1 Byte adc.

This commit is contained in:
rigreco 2015-03-01 19:39:23 +01:00
parent 60f4ea7e30
commit 609c75d2a0
1 changed files with 518 additions and 0 deletions

View File

@ -0,0 +1,518 @@
*
* Unidisk 3.5 Driver <alfa>
*
* The target of this project is to use the Unidisk 3.5 drive to perform
* specific numerical routines (integers and floating point numbers)
* calculation in order to use it as a Apple II co-processor unit.
*
* Copyright (C) 2015 Riccardo Greco <rigreco.grc@gmail.com>.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* @com.wudsn.ide.asm.hardware=APPLE2
*
* Protocol Converter Call
XC
ZPTempL equ $0006 ;Temporary zero page storage
ZPTempH equ $0007
** Zero page storage **
N1 equ $FA ;25 4 Byte FP FA--FD (FP1)
N2 equ $EC ;27 4 Byte FP EC--EF (FP2)
; RSLT equ $1D ;29
*** Monitor routines ***
COut equ $FDED ;Console output ASCII
CROut equ $FD8E ;Carriage return
** Command Code **
StatusCmd equ 0
** Status Code **
* StatusDIB equ 3
StatusUNI equ 5
*
ControlCmd equ 4
** Control Codes **
Eject equ 4
Run equ 5
SetDWLoad equ 6
DWLoad equ 7
*
org $8000
*****************************************************
*
* Find a Protocol Converter in one of the slots.
START jsr FindPC
bcs Error
*** Eject ***
jsr Dispatch
dfb ControlCmd
dw E_JECT
*** Set Address ***
jsr Dispatch
dfb ControlCmd
dw SET_ADD
*
jsr EXEC ; Jump the Error routine
rts
*********************************************
Error equ *
*
* There is either no PC around, or there was no give message
*
ldx #0
err1 equ *
lda Message,x
beq errout
jsr COut
inx
bne err1
*
errout equ *
rts
*
Message asc 'NO PC OR NO DEVICE'
dfb $8D,0
*********************************************
*
** Set the Input Value first in Dynamic data **
** 4 Byte N1 to FP1 **
EXEC lda N1 ;X1
sta $822F ; Absolute addressing
lda N1+1 ;M1 (1)
sta $8230
lda N1+2 ;M1 (2)
sta $8231
lda N1+3 ;M1 (3)
sta $8232
** 4 Byte N2 to FP2 **
lda N2 ;X2
sta $8233
lda N2+1 ;M2 (1)
sta $8234
lda N2+2 ;M2 (2)
sta $8235
lda N2+3 ;M2 (3)
sta $8236
*** Download ***
jsr Dispatch
dfb ControlCmd
dw DOWNLOAD
** Set Unidisk Registers **
* lda #01 ;First time
* sta UNIAcc_reg
* The program begin to PC preset to $0500 *
*
** Execute **
jsr Dispatch
dfb ControlCmd
dw EXE
** Read **
READ jsr Dispatch
dfb StatusCmd
dw DParms
bcs Error
*
**** Store Output results in //c ****
* First time execute *
lda UNIAcc_reg
sta N1
lda UNIX_reg
sta N1+1 ; Store the result
lda UNIY_reg
sta N1+2
** Second time execute **
lda #$3C ; Target the secont time entry point
sta LowPC_reg ; Second time set new value of PC
** Execute **
jsr Dispatch
dfb ControlCmd
dw EXE
** Read **
jsr Dispatch
dfb StatusCmd
dw DParms
* bcs Error
* Second time execute only to read the latest Byte of FP1*
lda UNIAcc_reg
sta N1+3
*
rts
******************************************************
FindPC equ *
*
* Search slot 7 to slot 1 looking for signature bytes
*
ldx #7 ;Do for seven slots
lda #$C7
sta ZPTempH
lda #$00
sta ZPTempL
*
newslot equ *
ldy #7
*
again equ *
lda (ZPTempL),y
cmp sigtab,y ;One for byte signature
beq maybe ;Found one signature byte
dec ZPTempH
dex
bne newslot
*
* if we get here, no PC find
sec
rts
*
* if we get here, no byte find on PC
maybe equ *
dey
dey ;if N=1 then all sig bytes OK
bpl again
* Found PC interface. Set up call address.
