
UNDERTALE FOR 64K APPLES:

SOURCE FOR SELECTED ASSEMBLY ROUTINES

Due to performance concerns, a large chunk of UnderTale for Apple II relies on 6502
assembly routines. This is particularly important for music synthesis and animation,
routines for which we document below.

Accuracy of these code listings is not guaranteed—copy/paste at your own risk. (It’s
likely safer to refer to the binaries used in the actual demo.)

1. music synthesis

1.1. spookbit. With music synthesis, it is always important to keep track of timing,
which is why you will see cycle counts next to each instruction, as well as the occasional
’screw timing’ comment when trying to handle branching.

The routine uses the X and Y registers to keep track of the state of each voice, while
the accumulator is alarmingly misused to keep track of which voice needs to be output to
the speaker. Note that the Apple’s speaker is a 1-bit beeper, and the only way to control
it is by accessing $C030 in memory to toggle the output. Because of this peculiarity, we
access the location carefully in each iteration of the loop so that the routine ‘knows’ the
‘state’ of the speaker.

$0303 A9 FF LDA #$FF

$0305 85 EB STA $EB

$0307 AE 01 03 LDX $0301

$030a AC 02 03 LDY $0302

$030d 86 1E STX $1E

$030f 84 EE STY $EE

$0311 A9 00 LDA #$00

$0313 CE 00 03 DEC $0300 [6]

$0316 F0 59 BEQ +$59 [2; 3 if branch to RTS]

$0318 4A LSR A [2]

$0319 90 05 BCC +$05 [2 or 3; branches to DEX because screw timing]

$031b 09 80 ORA #$80 [2]

$031d 8D 30 C0 STA $C030 [4]

$0320 CA DEX [2]

$0321 D0 04 BNE +$04 [2; 3 if branch to DEY]

$0323 A6 1E LDX $1E [3]

$0325 49 AA EOR #$AA [2]

Date: 2017/09/15.

1

2 UNDERTALE FOR 64K APPLES: SOURCE FOR SELECTED ASSEMBLY ROUTINES

$0327 88 DEY [2]

$0328 D0 04 BNE +$04 [2; 3 if branch to BCC because screw timing]

$032a A4 EE LDY $EE [3]

$032c 49 55 EOR #$55 [2]

$032e CA DEX [2]

$032f D0 04 BNE +$04 [2; 3 if branch to DEY]

$0331 A6 1E LDX $1E [3]

$0333 49 AA EOR #$AA [2]

$0335 88 DEY [2]

$0336 D0 04 BNE +$04 [2; 3 if branch to BCC because screw timing]

$0338 A4 EE LDY $EE [3]

$033a 49 55 EOR #$55 [2]

$033c 90 03 BCC +$03 [2; 3 if branch to LSR]

$033e 8D 30 C0 STA $C030 [4]

$0341 4A LSR A [2]

$0342 90 05 BCC +$05 [2 or 3; screw timing]

$0344 09 80 ORA #$80 [2]

$0346 8D 30 C0 STA $C030 [4]

$0349 CA DEX [2]

$034a D0 04 BNE +$04 [2; 3 if branch to DEY]

$034c A6 1E LDX $1E [3]

$034e 49 55 EOR #$55 [2]

$0350 88 DEY [2]

$0351 D0 04 BNE +$04 [2; 3 if branch to BCC]

$0353 A4 EE LDY $EE [3]

$0355 49 AA EOR #$AA [2]

$0357 CA DEX [2]

$0358 D0 04 BNE +$04 [2; 3 if branch to DEY]

$035a A6 1E LDX $1E [3]

$035c 49 55 EOR #$55 [2]

UNDERTALE FOR 64K APPLES: SOURCE FOR SELECTED ASSEMBLY ROUTINES 3

$035e 88 DEY [2]

$035f D0 04 BNE +$04 [2; 3 if branch to BCC]

$0361 A4 EE LDY $EE [3]

$0363 49 AA EOR #$AA [2]

$0365 90 03 BCC +$03 [2; 3 if branch to DEC]

$0367 8D 30 C0 STA $C030 [4]

$036a C6 EB DEC $EB [5]

$036c D0 AA BNE -$?? [3 if branch back to first LSR A; 2 otherwise]

$036e 4C 13 03 JMP $0313 [3; jump all the way back to DEC $0300]

$0371 60 RTS

The result is a two-voice tone generator, which takes pulse widths for each tone at
$0301 and $0302 and the tone length at $0300. The frequencies roughly follow

f =
1.023 × 106 Hz

54 + 36 · (pulsewidth− 1)
.

