// -*- mode: C; tab-width: 2 ; indent-tabs-mode: nil -*-
//
// Unfified Keyboard Project
// ASDF keyboard firmware
//
// asdf_arch.c
//
// This file contains all the architecture dependent code, including register
// setup, I/O, timers, etc.
//
// Copyright 2019 David Fenyes
//
// This program is free software: you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free Software
// Foundation, either version 3 of the License, or (at your option) any later
// version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along with
// this program. If not, see .
// Wiring Information:
// Chip: {Microcontroller type and version}
//
// Example:
// PIN NAME FUNCTION
// 14-19,9,10 PORTB COLUMN inputs (1 bit per column)
// 23-25 PORTC0-2 ROW outputs (row number)
// 27 PORTC4
#include "asdf_arch.h"
#include
#include
#include
#include
#include "asdf_config.h"
// Tick is true every 1 ms.
static volatile uint8_t tick = 0;
// data polarity may be changed with a DIP switch, so we use a static instead of a constant
static uint8_t data_polarity = ASDF_DEFAULT_DATA_POLARITY;
// PROCEDURE: ISR for Timer 0 overflow
// INPUTS: none
// OUTPUTS:none
//
// DESCRIPTION: Occurs every 1 ms. Set tick flag, kick watchdog.
//
// SIDE EFFECTS:
//
// NOTES:
//
// SCOPE:
//
// COMPLEXITY:
//
ISR(TIMER0_COMPA_vect)
{
tick = 1;
}
// PROCEDURE: set_bit
// INPUTS: port: pointer to a (uint8) port
// bit: bit position to be set
// OUTPUTS: none
//
// DESCRIPTION: Give a port address and bit position, set the bit position.
//
// SIDE EFFECTS: See DESCRIPTION
//
// NOTES: Declared inline. Will only be inlined for functions in this module, so
// also declared static.
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static inline void set_bit(volatile uint8_t *port, uint8_t bit)
{
*port |= (1 << bit);
}
// PROCEDURE: clear_bit
// INPUTS: port: pointer to a (uint8) port
// bit: bit position to be cleared
// OUTPUTS: none
//
// DESCRIPTION: Give a port address and bit position, clear the bit position.
//
// SIDE EFFECTS: See DESCRIPTION
//
// NOTES: Declared inline. Will only be inlined for functions in this module, so
// also declared static.
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static inline void clear_bit(volatile uint8_t *port, uint8_t bit)
{
*port &= ~(1 << bit);
}
// PROCEDURE: arch_timer0_config
//
// INPUTS: bits: a 4 byte field containing the configuration values for the
// 8-bit timer0 A and B control registers, and the interrupt mask register.
//
// OUTPUTS: none
//
// DESCRIPTION: Takes a 4 byte value with settings for all the control
// registers for the 8-bit counter/timer (timer 0), and writes them all
// to the respective registers.
//
// SIDE EFFECTS: see above
//
// NOTES: Setting all the bits together, and writing all the registers from a
// single word permits more clear initialization of control fields that are
// spread across more than one word.
//
// COMPLEXITY: 1
//
// SCOPE: private
//
static void arch_timer0_config(uint32_t bits)
{
TCCR0B = 0; // first turn off timer.
TCCR0A = (bits >> TMR0A_POS) & 0xff;
TIMSK0 = (bits >> TMR0IMSK_POS) & 0xff;
TCCR0B = (bits >> TMR0B_POS) & 0xff; // Set the mode (and turn on timer) last
}
// PROCEDURE: arch_tick_timer_init
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Sets up 1ms tick timer.
//
// SIDE EFFECTS:
//
// NOTES: Set up Timer 0 in CTC mode for 1 ms overflow.
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static void asdf_arch_tick_timer_init(void)
{
tick = 0;
// set compare register first, so timer can operate correctly as soon as it is
// enabled.
OCR0A = TICK_COUNT;
// operate in CTC mode to overflow at exactly 1 ms
// prescaler = 64 and output compare value is 250
arch_timer0_config(TIMER0_WFM_CTC | TIMER0_DIV64 | TIMER0_INT_ON_COMA);
}
// PROCEDURE: asdf_arch_tick
// INPUTS: none
// OUTPUTS: returns a 1 if the 1ms timer timed out, 0 otherwise
//
// DESCRIPTION: See Outputs.
