|
|
|
|
|
|
// STACK, SIGN AND ZERO FLAGS ROUTINES
|
|
|
|
static void push(uint8_t value){
|
|
writeMem(0x100 + reg.SP--, value);
|
|
}
|
|
|
|
uint8_t pull(){
|
|
return(readMem(0x100 + ++reg.SP));
|
|
}
|
|
|
|
static void setSZ(uint8_t value){ // updates both the Sign & Zero FLAGS
|
|
if (value & 0x00FF) reg.SR &= ~ZERO;
|
|
else reg.SR |= ZERO;
|
|
if (value & 0x80) reg.SR |= SIGN;
|
|
else reg.SR &= ~SIGN;
|
|
}
|
|
|
|
|
|
// ADDRESSING MODES
|
|
|
|
static void IMP(){ // Implicit
|
|
}
|
|
|
|
static void ACC(){ // ACCumulator
|
|
ope.value = reg.A;
|
|
ope.setAcc = true;
|
|
}
|
|
|
|
static void IMM(){ // IMMediate
|
|
ope.address = reg.PC++;
|
|
ope.value = readMem(ope.address);
|
|
}
|
|
|
|
static void ZPG(){ // Zero PaGe
|
|
ope.address = readMem(reg.PC++);
|
|
ope.value = readMem(ope.address);
|
|
}
|
|
|
|
static void ZPX(){ // Zero PaGe,X
|
|
ope.address = (readMem(reg.PC++) + reg.X) & 0xFF;
|
|
ope.value = readMem(ope.address);
|
|
}
|
|
|
|
static void ZPY(){ // Zero PaGe,Y
|
|
ope.address = (readMem(reg.PC++) + reg.Y) & 0xFF;
|
|
ope.value = readMem(ope.address);
|
|
}
|
|
|
|
static void REL(){ // RELative (for branch instructions)
|
|
ope.address = readMem(reg.PC++);
|
|
if (ope.address & 0x80) ope.address |= 0xFF00; // branch backward
|
|
}
|
|
|
|
static void ABS(){ // ABSolute
|
|
ope.address = readMem(reg.PC) | (readMem(reg.PC + 1) << 8);
|
|
ope.value = readMem(ope.address);
|
|
reg.PC += 2;
|
|
}
|
|
|
|
static void ABX(){ // ABsolute,X
|
|
ope.address = (readMem(reg.PC) | (readMem(reg.PC + 1) << 8)) + reg.X;
|
|
ope.value = readMem(ope.address);
|
|
reg.PC += 2;
|
|
}
|
|
|
|
static void ABY(){ // ABsolute,Y
|
|
ope.address = (readMem(reg.PC) | (readMem(reg.PC + 1) << 8)) + reg.Y;
|
|
ope.value = readMem(ope.address);
|
|
reg.PC += 2;
|
|
}
|
|
|
|
static void IND(){ // INDirect - JMP ($ABCD) with page-boundary wraparound bug
|
|
uint16_t vector1 = readMem(reg.PC) | (readMem(reg.PC + 1) << 8);
|
|
uint16_t vector2 = (vector1 & 0xFF00) | ((vector1 + 1) & 0x00FF);
|
|
ope.address = readMem(vector1) | (readMem(vector2) << 8);
|
|
ope.value = readMem(ope.address);
|
|
reg.PC += 2;
|
|
}
|
|
|
|
static void IDX(){ // InDexed indirect X
|
|
uint16_t vector1 = ((readMem(reg.PC++) + reg.X) & 0xFF);
|
|
ope.address = readMem(vector1 & 0x00FF)|(readMem((vector1+1) & 0x00FF) << 8);
|
|
ope.value = readMem(ope.address);
|
|
}
|
|
|
|
static void IDY(){ // InDirect Indexed Y
|
|
uint16_t vector1 = readMem(reg.PC++);
|
|
uint16_t vector2 = (vector1 & 0xFF00) | ((vector1 + 1) & 0x00FF);
|
|
ope.address = (readMem(vector1) | (readMem(vector2) << 8)) + reg.Y;
|
|
ope.value = readMem(ope.address);
|
|
}
|
|
|
|
|
|
// INSTRUCTIONS
|
|
|
|
static void NOP(){ // NO Operation
|
|
}
|
|
|
|
static void BRK(){ // BReaK
|
|
push(((++reg.PC) >> 8) & 0xFF);
|
|
push(reg.PC & 0xFF);
|
|
push(reg.SR | BREAK);
|
|