* we already have high byte ($CN), we need low byte
*
foundPC equ *
lda #$FF
sta ZPTempL
ldy #0 ;For indirect load
lda (ZPTempL),y ;Get the byte
*
* Now the Acc has the low oreder ProDOS entry point.
* The PC entry is three locations past this ...
*
clc
adc #3
sta ZPTempL
*
* Now ZPTempL has PC entry point.
* Return with carry clear.
*
clc
rts
***********************************************************
*
* There are the PC signature bytes in their relative order.
* The $FF bytes are filler bytes and are not compared.
*
sigtab dfb $FF,$20,$FF,$00
dfb $FF,$03,$FF,$00
*
Dispatch equ *
jmp (ZPTempL) ;Simulate an indirect JSR to PC
*
*** Status Parameter Set for UNI ***
DParms equ *
DPParmsCt dfb 3 ;Status calls have three parameters
DPUnit dfb 1
DPBuffer dw UNI
DPStatCode dfb StatusUNI
*
*
*
*** Status List UNI ***
UNI equ *
dfb 0
UNIError dfb 0
UNIRetries dfb 0
UNIAcc_reg dfb 0
UNIX_reg dfb 0
UNIY_reg dfb 0
UNIP_val dfb 0
HHH dfb 0
*
*** Set Address ***
SET_ADD equ *
dfb 3
dfb 1
dw CNTL_LIST3
dfb SetDWLoad
*
*** Download ***
DOWNLOAD equ *
dfb 3
dfb 1
dw CNTL_LIST4
dfb DWLoad
*
*** Execute ***
EXE equ *
dfb 3
dfb 1
dw CNTL_LIST2
dfb Run
*** Eject ***
E_JECT equ *
dfb 3
dfb 1
dw CNTL_LIST1
dfb Eject
*
******** CONTROL LISTS ********
*
*
*** Eject ***
CNTL_LIST1 equ *
dw $0000
*
*** Execute ***
CNTL_LIST2 equ *
Clow_byte dfb $06
Chigh_byte dfb $00
AccValue dfb $00 ; Init Value Unidisk Accumulator Register
X_reg dfb $00 ; Init Value Unidisk X Register
Y_reg dfb $00 ; Init Value Unidisk Y Register
ProStatus dfb $00 ; Init Value Unidisk Status Register
LowPC_reg dfb $00 ; Init Value Unidisk Program Counter $0500 at eny dowload
HighPC_reg dfb $05 ; $05 first execution, $3C second execution
*
*** Set Address ***
CNTL_LIST3 equ *
CountL_byte dfb $02
CountH_byte dfb $00
LByte_Addr dfb $00 ; ORG of Unidisk program, set begin program address $0500
HByte_Addr dfb $05
*
*** Download ***
CNTL_LIST4 equ *
LenghtL_byte dfb $34 ;<----- Lenght of Unidisk program Lo - Byte 312 byte
LenghtH_byte dfb $01 ;<----- Lenght of Unidisk program Hi Byte
*
**************** Start UNIDISK Program ****************
*
org $0500 ; Start Unidisk program address
SIGN EQU $C0 ;$EB ; $F3
** FP2 4 Bytes **
X2 EQU $C1 ;$EC ; $F4
M2 EQU $C2 ;$ED ; $F5 - $F7
** FP1 4 Bytes + E extension **
X1 EQU $C5 ;$FA ; $F8
M1 EQU $C6 ;$FB ; $F9 - $FB
E EQU $C9 ;$FE ; $FC
OVLOC EQU $C10 ;$3F5 ;Overflow routine is not implemented at now)
*
** Main program **
*
** Input data to Zero Page **
** FP1 **
lda FP1
sta X1
lda FP1+1
sta M1
lda FP1+2
sta M1+1
lda FP1+3
sta M1+2
** FP2 **
lda FP2
sta X2
lda FP2+1
sta M2
lda FP2+2
sta M2+1
lda FP2+3
sta M2+2
************************** Target Function ***********************
* Y=N1+N2 *
******************************************************************
*
** Simple ADD **
jsr FADD ; Call FP routine
*** Output Data result FP1 to Unidisk registers First Time first 3 Byte out ***
lda X1
ldx M1
ldy M1+1
rts
*** Output Data result FP1 to Unidisk registers Second Time latest 1 Byte out ***
SECOND lda M1+2 ; Entry point by Program Counter set
rts
***************************************************
*
***************** FP Routine *****************
*
***********************
* *
* APPLE-II FLOATING *
* POINT ROUTINES *
* *
* COPYRIGHT 1977 BY *
* APPLE COMPUTER INC. *
* *
* ALL RIGHTS RESERVED *
* *
* S. WOZNIAK *
* *
***********************
* TITLE "FLOATING POINT ROUTINES for Unidisk memory"
*
ADD CLC ;CLEAR CARRY
LDX #$2 ;INDEX FOR 3-BYTE ADD.