//
// SIDE EFFECTS: Zeroes out the 1 ms timer flag.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 1
//
uint8_t asdf_arch_tick(void)
{
uint8_t retval = tick;
tick = 0;
return retval;
}
// PROCEDURE: asdf_arch_init_timers
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Sets up timer for 1 ms intervals
//
// SIDE EFFECTS: See DESCRIPTION
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static void asdf_arch_init_clock(void)
{
CLKPR = (CLKPCE | SYSCLK_DIV1);
}
// PROCEDURE: asdf_arch_init_outputs
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Initialize all LED ports as outputs. Values are not set here.
// They are set by the keymap code
//
// SIDE EFFECTS: See DESCRIPTION
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static void asdf_arch_init_leds(void)
{
set_bit(&ASDF_LED1_DDR, ASDF_LED1_BIT);
set_bit(&ASDF_LED2_DDR, ASDF_LED2_BIT);
set_bit(&ASDF_LED3_DDR, ASDF_LED3_BIT);
}
// PROCEDURE: asdf_arch_led1_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: If value is true, turn on LED1. If value is false, turn off LED1
//
// SIDE EFFECTS: See above.
//
// NOTES: The LED1 port drives the LED directly by pulling the cathode low, so
// clearing the bit turns the LED on.
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_led1_set(uint8_t value)
{
if (value) {
clear_bit(&ASDF_LED1_PORT, ASDF_LED1_BIT);
}
else {
set_bit(&ASDF_LED1_PORT, ASDF_LED1_BIT);
}
}
// PROCEDURE: asdf_arch_led2_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: If value is true, turn on LED2. If value is false, turn off LED2
//
// SIDE EFFECTS: See above.
//
// NOTES: The LED2 output drives the LED via an inverter buffer, so a high
// output pulls the LED cathode low, lighting the LED.
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_led2_set(uint8_t value)
{
if (value) {
clear_bit(&ASDF_LED2_PORT, ASDF_LED2_BIT);
}
else {
set_bit(&ASDF_LED2_PORT, ASDF_LED2_BIT);
}
}
// PROCEDURE: asdf_arch_led3_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: If value is true, turn on LED3. If value is false, turn off LED3
//
// SIDE EFFECTS: See above.
//
// NOTES: The LED3 output drives the LED via an inverter buffer, so a high
// output pulls the LED cathode low, lighting the LED.
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_led3_set(uint8_t value)
{
if (value) {
clear_bit(&ASDF_LED3_PORT, ASDF_LED3_BIT);
}
else {
set_bit(&ASDF_LED3_PORT, ASDF_LED3_BIT);
}
}
// PROCEDURE: asdf_arch_null_output
// INPUTS: (uint8_t) value - ignored
// OUTPUTS: none
//
// DESCRIPTION: Does nothing.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_null_output(uint8_t value)
{
(void) value;
}
// PROCEDURE: asdf_arch_out1_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT1 bit if value is true, and clear OUT1 if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out1_set(uint8_t value)
{
if (value) {
set_bit(&ASDF_OUT1_PORT, ASDF_OUT1_BIT);
}
else {
clear_bit(&ASDF_OUT1_PORT, ASDF_OUT1_BIT);
}
set_bit(&ASDF_OUT1_DDR, ASDF_OUT1_BIT);
}
// PROCEDURE: asdf_arch_out1_open_hi_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT1 bit to hi-z if value is true, and low if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out1_open_hi_set(uint8_t value)
{
if (value) {
clear_bit(&ASDF_OUT1_DDR, ASDF_OUT1_BIT);
set_bit(&ASDF_OUT1_PORT, ASDF_OUT1_BIT);
}
else {
clear_bit(&ASDF_OUT1_PORT, ASDF_OUT1_BIT);
set_bit(&ASDF_OUT1_DDR, ASDF_OUT1_BIT);
}
}
// PROCEDURE: asdf_arch_out1_open_lo_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT1 bit to high if value is true, and hi-z if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out1_open_lo_set(uint8_t value)
{
if (value) {
set_bit(&ASDF_OUT1_PORT, ASDF_OUT1_BIT);
set_bit(&ASDF_OUT1_DDR, ASDF_OUT1_BIT);
}
else {