1.1.1. in copy-and-paste-friendly format.

303:A9 FF 85 EB AE 01 03 AC 02 03 86 1E 84 EE A9 00

313:CE 00 03 F0 59

318:4A 90 05 09 80 8D 30 C0

320:CA D0 04 A6 1E 49 AA 88 D0 04 A4 EE 49 55

32e:CA D0 04 A6 1E 49 AA 88 D0 04 A4 EE 49 55 90 03 8D 30 C0

341:4A 90 05 09 80 8D 30 C0

349:CA D0 04 A6 1E 49 55 88 D0 04 A4 EE 49 AA

357:CA D0 04 A6 1E 49 55 88 D0 04 A4 EE 49 AA 90 03 8D 30 C0

36a:C6 EB D0 AA 4C 13 03 60

1.1.2. Applesoft companion code. Since the routine generates one note/chord at a time
and can only take arguments for one note/chord, one way to operate it is by feeding it
a numeric data array in Applesoft.

5 DATA 48,164,54,48,164,27,96

,130,36,48,138,41,48,138,27,

96,146,54, 48,164,54,48,164,

41,48,130,27,48,130,24,48,13

8,27,48,138,36,96,146,41

10 FOR I = 1 TO 13: READ A,B,C:

POKE 768,A: POKE 769,B: POKE

770,C: CALL 771: NEXT I

1.1.3. octave-switching in real time. It is possible to slow down the update rate simply
by removing some counter updates:

• switch between 32e:ca d0 04 and 4c 35 03 (dex/bne vs jmp)
• switch between 335:88 d0 04 and 4c 3c 03 (dey/bne vs jmp)

4 UNDERTALE FOR 64K APPLES: SOURCE FOR SELECTED ASSEMBLY ROUTINES

• switch between 357:ca d0 04 and 4c 5e 03 (dex/bne vs jmp)
• switch between 35e:88 d0 04 and 4c 65 03 (dey/bne vs jmp)

which extends the pulse width by 1.78, or in alternate terms turns A4 into B3. So to
play tunes this slowly, all you need to do is go to this subroutine

10030 POKE 814,76: POKE 821,76: POKE 855,76: POKE 862,76

10031 POKE 815,53: POKE 822,60: POKE 856,94: POKE 863,101

10032 POKE 816,3: POKE 823,3: POKE 857,3: POKE 864,3

10033 LPF = 1: RETURN

or its assembly equivalent, which is left as an exercise to the reader.

1.1.4. tempo adjustment in real time. Sometimes we want finer control of the note du-
ration without altering the pitch. This means that instead of having the duration be
multiples of 256 cycles (which is what effectively happens as we decrement EB continu-
ously), we want it to be multiples of, say, 128 or 64.

This actually does not require major adjustment—we just need to specify after the
dec $eb and bne that we want the address to roll over to #$ff, for instance. The
easiest way to do this would be with lsr $eb, which then adds 5 cycles once every 127
loops. This is probably the right order of magnitude to be negligible, and the carry flag
set/reset should not persist since we then encounter a lsr a instruction.

Here’s one way to quadruple the level of control over the tempo:

304:3F

317:5F

36e:C6 EB 46 EB 46 EB 4C 13 03 60

1.2. spookbits. Whereas the spookbit routine accepts parameters for only one possible
chord, spookbits is meant to work through many notes all at once. Furthermore, the
notes played by one voice do not have to align perfectly with the other, as they would
necessarily with spookbit.