ADD1 LDA M1,X
ADC M2,X ;ADD A BYTE OF MANT2 TO MANT1
STA M1,X
DEX ;INDEX TO NEXT MORE SIGNIF. BYTE.
BPL ADD1 ;LOOP UNTIL DONE.
RTS ;RETURN
MD1 ASL SIGN ;CLEAR LSB OF SIGN.
JSR ABSWAP ;ABS VAL OF M1, THEN SWAP WITH M2
ABSWAP BIT M1 ;MANT1 NEGATIVE?
BPL ABSWAP1 ;NO, SWAP WITH MANT2 AND RETURN.
JSR FCOMPL ;YES, COMPLEMENT IT.
INC SIGN ;INCR SIGN, COMPLEMENTING LSB.
ABSWAP1 SEC ;SET CARRY FOR RETURN TO MUL/DIV.
SWAP LDX #$4 ;INDEX FOR 4 BYTE SWAP.
SWAP1 STY E-1,X
LDA X1-1,X ;SWAP A BYTE OF EXP/MANT1 WITH
LDY X2-1,X ;EXP/MANT2 AND LEAVE A COPY OF
STY X1-1,X ;MANT1 IN E (3 BYTES). E+3 USED
STA X2-1,X
DEX ;ADVANCE INDEX TO NEXT BYTE
BNE SWAP1 ;LOOP UNTIL DONE.
RTS ;RETURN
FLOAT LDA #$8E ;INIT EXP1 TO 14, <--------------- int to fp
STA X1 ;THEN NORMALIZE TO FLOAT.
NORM1 LDA M1 ;HIGH-ORDER MANT1 BYTE.
CMP #$C0 ;UPPER TWO BITS UNEQUAL?
BMI RTS1 ;YES, RETURN WITH MANT1 NORMALIZED
DEC X1 ;DECREMENT EXP1.
ASL M1+2
ROL M1+1 ;SHIFT MANT1 (3 BYTES) LEFT.
ROL M1
NORM LDA X1 ;EXP1 ZERO?
BNE NORM1 ;NO, CONTINUE NORMALIZING.
RTS1 RTS ;RETURN.
FSUB JSR FCOMPL ;CMPL MANT1,CLEARS CARRY UNLESS 0 <---- sub
SWPALGN JSR ALGNSWP ;RIGHT SHIFT MANT1 OR SWAP WITH
FADD LDA X2 ;<------------------------------------- add
CMP X1 ;COMPARE EXP1 WITH EXP2.
BNE SWPALGN ;IF #,SWAP ADDENDS OR ALIGN MANTS.
JSR ADD ;ADD ALIGNED MANTISSAS.
ADDEND BVC NORM ;NO OVERFLOW, NORMALIZE RESULT.
BVS RTLOG ;OV: SHIFT M1 RIGHT, CARRY INTO SIGN
ALGNSWP BCC SWAP ;SWAP IF CARRY CLEAR,
* ELSE SHIFT RIGHT ARITH.
RTAR LDA M1 ;SIGN OF MANT1 INTO CARRY FOR
ASL ;RIGHT ARITH SHIFT.
RTLOG INC X1 ;INCR X1 TO ADJUST FOR RIGHT SHIFT
BEQ OVFL ;EXP1 OUT OF RANGE.
RTLOG1 LDX #$FA ;INDEX FOR 6:BYTE RIGHT SHIFT.
ROR1 ROR E+3,X
INX ;NEXT BYTE OF SHIFT.
BNE ROR1 ;LOOP UNTIL DONE.
RTS ;RETURN.
FMUL JSR MD1 ;ABS VAL OF MANT1, MANT2 <-------------- mul
ADC X1 ;ADD EXP1 TO EXP2 FOR PRODUCT EXP
JSR MD2 ;CHECK PROD. EXP AND PREP. FOR MUL
CLC ;CLEAR CARRY FOR FIRST BIT.