clear_bit(&ASDF_OUT1_DDR, ASDF_OUT1_BIT);
clear_bit(&ASDF_OUT1_PORT, ASDF_OUT1_BIT);
}
}
// PROCEDURE: asdf_arch_out2_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT2 bit if value is true, and clear OUT2 if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out2_set(uint8_t value)
{
if (value) {
set_bit(&ASDF_OUT2_PORT, ASDF_OUT2_BIT);
}
else {
clear_bit(&ASDF_OUT2_PORT, ASDF_OUT2_BIT);
}
set_bit(&ASDF_OUT2_DDR, ASDF_OUT2_BIT);
}
// PROCEDURE: asdf_arch_out2_open_hi_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT2 bit to hi-z if value is true, and low if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out2_open_hi_set(uint8_t value)
{
if (value) {
clear_bit(&ASDF_OUT2_DDR, ASDF_OUT2_BIT);
set_bit(&ASDF_OUT2_PORT, ASDF_OUT2_BIT);
}
else {
clear_bit(&ASDF_OUT2_PORT, ASDF_OUT2_BIT);
set_bit(&ASDF_OUT2_DDR, ASDF_OUT2_BIT);
}
}
// PROCEDURE: asdf_arch_out2_open_lo_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT2 bit to high if value is true, and hi-z if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out2_open_lo_set(uint8_t value)
{
if (value) {
set_bit(&ASDF_OUT2_PORT, ASDF_OUT2_BIT);
set_bit(&ASDF_OUT2_DDR, ASDF_OUT2_BIT);
}
else {
clear_bit(&ASDF_OUT2_DDR, ASDF_OUT2_BIT);
clear_bit(&ASDF_OUT2_PORT, ASDF_OUT2_BIT);
}
}
// PROCEDURE: asdf_arch_out3_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT3 bit if value is true, and clear OUT3 if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out3_set(uint8_t value)
{
if (value) {
set_bit(&ASDF_OUT3_PORT, ASDF_OUT3_BIT);
}
else {
clear_bit(&ASDF_OUT3_PORT, ASDF_OUT3_BIT);
}
set_bit(&ASDF_OUT3_DDR, ASDF_OUT3_BIT);
}
// PROCEDURE: asdf_arch_out3_open_hi_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT3 bit to hi-z if value is true, and low if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out3_open_hi_set(uint8_t value)
{
if (value) {
clear_bit(&ASDF_OUT3_DDR, ASDF_OUT3_BIT);
set_bit(&ASDF_OUT3_PORT, ASDF_OUT3_BIT);
}
else {
clear_bit(&ASDF_OUT3_PORT, ASDF_OUT3_BIT);
set_bit(&ASDF_OUT3_DDR, ASDF_OUT3_BIT);
}
}
// PROCEDURE: asdf_arch_out3_open_lo_set
// INPUTS: (uint8_t) value
// OUTPUTS: none
//
// DESCRIPTION: Sets the OUT3 bit to high if value is true, and hi-z if value is false.
//
// SIDE EFFECTS: See above.
//
// NOTES:
//
// SCOPE: public
//
// COMPLEXITY: 2
//
void asdf_arch_out3_open_lo_set(uint8_t value)
{
if (value) {
set_bit(&ASDF_OUT3_PORT, ASDF_OUT3_BIT);
set_bit(&ASDF_OUT3_DDR, ASDF_OUT3_BIT);
}
else {
clear_bit(&ASDF_OUT3_DDR, ASDF_OUT3_BIT);
clear_bit(&ASDF_OUT3_PORT, ASDF_OUT3_BIT);
}
}
// PROCEDURE: asdf_arch_pos_strobe
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Initialize strobe output to positive polarity. Initial state is
// LOW
//
// SIDE EFFECTS: See DESCRIPTION
//
// SCOPE: public
//
// COMPLEXITY: 1
//
void asdf_arch_set_pos_strobe(void)
{
clear_bit(&ASDF_STROBE_PORT, ASDF_STROBE_BIT);
set_bit(&ASDF_STROBE_DDR, ASDF_STROBE_BIT);
}
// PROCEDURE: asdf_arch_neg_strobe
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Initialize strobe output
//
// SIDE EFFECTS: See DESCRIPTION
//
// SCOPE: private
//
// COMPLEXITY: 1
//
void asdf_arch_set_neg_strobe(void)
{
set_bit(&ASDF_STROBE_PORT, ASDF_STROBE_BIT);
set_bit(&ASDF_STROBE_DDR, ASDF_STROBE_BIT);
}
// PROCEDURE: asdf_arch_init_ascii_output
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Sets up output port for ASCII output
//
// SIDE EFFECTS: See DESCRIPTION
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static void asdf_arch_init_ascii_output(void)
{
// set all outputs
ASDF_ASCII_PORT = data_polarity;
ASDF_ASCII_DDR = ALL_OUTPUTS;
}
// PROCEDURE: asdf_arch_init_columns
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Sets up columns port as input and enable weak pullups.
