/* Copyright (C) 2011 Circuits At Home, LTD. All rights reserved. This software may be distributed and modified under the terms of the GNU General Public License version 2 (GPL2) as published by the Free Software Foundation and appearing in the file GPL2.TXT included in the packaging of this file. Please note that GPL2 Section 2[b] requires that all works based on this software must also be made publicly available under the terms of the GPL2 ("Copyleft"). Contact information ------------------- Circuits At Home, LTD Web : http://www.circuitsathome.com e-mail : support@circuitsathome.com */ #if !defined(__HIDBOOT_H__) #define __HIDBOOT_H__ #include "usbhid.h" #define UHS_HID_KEY_RIGHT 0x4f // Keyboard Right Arrow #define UHS_HID_KEY_LEFT 0x50 // Keyboard Left Arrow #define UHS_HID_BOOT_KEY_TAB 0x2b // Keyboard Tab #define UHS_HID_BOOT_KEY_DELETE 0x4c // Keyboard Delete Forward #define UHS_HID_BOOT_KEY_BACKSPACE 0x2a // Keyboard DELETE (Backspace) #define UHS_HID_BOOT_KEY_ESC 0x29 // Keyboard ESCAPE #define UHS_HID_BOOT_KEY_ZERO 0x27 #define UHS_HID_BOOT_KEY_ENTER 0x28 #define UHS_HID_BOOT_KEY_SPACE 0x2c #define UHS_HID_BOOT_KEY_CAPS_LOCK 0x39 #define UHS_HID_BOOT_KEY_SCROLL_LOCK 0x47 #define UHS_HID_BOOT_KEY_NUM_LOCK 0x53 #define UHS_HID_BOOT_KEY_ZERO2 0x62 #define UHS_HID_BOOT_KEY_PERIOD 0x63 // Don't worry, GCC will optimize the result to a final value. #define bitsEndpoints(p) ((((p) & USB_HID_PROTOCOL_KEYBOARD)? 2 : 0) | (((p) & USB_HID_PROTOCOL_MOUSE)? 1 : 0)) #define totalEndpoints(p) ((bitsEndpoints(p) == 3) ? 3 : 2) #define epMUL(p) ((((p) & USB_HID_PROTOCOL_KEYBOARD)? 1 : 0) + (((p) & USB_HID_PROTOCOL_MOUSE)? 1 : 0)) // Already defined in hid.h // #define HID_MAX_HID_CLASS_DESCRIPTORS 5 struct MOUSEINFO { struct { uint8_t bmLeftButton : 1; uint8_t bmRightButton : 1; uint8_t bmMiddleButton : 1; uint8_t bmDummy : 5; }; int8_t dX; int8_t dY; }; class MouseReportParser : public HIDReportParser { union { MOUSEINFO mouseInfo; uint8_t bInfo[sizeof (MOUSEINFO)]; } prevState; public: void Parse(USBHID *hid, bool is_rpt_id, uint8_t len, uint8_t *buf); protected: virtual void OnMouseMove(MOUSEINFO *mi __attribute__((unused))) { }; virtual void OnLeftButtonUp(MOUSEINFO *mi __attribute__((unused))) { }; virtual void OnLeftButtonDown(MOUSEINFO *mi __attribute__((unused))) { }; virtual void OnRightButtonUp(MOUSEINFO *mi __attribute__((unused))) { }; virtual void OnRightButtonDown(MOUSEINFO *mi __attribute__((unused))) { }; virtual void OnMiddleButtonUp(MOUSEINFO *mi __attribute__((unused))) { }; virtual void OnMiddleButtonDown(MOUSEINFO *mi __attribute__((unused))) { }; }; struct MODIFIERKEYS { uint8_t bmLeftCtrl : 1; uint8_t bmLeftShift : 1; uint8_t bmLeftAlt : 1; uint8_t bmLeftGUI : 1; uint8_t bmRightCtrl : 1; uint8_t bmRightShift : 1; uint8_t bmRightAlt : 1; uint8_t bmRightGUI : 1; }; struct KBDINFO { struct { uint8_t bmLeftCtrl : 1; uint8_t bmLeftShift : 1; uint8_t bmLeftAlt : 1; uint8_t bmLeftGUI : 1; uint8_t bmRightCtrl : 1; uint8_t bmRightShift : 1; uint8_t bmRightAlt : 1; uint8_t bmRightGUI : 1; }; uint8_t bReserved; uint8_t Keys[6]; }; struct KBDLEDS { uint8_t bmNumLock : 1; uint8_t bmCapsLock : 1; uint8_t bmScrollLock : 1; uint8_t bmCompose : 1; uint8_t bmKana : 1; uint8_t