MUL1 JSR RTLOG1 ;M1 AND E RIGHT (PROD AND MPLIER)
BCC MUL2 ;IF CARRY CLEAR, SKIP PARTIAL PROD
JSR ADD ;ADD MULTIPLICAND TO PRODUCT.
MUL2 DEY ;NEXT MUL ITERATION.
BPL MUL1 ;LOOP UNTIL DONE.
MDEND LSR SIGN ;TEST SIGN LSB.
NORMX BCC NORM ;IF EVEN,NORMALIZE PROD,ELSE COMP
FCOMPL SEC ;SET CARRY FOR SUBTRACT. <--------------- not
LDX #$3 ;INDEX FOR 3 BYTE SUBTRACT.
COMPL1 LDA #$0 ;CLEAR A.
SBC X1,X ;SUBTRACT BYTE OF EXP1.
STA X1,X ;RESTORE IT.
DEX ;NEXT MORE SIGNIFICANT BYTE.
BNE COMPL1 ;LOOP UNTIL DONE.
BEQ ADDEND ;NORMALIZE (OR SHIFT RT IF OVFL).
FDIV JSR MD1 ;TAKE ABS VAL OF MANT1, MANT2. <--------- div
SBC X1 ;SUBTRACT EXP1 FROM EXP2.
JSR MD2 ;SAVE AS QUOTIENT EXP.
DIV1 SEC ;SET CARRY FOR SUBTRACT.
LDX #$2 ;INDEX FOR 3-BYTE SUBTRACTION.
DIV2 LDA M2,X
SBC E,X ;SUBTRACT A BYTE OF E FROM MANT2.
PHA ;SAVE ON STACK.
DEX ;NEXT MORE SIGNIFICANT BYTE.
BPL DIV2 ;LOOP UNTIL DONE.
LDX #$FD ;INDEX FOR 3-BYTE CONDITIONAL MOVE
DIV3 PLA ;PULL BYTE OF DIFFERENCE OFF STACK
BCC DIV4 ;IF M2<E THEN DON'T RESTORE M2.
STA M2+3,X
DIV4 INX ;NEXT LESS SIGNIFICANT BYTE.
BNE DIV3 ;LOOP UNTIL DONE.
ROL M1+2
ROL M1+1 ;ROLL QUOTIENT LEFT, CARRY INTO LSB
ROL M1
ASL M2+2
ROL M2+1 ;SHIFT DIVIDEND LEFT
ROL M2
BCS OVFL ;OVFL IS DUE TO UNNORMED DIVISOR
DEY ;NEXT DIVIDE ITERATION.
BNE DIV1 ;LOOP UNTIL DONE 23 ITERATIONS.
BEQ MDEND ;NORM. QUOTIENT AND CORRECT SIGN.
MD2 STX M1+2
STX M1+1 ;CLEAR MANT1 (3 BYTES) FOR MUL/DIV.
STX M1
BCS OVCHK ;IF CALC. SET CARRY,CHECK FOR OVFL
BMI MD3 ;IF NEG THEN NO UNDERFLOW.
PLA ;POP ONE RETURN LEVEL.
PLA
BCC NORMX ;CLEAR X1 AND RETURN.
MD3 EOR #$80 ;COMPLEMENT SIGN BIT OF EXPONENT.
STA X1 ;STORE IT.
LDY #$17 ;COUNT 24 MUL/23 DIV ITERATIONS.
RTS ;RETURN.
OVCHK BPL MD3 ;IF POSITIVE EXP THEN NO OVFL.
OVFL JMP OVLOC
* ORG $F63D
FIX1 JSR RTAR
FIX LDA X1 ; <------------------------------ fp to int
BPL UNDFL
CMP #$8E
BNE FIX1
BIT M1
BPL FIXRTS
LDA M1+2
BEQ FIXRTS
INC M1+1
BNE FIXRTS
INC M1
FIXRTS RTS
UNDFL LDA #$0
STA M1
STA M1+1
RTS
** Input Dynamic Data append in the end of Unidisk routine **
FP1 dfb $00
dfb $00
dfb $00
dfb $00
*
FP2 dfb $00
dfb $00
dfb $00
dfb $00