//
// SIDE EFFECTS: See DESCRIPTION
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static void asdf_arch_init_columns(void)
{
ASDF_COLUMNS_DDR = ALL_INPUTS;
ASDF_COLUMNS_PORT = ALL_PULLUPS;
}
// PROCEDURE: asdf_arch_init_row_outputs
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Sets up output port to latch keyboard matrix row for scanning.
//
// SIDE EFFECTS: See DESCRIPTION
//
// SCOPE: private
//
// COMPLEXITY: 1
//
static void asdf_arch_init_row_outputs(void)
{
ASDF_HIROW_DDR = ALL_OUTPUTS;
ASDF_LOROW_DDR = ALL_OUTPUTS;
}
// PROCEDURE: asdf_arch_pulse_delay_short
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Delays a fixed amount of time for keyboard output pulses specified by
// ASDF_PULSE_DELAY_SHORT_US
//
// SIDE EFFECTS: see above.
//
// NOTES: Set ASDF_PULSE_DELAY_US in asdf_config.h
//
// SCOPE: public
//
// COMPLEXITY: 1
//
void asdf_arch_pulse_delay_short(void)
{
_delay_us(ASDF_PULSE_DELAY_SHORT_US);
}
// PROCEDURE: asdf_arch_pulse_delay_long
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: Delays a fixed amount of time for keyboard output pulses specified by
// ASDF_PULSE_DELAY_LONG_MS
//
// SIDE EFFECTS: see above.
//
// NOTES: Set ASDF_PULSE_DELAY_US in asdf_config.h
//
// SCOPE: public
//
// COMPLEXITY: 1
//
void asdf_arch_pulse_delay_long(void)
{
_delay_ms(ASDF_PULSE_DELAY_LONG_MS);
}
// PROCEDURE: asdf_arch_delay_ms
// INPUTS: (uint16) delay_ms - the delay in msec.
// OUTPUTS: none
//
// DESCRIPTION: Delays a specified number of milliseconds
//
// SIDE EFFECTS: see above.
//
// SCOPE: public
//
// COMPLEXITY: 1
//
void asdf_arch_delay_ms(uint16_t delay_ms)
{
for (uint16_t i=0; i < delay_ms; i++) {
_delay_ms(1);
}
}
// PROCEDURE: asdf_arch_init
// INPUTS: none
// OUTPUTS: none
//
// DESCRIPTION: sets up all the hardware for the keyboard
//
// SIDE EFFECTS: see DESCRIPTION
//
// SCOPE: public
//
// COMPLEXITY: 1
//
void asdf_arch_init(void)
{
// disable interrupts:
cli();
// clear the 1ms timer flag;
tick = 0;
// set up timers for 1 msec intervals
asdf_arch_init_clock();
asdf_arch_tick_timer_init();
// set up ASCII output port
asdf_arch_init_ascii_output();
// initialize keyboard data polarity and strobe polarity
data_polarity = ASDF_DEFAULT_DATA_POLARITY;
if (ASDF_DEFAULT_STROBE_POLARITY == ASDF_POSITIVE_POLARITY) {
asdf_arch_set_pos_strobe();
} else {
asdf_arch_set_neg_strobe();
}
asdf_arch_init_leds();
// set up row and column ports
asdf_arch_init_row_outputs();
asdf_arch_init_columns();
// enable interrupts:
sei();
}
// PROCEDURE: asdf_arch_read_row
// INPUTS: (uint8_t) row: the row number to be scanned
// OUTPUTS: returns a word containing the active (pressed) columns
//
// DESCRIPTION: Outputs the argument to the ROW ports, then reads the column
// port and returns the value. The value is a binary representation of the keys
// pressed within the row, with 1=pressed, 0=released.