bmReserved : 3; }; class KeyboardReportParser : public HIDReportParser { static const uint8_t US_numKeys[10]; static const uint8_t US_numKeysAlt[10]; static const uint8_t US_symKeysUp[12]; static const uint8_t US_symKeysLo[12]; static const uint8_t US_padKeys[5]; static const uint8_t DE_numKeys[10]; static const uint8_t DE_numKeysAlt[10]; static const uint8_t DE_symKeysUp[12]; static const uint8_t DE_symKeysLo[12]; static const uint8_t DE_padKeys[5]; uint8_t uiCurrectSelectedLayout; protected: union { KBDINFO kbdInfo; uint8_t bInfo[sizeof (KBDINFO)]; } prevState; union { KBDLEDS kbdLeds; uint8_t bLeds; } kbdLockingKeys; uint8_t OemToAscii(uint8_t mod, uint8_t key); public: SetLayout(uint8_t uiLayout) { uiCurrectSelectedLayout = uiLayout; if (uiCurrectSelectedLayout > 1) uiCurrectSelectedLayout = 1; } KeyboardReportParser() { //uiCurrectSelectedLayout = 1; kbdLockingKeys.bLeds = 0; }; void Parse(USBHID *hid, bool is_rpt_id, uint8_t len, uint8_t *buf); protected: virtual uint8_t HandleLockingKeys(USBHID* hid, uint8_t key) { uint8_t old_keys = kbdLockingKeys.bLeds; switch(key) { case UHS_HID_BOOT_KEY_NUM_LOCK: kbdLockingKeys.kbdLeds.bmNumLock = ~kbdLockingKeys.kbdLeds.bmNumLock; break; case UHS_HID_BOOT_KEY_CAPS_LOCK: kbdLockingKeys.kbdLeds.bmCapsLock = ~kbdLockingKeys.kbdLeds.bmCapsLock; break; case UHS_HID_BOOT_KEY_SCROLL_LOCK: kbdLockingKeys.kbdLeds.bmScrollLock = ~kbdLockingKeys.kbdLeds.bmScrollLock; break; } if(old_keys != kbdLockingKeys.bLeds && hid) { uint8_t lockLeds = kbdLockingKeys.bLeds; return (hid->SetReport(0, 0/*hid->GetIface()*/, 2, 0, 1, &lockLeds)); } return 0; }; virtual void OnControlKeysChanged(uint8_t before __attribute__((unused)), uint8_t after __attribute__((unused))) { }; virtual void OnKeyDown(uint8_t mod __attribute__((unused)), uint8_t key __attribute__((unused))) { }; virtual void OnKeyUp(uint8_t mod __attribute__((unused)), uint8_t key __attribute__((unused))) { }; virtual const uint8_t *getNumKeysAlt() { if( 0 == uiCurrectSelectedLayout) { return US_numKeysAlt; } else { return DE_numKeysAlt; } }; virtual const uint8_t *getNumKeys() { if( 0 == uiCurrectSelectedLayout) { return US_numKeys; } else { return DE_numKeys; } }; virtual const uint8_t *getSymKeysUp() { if( 0 == uiCurrectSelectedLayout) { return US_symKeysUp; } else { return DE_symKeysUp; } }; virtual const uint8_t *getSymKeysLo() { if( 0 == uiCurrectSelectedLayout) { return US_symKeysLo; } else { return DE_symKeysLo; } }; virtual const uint8_t *getPadKeys() { if( 0 == uiCurrectSelectedLayout) { return US_padKeys; } else { return DE_padKeys; } }; }; template class HIDBoot : public USBHID //public USBDeviceConfig, public UsbConfigXtracter { EpInfo epInfo[totalEndpoints(BOOT_PROTOCOL)]; HIDReportParser *pRptParser[epMUL(BOOT_PROTOCOL)]; uint8_t bConfNum; // configuration number uint8_t bIfaceNum; // Interface Number uint8_t bNumIface; // number of interfaces in the configuration uint8_t bNumEP; // total number of EP in the configuration uint32_t qNextPollTime; // next poll time bool bPollEnable; // poll enable flag uint8_t bInterval; // largest interval bool bRptProtoEnable; // Report Protocol enable flag void Initialize(); virtual HIDReportParser* GetReportParser(uint8_t id) { return