reg.SR |= INTERRUPT;
|
|
reg.PC = readMem(0xFFFE) | (readMem(0xFFFF) << 8);
|
|
}
|
|
|
|
static void CLD(){ // CLear Decimal
|
|
reg.SR &= ~DECIMAL;
|
|
}
|
|
|
|
static void SED(){ // SEt Decimal
|
|
reg.SR |= DECIMAL;
|
|
}
|
|
|
|
static void CLC(){ // CLear Carry
|
|
reg.SR &= ~CARRY;
|
|
}
|
|
|
|
static void SEC(){ // SEt Carry
|
|
reg.SR |= CARRY;
|
|
}
|
|
|
|
static void CLI(){ // CLear Interrupt
|
|
reg.SR &= ~INTERRUPT;
|
|
}
|
|
|
|
static void SEI(){ // SEt Interrupt
|
|
reg.SR |= INTERRUPT;
|
|
}
|
|
|
|
static void CLV(){ // CLear oVerflow
|
|
reg.SR &= ~OVERFLOW;
|
|
}
|
|
|
|
static void LDA(){ // LoaD Accumulator
|
|
reg.A = ope.value;
|
|
setSZ(reg.A);
|
|
}
|
|
|
|
static void LDX(){ // LoaD X
|
|
reg.X = ope.value;
|
|
setSZ(reg.X);
|
|
}
|
|
|
|
static void LDY(){ // LoaD Y
|
|
reg.Y = ope.value;
|
|
setSZ(reg.Y);
|
|
}
|
|
|
|
static void STA(){ // STore Accumulator
|
|
writeMem(ope.address, reg.A);
|
|
}
|
|
|
|
static void STX(){ // STore X
|
|
writeMem(ope.address, reg.X);
|
|
}
|
|
|
|
static void STY(){ // STore Y
|
|
writeMem(ope.address, reg.Y);
|
|
}
|
|
|
|
static void DEC(){ // DECrement
|
|
writeMem(ope.address, --ope.value);
|
|
setSZ(ope.value);
|
|
}
|
|
|
|
static void DEX(){ // DEcrement X
|
|
setSZ(--reg.X);
|
|
}
|
|
|
|
static void DEY(){ // DEcrement Y
|
|
setSZ(--reg.Y);
|
|
}
|
|
|
|
static void INC(){ // INCrement
|
|
writeMem(ope.address, ++ope.value);
|
|
setSZ(ope.value);
|
|
}
|
|
|
|
static void INX(){ // INcrement X
|
|
setSZ(++reg.X);
|
|
}
|
|
|
|
static void INY(){ // INcrement Y
|
|
setSZ(++reg.Y);
|
|
}
|
|
|
|
static void TAX(){ // Transfer Accumulator to X
|
|
reg.X = reg.A;
|
|
setSZ(reg.X);
|
|
}
|
|
|
|
static void TAY(){ // Transfer Accumulator to Y
|
|
reg.Y = reg.A;
|
|
setSZ(reg.Y);
|
|
}
|
|
|
|
static void TXA(){ // Transfer X to Accumulator
|
|
reg.A = reg.X;
|
|
setSZ(reg.A);
|
|
}
|
|
|
|
static void TYA(){ // Transfer Y to Accumulator
|
|
reg.A = reg.Y;
|
|
setSZ(reg.A);
|
|
}
|
|
|
|
static void TSX(){ // Transfer Sp to X
|
|
reg.X = reg.SP;
|
|
setSZ(reg.X);
|
|
}
|
|
|
|
static void TXS(){ // Transfer X to Sp
|
|
reg.SP = reg.X;
|
|
}
|
|
|
|
static void BEQ(){ // Branch on EQual (zero set)
|
|
if (reg.SR & ZERO) reg.PC += ope.address;
|
|
}
|
|
|
|
static void BNE(){ // Branch on Not Equal (zero clear)
|
|
if (!(reg.SR & ZERO)) reg.PC += ope.address;
|
|
}
|
|
|
|
static void BMI(){ // Branch if MInus (ie when negative, when SIGN is set)
|
|
if (reg.SR & SIGN) reg.PC += ope.address;
|
|
}
|
|
|
|
static void BPL(){ // Branch if PLus (ie when positive, when SIGN is clear)
|
|
if (!(reg.SR & SIGN)) reg.PC += ope.address;
|
|
}
|
|
|
|
static void BVS(){ // Branch on oVerflow Set
|
|
if (reg.SR & OVERFLOW) reg.PC += ope.address;
|
|
}
|
|
|
|
static void BVC(){ // Branch on oVerflow Clear
|
|
if (!(reg.SR & OVERFLOW)) reg.PC += ope.address;
|
|
}
|
