/** * Test hardware for ATMEL 28C series EEPROMs. * * The hardware uses two 74LS164 shift registers as the low and * high address registers. **/ #include "Configure.h" #define LED 13 PromDevice28C prom(32 * 1024L, 64, 10, true); /*****************************************************************************/ /*****************************************************************************/ /** * CLI parse functions */ const char hex[] = "0123456789abcdef"; // Read a line of data from the serial connection. char * readLine(char * buffer, int len) { for (int ix = 0; (ix < len); ix++) { buffer[ix] = 0; } // read serial data until linebreak or buffer is full char c = ' '; int ix = 0; do { if (Serial.available()) { c = Serial.read(); if ((c == '\b') && (ix > 0)) { // Backspace, forget last character --ix; } buffer[ix++] = c; Serial.write(c); } } while ((c != '\n') && (ix < len)); buffer[ix - 1] = 0; return buffer; } /************************************************************ * convert a single hex character [0-9a-fA-F] to its value * @param char c single character (digit) * @return byte value of the digit (0-15) ************************************************************/ byte hexDigit(char c) { if ((c >= '0') && (c <= '9')) { return c - '0'; } else if ((c >= 'a') && (c <= 'f')) { return c - 'a' + 10; } else if ((c >= 'A') && (c <= 'F')) { return c - 'A' + 10; } else { return 0xff; } } /************************************************************ * Convert a hex string to a uint32_t value. * Skips leading spaces and terminates on the first non-hex * character. Leading zeroes are not required. * * No error checking is performed - if no hex is found then * defaultValue is returned. Similarly, a hex string of more than * 8 digits will return the value of the last 8 digits. * @param pointer to string with the hex value of the word (modified) * @return unsigned int represented by the digits ************************************************************/ uint32_t getHex32(char *& pData, uint32_t defaultValue=0) { uint32_t u32 = 0; while (isspace(*pData)) { ++pData; } if (isxdigit(*pData)) { while (isxdigit(*pData)) { u32 = (u32 << 4) | hexDigit(*pData++); } } else { u32 = defaultValue; } return u32; } void printByte(byte b) { char line[3]; line[0] = hex[b >> 4]; line[1] = hex[b & 0x0f]; line[2] = '\0'; Serial.print(line); } void printWord(word w) { char line[5]; line[0] = hex[(w >> 12) & 0x0f]; line[1] = hex[(w >> 8) & 0x0f]; line[2] = hex[(w >> 4) & 0x0f]; line[3] = hex[(w) & 0x0f]; line[4] = '\0'; Serial.print(line); } /************************************************ * MAIN *************************************************/ word addr = 0; void setup() { // Do this first so that it initializes all of the hardware pins into a // non-harmful state. The Arduino or the target EEPROM could be damaged // if both writing to the data bus at the same time. prom.begin(); Serial.begin(115200); } void loop() { commandLoop(); } static void commandLoop() { byte b; uint32_t arg; const uint32_t noValue = uint32_t(-1); char line[20]; char * cursor = line + 1; unsigned long timeStart; unsigned long timeEnd; bool cmdError = false; Serial.print("\n#"); Serial.flush(); readLine(line, sizeof(line)); byte c = tolower(line[0]); if ((c >= 'A') && (c <= 'Z')) { c |= 0x20; } switch (c) { case 'a': if ((arg = getHex32(cursor, noValue)) != noValue) { prom.setAddress(word(arg)); } else cmdError = true; break; case 'd': if ((arg = getHex32(cursor, noValue)) != noValue) { prom.disableOutput(); prom.setDataBusMode(OUTPUT); prom.writeDataBus(byte(arg)); } else cmdError = true; break; case 'c': case 'o': case 'w': if ((line[1] != 'd') && (line[1] != 'e')) { cmdError = true; } else { bool enable = line[1] == 'e'; if (c == 'c') { if (enable) prom.enableChip(); else prom.disableChip(); } else if (c == 'w') { if (enable) prom.enableWrite(); else prom.disableWrite(); } else { // c == 'o' if (enable) { // Don't allow the prom and the data bus to output at the same time prom.setDataBusMode(INPUT); prom.enableOutput(); } else { prom.disableOutput(); } } } break; case 'r': prom.setDataBusMode(INPUT); prom.enableOutput(); b = prom.readDataBus(); printByte(b); Serial.println(); prom.disableOutput(); break; case 'l': Serial.println(F("Writing the lock code to enable Software Write Protect mode.")); prom.enableSoftwareWriteProtect(); break; case 'u': Serial.println(F("Writing the unlock code to disable Software Write Protect mode.")); timeStart = micros(); prom.disableSoftwareWriteProtect(); timeEnd = micros(); Serial.print("Unlock command time in uSec="); Serial.println(timeEnd - timeStart); break; default: cmdError = true; break; } if (cmdError) { Serial.print(F("Hardware Verifier - ")); Serial.println(prom.getName()); Serial.println(); Serial.println(F("Valid commands are:")); Serial.println(F(" Axxxx - Set address bus to xxxx")); Serial.println(F(" Dxx - Set Data bus to xx")); Serial.println(F(" Cs - Set Chip enable to state (e=enable, d=disable)")); Serial.println(F(" Os - Set Output enable to state (e=enable, d=disable)")); Serial.println(F(" Ws - Set Write enable to state (e=enable, d=disable)")); Serial.println(F(" R - Read and print the value on the data bus")); Serial.println(F(" L - Send Lock sequence to enable device Software Data Protection")); Serial.println(F(" U - Send Unlock sequence to disable device Software Data Protection")); } }