pRptParser[id]; }; public: HIDBoot(USB *p, bool bRptProtoEnable = false); virtual bool SetReportParser(uint8_t id, HIDReportParser *prs) { pRptParser[id] = prs; return true; }; // USBDeviceConfig implementation uint8_t Init(uint8_t parent, uint8_t port, bool lowspeed); uint8_t Release(); uint8_t Poll(); virtual uint8_t GetAddress() { return bAddress; }; virtual bool isReady() { return bPollEnable; }; // UsbConfigXtracter implementation // Method should be defined here if virtual. virtual void EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *ep); virtual bool DEVCLASSOK(uint8_t klass) { return (klass == USB_CLASS_HID); } virtual bool DEVSUBCLASSOK(uint8_t subklass) { return (subklass == BOOT_PROTOCOL); } }; template HIDBoot::HIDBoot(USB *p, bool bRptProtoEnable/* = false*/) : USBHID(p), qNextPollTime(0), bPollEnable(false), bRptProtoEnable(bRptProtoEnable) { Initialize(); for(int i = 0; i < epMUL(BOOT_PROTOCOL); i++) { pRptParser[i] = NULL; } if(pUsb) pUsb->RegisterDeviceClass(this); } template void HIDBoot::Initialize() { for(int i = 0; i < totalEndpoints(BOOT_PROTOCOL); i++) { epInfo[i].epAddr = 0; epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].bmSndToggle = 0; epInfo[i].bmRcvToggle = 0; epInfo[i].bmNakPower = (i) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER; } bNumEP = 1; bNumIface = 0; bConfNum = 0; } template uint8_t HIDBoot::Init(uint8_t parent, uint8_t port, bool lowspeed) { const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR); uint8_t buf[constBufSize]; USB_DEVICE_DESCRIPTOR* device; uint8_t rcode; UsbDevice *p = NULL; EpInfo *oldep_ptr = NULL; uint8_t len = 0; //uint16_t cd_len = 0; uint8_t num_of_conf; // number of configurations //uint8_t num_of_intf; // number of interfaces AddressPool &addrPool = pUsb->GetAddressPool(); USBTRACE("BM Init\r\n"); //USBTRACE2("totalEndpoints:", (uint8_t) (totalEndpoints(BOOT_PROTOCOL))); //USBTRACE2("epMUL:", epMUL(BOOT_PROTOCOL)); if(bAddress) return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE; bInterval = 0; // Get pointer to pseudo device with address 0 assigned p = addrPool.GetUsbDevicePtr(0); if(!p) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; if(!p->epinfo) { USBTRACE("epinfo\r\n"); return USB_ERROR_EPINFO_IS_NULL; } // Save old pointer to EP_RECORD of address 0 oldep_ptr = p->epinfo; // Temporary assign new pointer to epInfo to p->epinfo in order to avoid toggle inconsistence p->epinfo = epInfo; p->lowspeed = lowspeed; // Get device descriptor rcode = pUsb->getDevDescr(0, 0, 8, (uint8_t*)buf); if(!rcode) len = (buf[0] > constBufSize) ? constBufSize : buf[0]; device = reinterpret_cast(buf); if(rcode) { // Restore p->epinfo p->epinfo = oldep_ptr; goto FailGetDevDescr; } // Restore p->epinfo p->epinfo = oldep_ptr; // Allocate new address according to device class bAddress = addrPool.AllocAddress(parent, false, port); if(!bAddress) return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; // Extract Max Packet Size from the device descriptor epInfo[0].maxPktSize = (uint8_t)(device->bMaxPacketSize0); // Assign new address to the device rcode = pUsb->setAddr(0, 0, bAddress); if(rcode) { p->lowspeed = false; addrPool.FreeAddress(bAddress); bAddress = 0; USBTRACE2("setAddr:", rcode); return