1.2.1. assembly code. Given that we are now throwing in machinery to handle the voice
notes separately, we can no longer hold the entire code in the free part of page 3.

$B500: A9 7F LDA #$7F [2]

$B502: 85 EB STA $EB [3]

$B504: A0 00 LDY #$00 [2]

$B506: 84 E3 STY $E3 [3]

$B508: C8 INY [2]

$B509: 84 EF STY $EF [3]

$B50B: 84 FE STY $FE [3]

$B50D: 20 9B B5 JSR $B59B [6!]

$B510: 20 CB B5 JSR $B5CB [6!]

$B513: A5 E3 LDA $E3 [3]

$B515: 4A LSR A [2]

$B516: 90 05 BCC +$05 [2 or 3; branches to DEX because screw timing]

$B518: 09 80 ORA #$80 [2]

$B51A: 2C 30 C0 BIT $C030 [4]

UNDERTALE FOR 64K APPLES: SOURCE FOR SELECTED ASSEMBLY ROUTINES 5

$B51D: CA DEX [2]

$B51E: D0 04 BNE +$04 [2; 3 if branch to DEY]

$B520: A6 1E LDX $1E [3]

$B522: 49 AA EOR #$AA [2]

$B524: 88 DEY [2]

$B525: D0 04 BNE +$04 [2; 3 if branch to BCC because screw timing]

$B527: A4 EE LDY $EE [3]

$B529: 49 55 EOR #$55 [2]

$B52B: CA DEX [2]

$B52C: D0 04 BNE +$04 [2; 3 if branch to DEY]

$B52E: A6 1E LDX $1E [3]

$B530: 49 AA EOR #$AA [2]

$B532: 88 DEY [2]

$B533: D0 04 BNE +$04 [2; 3 if branch to BCC because screw timing]

$B535: A4 EE LDY $EE [3]

$B537: 49 55 EOR #$55 [2]

$B539: 90 03 BCC +$03 [2; 3 if branch to LSR]

$B53B: 2C 30 C0 BIT $C030 [4]

$B53E: 4A LSR A [2]

$B53F: 90 05 BCC +$05 [2 or 3; screw timing]

$B541: 09 80 ORA #$80 [2]

$B543: 2C 30 C0 BIT $C030 [4]

$B546: CA DEX [2]

$B547: D0 04 BNE +$04 [2; 3 if branch to DEY]

$B549: A6 1E LDX $1E [3]

$B54B: 49 55 EOR #$55 [2]

$B54D: 88 DEY [2]

$B54E: D0 04 BNE +$04 [2; 3 if branch to BCC]

$B550: A4 EE LDY $EE [3]

$B552: 49 AA EOR #$AA [2]

$B554: CA DEX [2]

$B555: D0 04 BNE +$04 [2; 3 if branch to DEY]

$B557: A6 1E LDX $1E [3]

$B559: 49 55 EOR #$55 [2]

$B55B: 88 DEY [2]

6 UNDERTALE FOR 64K APPLES: SOURCE FOR SELECTED ASSEMBLY ROUTINES

$B55C: D0 04 BNE +$04 [2; 3 if branch to BCC]

$B55E: A4 EE LDY $EE [3]

$B560: 49 AA EOR #$AA [2]

$B562: 90 03 BCC +$03 [2; 3 if branch to DEC]

$B564: 2C 30 C0 BIT $C030 [4]

$B567: C6 EB DEC $EB [5]

$B569: D0 AA BNE -$?? [3 if branch back to first LSR A; 2 otherwise]

$B56B: 85 E3 STA $E3 [3]

$B56D: C6 EC DEC $EC [5]

$B56F: D0 0B BNE +$0B [2; 3 if branch ahead to DEC $ED]

$B571: A5 EF LDA $EF [3]

$B573: F0 07 BEQ +$07 [2; 3 if branch past note load]

$B575: 84 D7 STY $D7 [3]