//
// SIDE EFFECTS: Sets ROW output port.
//
// NOTES:
//
// 1) The keymap represents an unpressed key as a "0" and a pressed key as a
// "1". So, if a keypress pulls the column line low, then the reading of the
// physical bits must be inverted.
//
// 2) A small delay (2usec) is required between setting the keyboard row outputs
// and reading the columns, which I think is due to capacitance across the
// reverse-biased diodes.
//
// SCOPE: public
//
// COMPLEXITY: 1
//
asdf_cols_t asdf_arch_read_row(uint8_t row)
{
uint32_t rows = ~(1L << row);
ASDF_LOROW_PORT = (uint8_t)(rows & 0xff);
_delay_us(ASDF_KEYBOARD_ROW_SETTLING_TIME_US);
ASDF_HIROW_PORT = (uint8_t)((rows >> 8) & 0xff);
_delay_us(ASDF_KEYBOARD_ROW_SETTLING_TIME_US);
return ~(asdf_cols_t) ASDF_COLUMNS_PIN;
}
// PROCEDURE: asdf_arch_osi_read_row
// INPUTS: (uint8_t) row: the row number to be scanned
// OUTPUTS: returns a word containing the active (pressed) columns
//
// DESCRIPTION: Outputs the argument to the ROW ports, then reads the column
// port and returns the value. The value is a binary representation of the keys
// pressed within the row, with 1=pressed, 0=released.
//
// SIDE EFFECTS: Sets ROW output port.
//
// NOTES:
//
// 1) The keymap represents an unpressed key as a "0" and a pressed key as a
// "1". So, if a keypress pulls the column line low, then the reading of the
// physical bits must be inverted.
//
// SCOPE: public
//
// COMPLEXITY: 1
//
asdf_cols_t asdf_arch_osi_read_row(uint8_t row)
{
asdf_cols_t cols;
if (row > 7) {
cols = asdf_arch_read_row(row);
}
else {
// enable the OSI keyboard
clear_bit(&ASDF_OSI_KBE_PORT, ASDF_OSI_KBE_BIT);
// register the row to be read
ASDF_COLUMNS_DDR = ALL_OUTPUTS;
ASDF_COLUMNS_PORT = (1 << row);
clear_bit(&ASDF_OSI_RW_PORT, ASDF_OSI_RW_BIT);
set_bit(&ASDF_OSI_RW_PORT, ASDF_OSI_RW_BIT);
// Read in the columns
ASDF_COLUMNS_DDR = ALL_INPUTS;
return ASDF_COLUMNS_PIN;
ASDF_LOROW_PORT = row & 0xff;
cols = (asdf_cols_t) ASDF_COLUMNS_PORT;
}
return cols;
}
// PROCEDURE: asdf_arch_send_code
// INPUTS: (keycode_t) code - the 7-bit ASCII code to be output by the keyboard
// OUTPUTS: none
//
// DESCRIPTION: Takes a character code and outputs the code on a parallel ASCII
// port, with a strobe. This routine could be replaced with UART, I2C, USB, or
// other output mechanism, of course.
//
// SIDE EFFECTS: See above.
//
// NOTES: The strobe is set by the ASDF_STROBE_LENGTH definition. The data
// output and strobe polarity are set by the static data_polarity and static
// strobe_polarity variables.
//
// SCOPE:
//
// COMPLEXITY:
//
void asdf_arch_send_code(asdf_keycode_t code)
{
ASDF_ASCII_PORT = (code ^ data_polarity);
// toggle strobe. Must test before setting to avoid spurious strobe
set_bit(&ASDF_STROBE_PIN, ASDF_STROBE_BIT);
_delay_us(ASDF_STROBE_LENGTH_US);
set_bit(&ASDF_STROBE_PIN, ASDF_STROBE_BIT);
}
//-------|---------|---------+---------+---------+---------+---------+---------+
// Above line is 80 columns, and should display completely in the editor.
//