rcode; } //delay(2); //per USB 2.0 sect.9.2.6.3 USBTRACE2("Addr:", bAddress); p->lowspeed = false; p = addrPool.GetUsbDevicePtr(bAddress); if(!p) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; p->lowspeed = lowspeed; if(len) rcode = pUsb->getDevDescr(bAddress, 0, len, (uint8_t*)buf); if(rcode) goto FailGetDevDescr; num_of_conf = device->bNumConfigurations; USBTRACE2("NC:", num_of_conf); // GCC will optimize unused stuff away. if((BOOT_PROTOCOL & (USB_HID_PROTOCOL_KEYBOARD | USB_HID_PROTOCOL_MOUSE)) == (USB_HID_PROTOCOL_KEYBOARD | USB_HID_PROTOCOL_MOUSE)) { USBTRACE("HID_PROTOCOL_KEYBOARD AND MOUSE\r\n"); ConfigDescParser< USB_CLASS_HID, HID_BOOT_INTF_SUBCLASS, USB_HID_PROTOCOL_KEYBOARD | USB_HID_PROTOCOL_MOUSE, CP_MASK_COMPARE_ALL > confDescrParser(this); confDescrParser.SetOR(); // Use the OR variant. for(uint8_t i = 0; i < num_of_conf; i++) { pUsb->getConfDescr(bAddress, 0, i, &confDescrParser); if(bNumEP == (uint8_t)(totalEndpoints(BOOT_PROTOCOL))) break; } } else { // GCC will optimize unused stuff away. if(BOOT_PROTOCOL & USB_HID_PROTOCOL_KEYBOARD) { USBTRACE("HID_PROTOCOL_KEYBOARD\r\n"); for(uint8_t i = 0; i < num_of_conf; i++) { ConfigDescParser< USB_CLASS_HID, HID_BOOT_INTF_SUBCLASS, USB_HID_PROTOCOL_KEYBOARD, CP_MASK_COMPARE_ALL> confDescrParserA(this); pUsb->getConfDescr(bAddress, 0, i, &confDescrParserA); if(bNumEP == (uint8_t)(totalEndpoints(BOOT_PROTOCOL))) break; } } // GCC will optimize unused stuff away. if(BOOT_PROTOCOL & USB_HID_PROTOCOL_MOUSE) { USBTRACE("HID_PROTOCOL_MOUSE\r\n"); for(uint8_t i = 0; i < num_of_conf; i++) { ConfigDescParser< USB_CLASS_HID, HID_BOOT_INTF_SUBCLASS, USB_HID_PROTOCOL_MOUSE, CP_MASK_COMPARE_ALL> confDescrParserB(this); pUsb->getConfDescr(bAddress, 0, i, &confDescrParserB); if(bNumEP == ((uint8_t)(totalEndpoints(BOOT_PROTOCOL)))) break; } } } USBTRACE2("bNumEP:", bNumEP); if(bNumEP != (uint8_t)(totalEndpoints(BOOT_PROTOCOL))) { rcode = USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; goto Fail; } // Assign epInfo to epinfo pointer rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo); //USBTRACE2("setEpInfoEntry returned ", rcode); USBTRACE2("Cnf:", bConfNum); delay(1000); // Set Configuration Value rcode = pUsb->setConf(bAddress, 0, bConfNum); if(rcode) goto FailSetConfDescr; delay(1000); USBTRACE2("bIfaceNum:", bIfaceNum); USBTRACE2("bNumIface:", bNumIface); // Yes, mouse wants SetProtocol and SetIdle too! for(uint8_t i = 0; i < epMUL(BOOT_PROTOCOL); i++) { USBTRACE2("\r\nInterface:", i); rcode = SetProtocol(i, bRptProtoEnable ? HID_RPT_PROTOCOL : USB_HID_BOOT_PROTOCOL); if(rcode) goto FailSetProtocol; USBTRACE2("PROTOCOL SET HID_BOOT rcode:", rcode); rcode = SetIdle(i, 0, 0); USBTRACE2("SET_IDLE rcode:", rcode); // if(rcode) goto FailSetIdle; This can fail. // Get the RPIPE and just throw it away. SinkParser sink; rcode = GetReportDescr(i, &sink); USBTRACE2("RPIPE rcode:", rcode); } // Get RPIPE and throw it away. if(BOOT_PROTOCOL & USB_HID_PROTOCOL_KEYBOARD) { // Wake keyboard interface by twinkling up to 5 LEDs that are in the spec. // kana, compose, scroll, caps, num rcode = 0x20; // Reuse rcode. while(rcode) { rcode >>= 1; // Ignore any error returned, we don't care if LED is not supported SetReport(0, 0, 2, 