$B577: 20 9B B5 JSR $B59B [3; load note 1]

$B57A: A4 D7 LDY $D7 [3]

$B57C: C6 ED DEC $ED [5]

$B57E: D0 07 BNE +$07 [2; 3 if branch ahead to LDA $EF]

$B580: A5 FE LDA $FE [3]

$B582: F0 03 BEQ +$03 [2; 3 if branch past note load]

$B584: 20 CB B5 JSR $B5CB [3; load note 2]

$B587: A5 EF LDA $EF [3]

$B589: 05 FE ORA $FE [3]

$B58B: D0 01 BNE +$01 [2; 3 if branch past RTS]

$B58D: 60 RTS [6]

$B58E: A9 7F LDA #$7F [2]

$B590: 85 EB STA $EB [3]

$B592: A5 E3 LDA $E3 [3]

$B594: 4C 15 B5 JMP $B515 [3; jump back to first LSR A]

$B59B: A0 00 LDY #$00 [2]

$B59D: B1 FA LDA ($FA),Y [5-6]

$B59F: D0 0C BNE +$0C [2; 3 if branch to other STA $1E]

$B5A1: AA TAX [2]

$B5A2: CA DEX [2]

$B5A3: 86 1E STX $1E [3]

$B5A5: 8D 1C B5 STA $B51C [4; overwrite first C0]

$B5A8: 8D 3D B5 STA $B53D [4; overwrite second C0]

$B5AB: D0 0B BNE +$0B [3; must branch to INY]

$B5AD: 85 1E STA $1E [3]

UNDERTALE FOR 64K APPLES: SOURCE FOR SELECTED ASSEMBLY ROUTINES 7

$B5AF: AA TAX [2]

$B5B0: A9 C0 LDA #$C0 [2]

$B5B2: 8D 1C B5 STA $B51C [4; rewrite first C0]

$B5B5: 8D 3D B5 STA $B53D [4; rewrite second C0]

$B5B8: C8 INY [2]

$B5B9: B1 FA LDA ($FA),Y [5-6]

$B5BB: 85 EC STA $EC [3]

$B5BD: 85 EF STA $EF [3]

$B5BF: A5 FA LDA $FA [3]

$B5C1: 18 CLC [2]

$B5C2: 69 02 ADC #$02 [2]

$B5C4: 90 02 BCC +$02 [2; 3 if branch past INC]

$B5C6: E6 FB INC $FB [5]

$B5C8: 85 FA STA $FA [3]

$B5CA: 60 RTS [6]

$B5CB: A0 00 LDY #$00 [2]

$B5CD: B1 FC LDA ($FC),Y [5-6]

$B5CF: D0 0C BNE +$0C [2; 3 if branch to other STA $1E]

$B5D1: 85 EE STA $EE [3]

$B5D3: C6 EE DEC $EE [5]

$B5D5: 8D 45 B5 STA $B545 [4; overwrite third C0]

$B5D8: 8D 66 B5 STA $B566 [4; overwrite fourth C0]

$B5DB: D0 0B BNE +$0B [3; must branch to INY]

$B5DD: 85 EE STA $EE [3]

$B5DF: EA NOP [2]

$B5E0: A9 C0 LDA #$C0 [2]

$B5E2: 8D 45 B5 STA $B545 [4; rewrite third C0]

$B5E5: 8D 66 B5 STA $B566 [4; rewrite fourth C0]

$B5E8: C8 INY [2]

$B5E9: B1 FC LDA ($FC),Y [5-6]

$B5EB: 85 ED STA $ED [3]

$B5ED: 85 FE STA $FE [3]

$B5EF: A5 FC LDA $FC [3]

$B5F1: 18 CLC [2]

$B5F2: 69 02 ADC #$02 [2]

$B5F4: 90 02 BCC +$02 [2; 3 if branch past INC]

$B5F6: E6 FD INC $FD [5]

$B5F8: 85 FC STA $FC [3]

$B5FA: A4 EE LDY $EE [3]

$B5FC: 60 RTS [6]

