
AppleSqueezer GS API
This page offers valuable insights for programmers seeking to unleash the
full potential of the AppleSqueezer GS. It provides comprehensive
instructions on harnessing the device's complete memory capacity and
utilizing the SD card functionality.

240MB RAM memory access

The AppleSqueezer comes equipped with 256MB of DRAM memory, of
which 16MB is accessible directly by the 65C816 CPU (its maximum
addressable range). In practice, it has access to a bit less, as part of this
address space is used by the ROMs and other details, and so only 13MB is
actually accessible through GS/OS.

The remaining 240MB, typically unused, can be accessed by programs
through specific addresses outlined below. One such program that makes
use of this is the 32MB RAM Disk driver.

To access this range, first set the address in the DRAM memory space by
writing bytes to the DRAM_ADDRESS_XXX locations as indicated below.

#define DRAM_ADDRESS_MAIN_BANK 0xE30000L
#define DRAM_ADDRESS_LOW 0xE30002L
#define DRAM_ADDRESS_HIGH 0xE30004L
#define DRAM_ADDRESS_BANK 0xE30006L

#define DRAM_ACCESS 0xE30008L

The full address is as follows: { MAIN_BANK, BANK, HIGH, LOW } , of which
DRAM_ADDRESS_MAIN_BANK can span from 0 to 0e (including both), for a

total of 15 main banks. Each main bank's address range is .
 for each main bank, so .

After setting the address, you can then write or read bytes to and from
DRAM_ACCESS , which will auto-increment after each read or write. So, in

most cases, you will set the address once and then read/write your bytes
consecutively from/to DRAM_ACCESS .

3 ∗ 8 = 24bits
2 =24 16MB 15 ∗ 16MB = 240MB

SD card access

The information about the SD card is subject to change until the core involved
is released publicly.

Newer, purple versions of the AppleSqueezer have an SD card slot, which is
not currently used by the hardware or software, but being developed. A
special core version is required to access it. When this core version is
installed, you can use the information below to access the SD card. This
allows you to read or write sectors of 512 bytes to the SD card, as described
in many resources online, such as:

SD and SDIO

https://www.convict.lu/pdf/ProdManualSDCardv1.9.pdf

https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/i
mx-
processors%40tkb/3706/1/Part_1_Physical_Layer_Specification_Ver3.01_
Final_100218.pdf

To use this in a meaningful way, you will need to use a file system to access
this raw data. To do this, you can use existing libraries, such as this one:

http://elm-chan.org/docs/fat_e.html

FatFs - Generic FAT Filesystem Module

Petit FAT File System Module

The last library, Petit FAT, was successfully compiled using ORCA/C on the
IIGS, and it works very well. A special disk image can be requested with
code that reads and writes sample files from/to the SD card. To use the Petit
FAT library, you need to implement the disk_readp and disk_writep
functions for reading and writing a sector. This is done using the CMD17
(read block) and CMD24 (write block) SD card commands, which can be
accessed as follows:

#define SD_ADDRESS_SET_MSB 0xE40000L
#define SD_ADDRESS_SET_MSB_1 0xE40002L
#define SD_ADDRESS_SET_MSB_2 0xE40004L
#define SD_ADDRESS_SET_MSB_3 0xE40006L

https://yannik520.github.io/sdio.html
https://www.convict.lu/pdf/ProdManualSDCardv1.9.pdf
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/imx-processors%40tkb/3706/1/Part_1_Physical_Layer_Specification_Ver3.01_Final_100218.pdf
http://elm-chan.org/docs/fat_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://elm-chan.org/fsw/ff/00index_p.html

#define SD_START_READ 0xE40008L // starts reading
#define SD_START_WRITE 0xE4000cL // starts writing

#define SD_ACCESS 0xE4000aL

Start by setting the sector number of the SD card by using the
SD_ADDRESS_SET_XXX addresses, 8 bits each. The sector number is formed as

follows: { SET_MSB, SET_MSB_1, SET_MSB_2, SET_MSB_3 } , for a total of 32
bits (FAT32). Then write a 1 to SD_START_READ or SD_START_WRITE ,
respectively, and after that, read or write exactly 512 bytes to SD_ACCESS . In
case of a write block, the CRC bytes will be automatically calculated and
added at the end by the hardware.