|
|
|
static void BCS(){ // Branch on Carry Set
|
|
if (reg.SR & CARRY) reg.PC +=ope.address;
|
|
}
|
|
|
|
static void BCC(){ // Branch on Carry Clear
|
|
if (!(reg.SR & CARRY)) reg.PC += ope.address;
|
|
}
|
|
|
|
static void PHA(){ // PusH A to the stack
|
|
push(reg.A);
|
|
}
|
|
|
|
static void PLA(){ // PulL stack into A
|
|
reg.A = pull();
|
|
setSZ(reg.A);
|
|
}
|
|
|
|
static void PHP(){ // PusH Programm (Status) register to the stack
|
|
push(reg.SR | BREAK);
|
|
}
|
|
|
|
static void PLP(){ // PulL stack into Programm (SR) register
|
|
reg.SR = pull() | UNDEFINED;
|
|
}
|
|
|
|
static void JMP(){ // JuMP
|
|
reg.PC = ope.address;
|
|
}
|
|
|
|
static void JSR(){ // Jump Sub-Routine
|
|
push((--reg.PC >> 8) & 0xFF);
|
|
push(reg.PC & 0xFF);
|
|
reg.PC = ope.address;
|
|
}
|
|
|
|
static void RTS(){ // ReTurn from Sub-routine
|
|
reg.PC = (pull() | (pull() << 8)) + 1;
|
|
}
|
|
|
|
static void RTI(){ // ReTurn from Interrupt
|
|
reg.SR = pull();
|
|
reg.PC = pull() | (pull() << 8);
|
|
}
|
|
|
|
static void CMP(){ // Compare with A
|
|
setSZ(reg.A - ope.value);
|
|
if (reg.A >= ope.value) reg.SR |= CARRY;
|
|
else reg.SR &= ~CARRY;
|
|
}
|
|
|
|
static void CPX(){ // Compare with X
|
|
setSZ(reg.X - ope.value);
|
|
if (reg.X >= ope.value) reg.SR |= CARRY;
|
|
else reg.SR &= ~CARRY;
|
|
}
|
|
|
|
static void CPY(){ // Compare with Y
|
|
setSZ(reg.Y - ope.value);
|
|
if (reg.Y >= ope.value) reg.SR |= CARRY;
|
|
else reg.SR &= ~CARRY;
|
|
}
|
|
|
|
static void AND(){ // AND with A
|
|
reg.A &= ope.value;
|
|
setSZ(reg.A);
|
|
}
|
|
|
|
static void ORA(){ // OR with A
|
|
reg.A |= ope.value;
|
|
setSZ(reg.A);
|
|
}
|
|
|
|
static void EOR(){ // Exclusive Or with A
|
|
reg.A ^= ope.value;
|
|
setSZ(reg.A);
|
|
}
|
|
|
|
static void BIT(){ // BIT with A - http://www.6502.org/tutorials/vflag.html
|
|
if (reg.A & ope.value) reg.SR &= ~ZERO;
|
|
else reg.SR |= ZERO;
|
|
reg.SR = (reg.SR & 0x3F) | (ope.value & 0xC0); // update SIGN & OVERFLOW
|
|
}
|
|
|
|
static void makeUpdates(uint8_t val){
|
|
if (ope.setAcc) reg.A = val;
|
|
else writeMem(ope.address, val);
|
|
ope.setAcc = false;
|
|
setSZ(val);
|
|
}
|
|
|
|
static void ASL(){ // Arithmetic Shift Left
|
|
uint16_t result = (ope.value << 1);
|
|
if (result & 0xFF00) reg.SR |= CARRY;
|
|
else reg.SR &= ~CARRY;
|
|
makeUpdates((uint8_t)(result & 0xFF));
|
|
}
|
|
|
|
static void LSR(){ // Logical Shift Right
|
|
if (ope.value & 1) reg.SR |= CARRY;
|
|
else reg.SR &= ~CARRY;
|
|
makeUpdates((uint8_t)((ope.value >> 1) & 0xFF));
|
|
}
|
|
|
|
static void ROL(){ // ROtate Left
|
|
uint16_t result = ((ope.value << 1) | (reg.SR & CARRY));
|
|
if (result & 0x100) reg.SR |= CARRY;
|
|
else reg.SR &= ~CARRY;
|
|
makeUpdates((uint8_t)(result & 0xFF));
|
|
}
|
|
|
|
static void ROR(){ // ROtate Right
|
|
uint16_t result = (ope.value >> 1) | ((reg.SR & CARRY) << 7);
|
|