1.2.2. test example.

b600: c3 0c 00 10 c3 18 00 04 c3 0e c3 18 00 04 c3 18

b610: 00 04 c3 18 00 04 c3 0e c3 0e c3 0e c3 0e 00 0e

b620: db 0c 00 10 db 18 00 04 db 0e db 18 00 04 db 18

8 UNDERTALE FOR 64K APPLES: SOURCE FOR SELECTED ASSEMBLY ROUTINES

b630: 00 04 db 18 00 04 db 0e db 0e db 0e db 0e 00 0e

b640: e8 0c 00 10 e8 18 00 04 e8 0e e8 18 00 04 e8 18

b650: 00 04 e8 18 00 04 e8 0e e8 0e e8 0e e8 0e 00 0e

b660: f6 0c 00 10 f6 18 00 04 f6 0e f6 18 00 04 db 18

b670: 00 04 db 18 00 04 db 0e db 0e db 0e db 0e 00 0e

b680: 00 00

b690: 61 0c 00 02 61 0c 00 02 30 18 00 04 41 18 00 12

b6a0: 45 18 00 04 49 18 00 04 52 18 00 04 61 0e 52 0e 49 0e

b6b2: 6d 0c 00 02 6d 0c 00 02 30 18 00 04 41 18 00 12

b6c2: 45 18 00 04 49 18 00 04 52 18 00 04 61 0e 52 0e 49 0e

b6d4: 74 0c 00 02 74 0c 00 02 30 18 00 04 41 18 00 12

b6e4: 45 18 00 04 49 18 00 04 52 18 00 04 61 0e 52 0e 49 0e

b6f6: 7b 0c 00 02 7b 0c 00 02 30 18 00 04 41 18 00 12

b706: 45 18 00 04 49 18 00 04 52 18 00 04 61 0e 52 0e 49 0e

b718: 00 00

00fa: 00 b6 90 b6

b500g

It may be apparent that the only arguments that this routine takes are the start
addresses for the note data to feed into each voice (at $fa and $fc). Each note has a byte
indicating duration and a byte indicating pulse width, and if both are zero the routine
stops reading in any further notes. Furthermore, this engine actually accommodates
rests, which spookbit does not.

Nonetheless, spookbit is in the final diskette alongside spookbits (which was originally
intended to supersede spookbit altogether—hence the confusing name) because of certain
applications where it is actually quite useful to have the ability to generate only one
arbitrary note instead of a sequence that has to be played all at once.

1.2.3. copy-paste friendly hex code. This also removes the extraneous NOP at $B5DF.