0, 1, &rcode); // Eventually becomes zero (All off) delay(25); } } USBTRACE("BM configured\r\n"); bPollEnable = true; return 0; FailGetDevDescr: #ifdef DEBUG_USB_HOST NotifyFailGetDevDescr(); goto Fail; #endif //FailSetDevTblEntry: //#ifdef DEBUG_USB_HOST // NotifyFailSetDevTblEntry(); // goto Fail; //#endif //FailGetConfDescr: //#ifdef DEBUG_USB_HOST // NotifyFailGetConfDescr(); // goto Fail; //#endif FailSetConfDescr: #ifdef DEBUG_USB_HOST NotifyFailSetConfDescr(); goto Fail; #endif FailSetProtocol: #ifdef DEBUG_USB_HOST USBTRACE("SetProto:"); goto Fail; #endif //FailSetIdle: //#ifdef DEBUG_USB_HOST // USBTRACE("SetIdle:"); //#endif Fail: #ifdef DEBUG_USB_HOST NotifyFail(rcode); #endif Release(); return rcode; } template void HIDBoot::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *pep) { // If the first configuration satisfies, the others are not considered. //if(bNumEP > 1 && conf != bConfNum) if(bNumEP == totalEndpoints(BOOT_PROTOCOL)) return; bConfNum = conf; bIfaceNum = iface; if((pep->bmAttributes & bmUSB_TRANSFER_TYPE) == USB_TRANSFER_TYPE_INTERRUPT && (pep->bEndpointAddress & 0x80) == 0x80) { if(pep->bInterval > bInterval) bInterval = pep->bInterval; // Fill in the endpoint info structure epInfo[bNumEP].epAddr = (pep->bEndpointAddress & 0x0F); epInfo[bNumEP].maxPktSize = (uint8_t)pep->wMaxPacketSize; epInfo[bNumEP].bmSndToggle = 0; epInfo[bNumEP].bmRcvToggle = 0; epInfo[bNumEP].bmNakPower = USB_NAK_NOWAIT; bNumEP++; } } template uint8_t HIDBoot::Release() { pUsb->GetAddressPool().FreeAddress(bAddress); bConfNum = 0; bIfaceNum = 0; bNumEP = 1; bAddress = 0; qNextPollTime = 0; bPollEnable = false; return 0; } template uint8_t HIDBoot::Poll() { uint8_t rcode = 0; if(bPollEnable && ((int32_t)((uint32_t)millis() - qNextPollTime) >= 0L)) { // To-do: optimize manually, using the for loop only if needed. for(int i = 0; i < epMUL(BOOT_PROTOCOL); i++) { const uint16_t const_buff_len = 16; uint8_t buf[const_buff_len]; USBTRACE3("(hidboot.h) i=", i, 0x81); USBTRACE3("(hidboot.h) epInfo[epInterruptInIndex + i].epAddr=", epInfo[epInterruptInIndex + i].epAddr, 0x81); USBTRACE3("(hidboot.h) epInfo[epInterruptInIndex + i].maxPktSize=", epInfo[epInterruptInIndex + i].maxPktSize, 0x81); uint16_t read = (uint16_t)epInfo[epInterruptInIndex + i].maxPktSize; rcode = pUsb->inTransfer(bAddress, epInfo[epInterruptInIndex + i].epAddr, &read, buf); // SOME buggy dongles report extra keys (like sleep) using a 2 byte packet on the wrong endpoint. // Since keyboard and mice must report at least 3 bytes, we ignore the extra data. if(!rcode && read > 2) { if(pRptParser[i]) pRptParser[i]->Parse((USBHID*)this, 0, (uint8_t)read, buf); #ifdef DEBUG_USB_HOST // We really don't care about errors and anomalies unless we are debugging. } else { if(rcode != hrNAK) { USBTRACE3("(hidboot.h) Poll:", rcode, 0x81); } if(!rcode && read) { USBTRACE3("(hidboot.h) Strange read count: ", read, 0x80); USBTRACE3("(hidboot.h) Interface:", i, 0x80); } } if(!rcode && read && (UsbDEBUGlvl > 0x7f)) { for(uint8_t i = 0; i < read; i++) { PrintHex (buf[i], 0x80); USBTRACE1(" ", 0x80); } if(read) USBTRACE1("\r\n", 0x80); #endif } } qNextPollTime = (uint32_t)millis() + bInterval; } return rcode; } #endif // __HIDBOOTMOUSE_H__