if (ope.value & 0x1) reg.SR |= CARRY;
|
|
else reg.SR &= ~CARRY;
|
|
makeUpdates((uint8_t)(result & 0xFF));
|
|
}
|
|
|
|
static void ADC(){ // ADd with Carry
|
|
uint16_t result = reg.A + ope.value + (reg.SR & CARRY);
|
|
setSZ(result);
|
|
if (((result)^(reg.A ))&((result)^(ope.value))&0x0080) reg.SR |= OVERFLOW;
|
|
else reg.SR &= ~OVERFLOW;
|
|
if (reg.SR&DECIMAL) result += ((((result+0x66)^reg.A^ope.value)>>3)&0x22)*3;
|
|
if (result & 0xFF00) reg.SR |= CARRY;
|
|
else reg.SR &= ~CARRY;
|
|
reg.A = (result & 0xFF);
|
|
}
|
|
|
|
static void SBC(){ // SuBtract with Carry
|
|
ope.value ^= 0xFF;
|
|
if (reg.SR & DECIMAL) ope.value -= 0x0066;
|
|
uint16_t result = reg.A + ope.value + (reg.SR & CARRY);
|
|
setSZ(result);
|
|
if (((result)^(reg.A ))&((result)^(ope.value))&0x0080) reg.SR |= OVERFLOW;
|
|
else reg.SR &= ~OVERFLOW;
|
|
if (reg.SR&DECIMAL) result += ((((result+0x66)^reg.A^ope.value)>>3)&0x22)*3;
|
|
if (result & 0xFF00) reg.SR |= CARRY;
|
|
else reg.SR &= ~CARRY;
|
|
reg.A = (result & 0xFF);
|
|
}
|
|
|
|
static void UND(){ // UNDefined (not a valid or supported 6502 opcode)
|
|
printw("\n\n~ Illegal Instruction At Address $%04X ~\n", reg.PC - 1);
|
|
BRK();
|
|
}
|
|
|
|
|
|
// JUMP TABLES
|
|
|
|
static void (*instruction[])(void) = {
|
|
BRK, ORA, UND, UND, UND, ORA, ASL, UND, PHP, ORA, ASL, UND, UND, ORA, ASL, UND,
|
|
BPL, ORA, UND, UND, UND, ORA, ASL, UND, CLC, ORA, UND, UND, UND, ORA, ASL, UND,
|
|
JSR, AND, UND, UND, BIT, AND, ROL, UND, PLP, AND, ROL, UND, BIT, AND, ROL, UND,
|
|
BMI, AND, UND, UND, UND, AND, ROL, UND, SEC, AND, UND, UND, UND, AND, ROL, UND,
|
|
RTI, EOR, UND, UND, UND, EOR, LSR, UND, PHA, EOR, LSR, UND, JMP, EOR, LSR, UND,
|
|
BVC, EOR, UND, UND, UND, EOR, LSR, UND, CLI, EOR, UND, UND, UND, EOR, LSR, UND,
|
|
RTS, ADC, UND, UND, UND, ADC, ROR, UND, PLA, ADC, ROR, UND, JMP, ADC, ROR, UND,
|
|
BVS, ADC, UND, UND, UND, ADC, ROR, UND, SEI, ADC, UND, UND, UND, ADC, ROR, UND,
|
|
UND, STA, UND, UND, STY, STA, STX, UND, DEY, UND, TXA, UND, STY, STA, STX, UND,
|
|
BCC, STA, UND, UND, STY, STA, STX, UND, TYA, STA, TXS, UND, UND, STA, UND, UND,
|
|
LDY, LDA, LDX, UND, LDY, LDA, LDX, UND, TAY, LDA, TAX, UND, LDY, LDA, LDX, UND,
|
|
BCS, LDA, UND, UND, LDY, LDA, LDX, UND, CLV, LDA, TSX, UND, LDY, LDA, LDX, UND,
|
|
CPY, CMP, UND, UND, CPY, CMP, DEC, UND, INY, CMP, DEX, UND, CPY, CMP, DEC, UND,
|
|
BNE, CMP, UND, UND, UND, CMP, DEC, UND, CLD, CMP, UND, UND, UND, CMP, DEC, UND,
|
|
CPX, SBC, UND, UND, CPX, SBC, INC, UND, INX, SBC, NOP, UND, CPX, SBC, INC, UND,
|
|
BEQ, SBC, UND, UND, UND, SBC, INC, UND, SED, SBC, UND, UND, UND, SBC, INC, UND
|
|
};
|
|
|
|
static void (*addressing[])(void) = {
|
|
IMP, IDX, IMP, IMP, IMP, ZPG, ZPG, IMP, IMP, IMM, ACC, IMP, IMP, ABS, ABS, IMP,
|
|
REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP,
|
|
ABS, IDX, IMP, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMM, ACC, IMP, ABS, ABS, ABS, IMP,