B500: A9 7F 85 EB A0 00 84 E3 C8 84 EF 84 FE

B50D: 20 9B B5 20 CB B5 A5 E3

B515: 4A 90 05 09 80 2C 30 C0

B51D: CA D0 04 A6 1E 49 AA 88 D0 04 A4 EE 49 55

B52B: CA D0 04 A6 1E 49 AA 88 D0 04 A4 EE 49 55

B539: 90 03 2C 30 C0

B53E: 4A 90 05 09 80 2C 30 C0

B546: CA D0 04 A6 1E 49 55 88 D0 04 A4 EE 49 AA

B554: CA D0 04 A6 1E 49 55 88 D0 04 A4 EE 49 AA

B562: 90 03 2C 30 C0

B567: C6 EB D0 AA 85 E3

B56D: C6 EC D0 0B A5 EF F0 07 84 D7 20 9B B5 A4 D7

B57C: C6 ED D0 07 A5 FE F0 03 20 CB B5

B587: A5 EF 05 FE D0 01

B58D: 60

B58E: A9 7F 85 EB A5 E3 4C 15 B5

UNDERTALE FOR 64K APPLES: SOURCE FOR SELECTED ASSEMBLY ROUTINES 9

B59B: A0 00 B1 FA D0 0C

B5A1: AA CA 86 1E 8D 1C B5 8D 3D B5 D0 0B

B5AD: 85 1E AA A9 C0 8D 1C B5 8D 3D B5

B5B8: C8 B1 FA 85 EC 85 EF A5 FA

B5C1: 18 69 02 90 02 E6 FB 85 FA

B5CA: 60

B5CB: A0 00 B1 FC D0 0C

B5D1: 85 EE C6 EE 8D 45 B5 8D 66 B5 D0 0A

B5DD: 85 EE A9 C0 8D 45 B5 8D 66 B5

B5E7: C8 B1 FC 85 ED 85 FE A5 FC

B5F0: 18 69 02 90 02 E6 FD 85 FC

B5F9: A4 EE

B5FB: 60

1.2.4. octave- and tempo-switching in real time. As with spookbit, we can lower the
pitch range quite simply by modifying select dex/bne and dey/bne blocks into jumps.
The addresses involved are easy to figure out.

Tempo-switching is easier than in spookbit, somehow, as the rejiggered code now
always loads a specific constant into the X or Y register for every pulse width unit.
Modifying the byte $7F at $B501 and $B58F is sufficient.

1.3. note-to-hex lookup table. The two engines share the same pitches for given
pulse widths. Here A4 = 436 Hz, mostly to mitigate errors in D6.

A2 (255) A#2 246 B2 232 C3 219 C#3 206 D3 195
($FF) (Bb2) $F6 $E8 $DB (Db3) $CE $C3

D#3 184 E3 174 F3 164 F#3 155 G3 146 G#3 138
(Eb3) $B8 $AE $A4 (Gb3) $9B $92 (Ab3) $8A

A3 130 A#3 123 B3 116 C4 109 C#4 103 D4 97
$82 (Bb3) $7B $74 $6D (Db4) $67 $61

D#4 92 E4 87 F4 82 F#4 77 G4 73 G#4 69
(Eb4) $5C $57 $52 (Gb4) $4D $49 (Ab4) $45

A4 65 A#4 61 B4 58 C5 54 C#5 51 D5 48
$41 (Bb4) $3D $3A $36 (Db5) $33 $30

D#5 46 E5 43 F5 41 F#5 38 G5 36 G#5 34
(Eb5) $2E $2B $29 (Gb5) $26 $24 (Ab5) $22

A5 32 A#5 30 B5 29 C6 27 C#6 25 D6 24
$20 (Bb5) $1E $1D $1B (Db6) $19 $18

2. animation

The last shot of the UnderTale intro is a vertical pan. This is ridiculously difficult
to do in an Apple II with a full image, where the deltas are non-trivial and the display
lines are not contiguous in memory.

10 UNDERTALE FOR 64K APPLES: SOURCE FOR SELECTED ASSEMBLY ROUTINES

The SCROLLER routine handles the pan via a lookup table and swapping between the
two hi-res pages. In addition to scrolling down whatever is on the screen, the routine
also scrolls in image data just beyond the hi-res pages, and this part of the lookup table
has to be continuously updated.

B000: 18 f0 c8 a0 78 50 28 00

B008: 00 00 00 00 00 00 00 00 80 80 80 80 80 80 80 80

B018: 00 00 00 00 00 00 00 00 80 80 80 80 80 80 80 80

B028: 00 00 00 00 00 00 00 00 80 80 80 80 80 80 80 80

B038: 00 00 00 00 00 00 00 00 80 80 80 80 80 80 80 80

B048: 28 28 28 28 28 28 28 28 a8 a8 a8 a8 a8 a8 a8 a8

B058: 28 28 28 28 28 28 28 28 a8 a8 a8 a8 a8 a8 a8 a8

B068: 28 28 28 28 28 28 28 28 a8 a8 a8 a8 a8 a8 a8 a8

B078: 28 28 28 28 28 28 28 28 a8 a8 a8 a8 a8 a8 a8 a8

B088: 50 50 50 50 50 50 50 50 d0 d0 d0 d0 d0 d0 d0 d0

B098: 50 50 50 50 50 50 50 50 d0 d0 d0 d0 d0 d0 d0 d0

B0A8: 50 50 50 50 50 50 50 50 d0 d0 d0 d0 d0 d0 d0 d0

B0B8: 50 50 50 50 50 50 50 50 d0 d0 d0 d0 d0 d0 d0 d0

B100: 61 60 60 60 60 60 60 60

B108: 20 24 28 2c 30 34 38 3c 20 24 28 2c 30 34 38 3c

B118: 21 25 29 2d 31 35 39 3d 21 25 29 2d 31 35 39 3d

B128: 22 26 2a 2e 32 36 3a 3e 22 26 2a 2e 32 36 3a 3e

B138: 23 27 2b 2f 33 37 3b 3f 23 27 2b 2f 33 37 3b 3f

B148: 20 24 28 2c 30 34 38 3c 20 24 28 2c 30 34 38 3c

B158: 21 25 29 2d 31 35 39 3d 21 25 29 2d 31 35 39 3d

B168: 22 26 2a 2e 32 36 3a 3e 22 26 2a 2e 32 36 3a 3e

B178: 23 27 2b 2f 33 37 3b 3f 23 27 2b 2f 33 37 3b 3f

B188: 20 24 28 2c 30 34 38 3c 20 24 28 2c 30 34 38 3c

B198: 21 25 29 2d 31 35 39 3d 21 25 29 2d 31 35 39 3d

B1A8: 22 26 2a 2e 32 36 3a 3e 22 26 2a 2e 32 36 3a 3e

B1B8: 23 27 2b 2f 33 37 3b 3f 23 27 2b 2f 33 37 3b 3f

B200: D8 CLD

B201: A0 9D LDY #$9D

B203: F0 36 BEQ +$34

B205: 98 TYA

B206: 18 CLC

B207: 69 05 ADC #$05

B209: A8 TAY

B20A: B9 02 B0 LDA $B002,Y

B20D: 85 42 STA $42

B20F: B9 02 B1 LDA $B102,Y

B212: 49 60 EOR #$60

B214: 85 43 STA $43

B216: 98 TYA

B217: 38 SEC

B218: E9 06 SBC #$06

UNDERTALE FOR 64K APPLES: SOURCE FOR SELECTED ASSEMBLY ROUTINES 11

B21A: A8 TAY

B21B: B9 02 B0 LDA $B002,Y

B21E: BE 02 B1 LDX $B102,Y

B221: 85 3C STA $3C

B223: 86 3D STX $3D

B225: 18 CLC

B226: 69 27 ADC #$27

B228: 85 3E STA $3E

B22A: 90 01 BCC +$01

B22C: E8 INX

B22D: 86 3F STX $3F

B22F: 84 CF STY $CF

B231: A0 00 LDY #0

B233: 20 2C FE JSR $FE2C

B236: A4 CF LDY $CF

B238: 4C 03 B2 JMP $B203 [back to BNE]

B23B: A2 08 LDX #$08

B23D: CA DEX

B23E: 30 10 BMI [forward to RTS]

B240: BD 00 B0 LDA $B000,X

B243: 18 CLC

B244: 69 F0 ADC #$F0

B246: 9D 00 B0 STA $B000,X

B249: 90 F2 BCC [back to DEX]

B24B: FE 00 B1 INC $B100,X

B24E: B0 ED BCS [back to DEX]

B250: 8D 55 C0 STA $C055 [switch to page 1/2 if 54/55]

B253: A2 C9 LDX #$C9

B255: CA DEX

B256: F0 0B BEQ [forward towards RTS]

B258: BD 07 B1 LDA $B107,X

B25B: 49 60 EOR #$60

B25D: 9D 07 B1 STA $B107,X

B260: 4C 55 B2 JMP $B255 [back to DEX]

B263: AD 51 B2 LDA $B251

B266: 49 01 EOR #$01

B268: 8D 51 B2 STA $B251

B26B: 60 RTS

	1. music synthesis
	1.1. spookbit
	1.2. spookbits
	1.3. note-to-hex lookup table

	2. animation