|
|
REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP,
|
|
IMP, IDX, IMP, IMP, IMP, ZPG, ZPG, IMP, IMP, IMM, ACC, IMP, ABS, ABS, ABS, IMP,
|
|
REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP,
|
|
IMP, IDX, IMP, IMP, IMP, ZPG, ZPG, IMP, IMP, IMM, ACC, IMP, IND, ABS, ABS, IMP,
|
|
REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP,
|
|
IMP, IDX, IMP, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMP, IMP, IMP, ABS, ABS, ABS, IMP,
|
|
REL, IDY, IMP, IMP, ZPX, ZPX, ZPY, IMP, IMP, ABY, IMP, IMP, IMP, ABX, IMP, IMP,
|
|
IMM, IDX, IMM, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMM, IMP, IMP, ABS, ABS, ABS, IMP,
|
|
REL, IDY, IMP, IMP, ZPX, ZPX, ZPY, IMP, IMP, ABY, IMP, IMP, ABX, ABX, ABY, IMP,
|
|
IMM, IDX, IMP, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMM, IMP, IMP, ABS, ABS, ABS, IMP,
|
|
REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP,
|
|
IMM, IDX, IMP, IMP, ZPG, ZPG, ZPG, IMP, IMP, IMM, IMP, IMP, ABS, ABS, ABS, IMP,
|
|
REL, IDY, IMP, IMP, IMP, ZPX, ZPX, IMP, IMP, ABY, IMP, IMP, IMP, ABX, ABX, IMP
|
|
};
|
|
|
|
|
|
// PROGRAM ENTRY POINT
|
|
|
|
int main(int argc, char *argv[]) {
|
|
int i = 0;//, ch = 0;
|
|
uint8_t opcode = 0;
|
|
|
|
// ncurses initialization
|
|
initscr();
|
|
cbreak();
|
|
noecho();
|
|
qiflush();
|
|
scrollok(stdscr, TRUE);
|
|
nodelay(stdscr, TRUE);
|
|
|
|
// processor reset
|
|
reset();
|
|
|
|
|
|
// load the Klaus Test Suite into the 64KB of RAM
|
|
FILE *f=fopen("6502_functional_test.bin","rb");
|
|
while(fread(ram+i, 1, 1, f)) i++;
|
|
// set the Program Counter to 0x400
|
|
reg.PC=0x400;
|
|
|
|
|
|
// main loop
|
|
while(1){
|
|
for (i=0; i<100; i++){ // execute 100 instructions before a kbd scan
|
|
opcode = readMem(reg.PC++); // FETCH and increment the Program Counter
|
|
addressing[opcode](); // DECODE operands against the addressing mode
|
|
instruction[opcode](); // EXEC the instruction
|
|
}
|
|
|
|
|
|
// print the Program Counter every 100 instructions to detect faults
|
|
move(0,0);
|
|
printw("PC = $%04X",reg.PC);
|
|
refresh();
|
|
}
|
|
}
|
|
|
|
// Alter a few seconds, PC is stuck at $3469 => all the tests passed
|
|
|
|
/* commented out to run the klaus Test Suite
|
|
|
|
// keyboard controller
|
|
if (!keyRdy){ // only if not already a key in wait
|
|
if ((ch = getch()) != ERR){ // non blocking keybd read from ncurses
|
|
key = (uint8_t)ch; // getch() returns an int
|
|
if (key == 0x12) reset(); // CTRL-R, reset
|
|
else if (key == 0x02) BRK(); // CTRL-B, break
|
|
else {
|
|
if (key == 0x0A) key = 0x0D; // LF (\n) to CR (\r)
|
|
if ((key == 0x7F) || (key == 0x08)) key = 0x5F; // DEL and BS to _
|
|
if ((key >= 0x61) && (key <= 0x7A)) key &= 0xDF; // to upper case
|
|
keyRdy = 0x80;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
commented out to run the klaus Test Suite */
|