Here's an implentation of the disk_writep and disk_readp functions for the
PetitFAT library that works with the AppleSqueezer SD card:

/*--
/* Initialize Disk Drive
/*--

DSTATUS disk_initialize (void) {
 DSTATUS stat = 0;

 // Put your code here

 return stat;
}

void skip(int count) {
 for (int i = 0; i < count; i++) {
 BYTE byte = *((BYTE *) SD_ACCESS);
 }
}

/*--
/* Read Partial Sector
/*--

DRESULT disk_readp (
 BYTE* buff, /* Pointer to the destination object */
 DWORD sector, /* Sector number (LBA) */

 UINT offset, /* Offset in the sector */
 UINT count /* Byte count (bit15:destination) */
) {
 DRESULT res;
 int bytesRead = 0;

 // set address
 *((BYTE *) SD_ADDRESS_SET_MSB) = sector >> 24;
 *((BYTE *) SD_ADDRESS_SET_MSB_1) = (sector >> 16) & 0xff;
 *((BYTE *) SD_ADDRESS_SET_MSB_2) = (sector >> 8) & 0xff;
 *((BYTE *) SD_ADDRESS_SET_MSB_3) = sector & 0xff;

 // start reading
 *((BYTE *) SD_START_READ) = 0x01; // dummy data

 // simple implementation reading 512 bytes, commented out because th
 // speeds it up.
 // read max. 512 bytes
 //for (int i = 0; i < 512; i++) {
 // BYTE byte = *((BYTE *) SD_ACCESS);
 // if (i >= offset && bytesRead < count) {
 // *buff++ = byte;
 // bytesRead++;
 // }
 //}

 int bc = 512 - offset - count;
 if (offset) skip(offset);

 // write bytes in blocks of 8, to reduce the amount of instructions
 int count8 = count / 8;
 if (count8) {
 do {
 *buff++ = *((BYTE *) SD_ACCESS);
 *buff++ = *((BYTE *) SD_ACCESS);
 *buff++ = *((BYTE *) SD_ACCESS);
 *buff++ = *((BYTE *) SD_ACCESS);
 *buff++ = *((BYTE *) SD_ACCESS);
 *buff++ = *((BYTE *) SD_ACCESS);
 *buff++ = *((BYTE *) SD_ACCESS);
 *buff++ = *((BYTE *) SD_ACCESS);

 count -= 8;
 } while (--count8);
 }

 if (count) {

 do {
 *buff++ = *((BYTE *) SD_ACCESS);
 } while (--count);
 }
 skip(bc);

 res = RES_OK;

 return res;
}

/*--
/* Write Partial Sector
/*--

DRESULT disk_writep (
 BYTE* buff, /* Pointer to the data to be written, NULL:Init
 DWORD sc /* Sector number (LBA) or Number of bytes to send
) {
 DRESULT res = RES_ERROR;
 static UINT wc;
 UINT bc, tmr;

 if (!buff) {
 if (sc) {
 // Initiate write process
 // set address
 *((BYTE *) SD_ADDRESS_SET_MSB) = sc >> 24;
 *((BYTE *) SD_ADDRESS_SET_MSB_1) = (sc >> 16) & 0xff;
 *((BYTE *) SD_ADDRESS_SET_MSB_2) = (sc >> 8) & 0xff;
 *((BYTE *) SD_ADDRESS_SET_MSB_3) = sc & 0xff;

 // start writing
 *((BYTE *) SD_START_WRITE) = 0x01; // dummy data

 wc = 512; /* Set byte counter */
 res = RES_OK;

 } else {
 // Finalize write process
 while (wc--) *((BYTE *) SD_ACCESS) = 0;
 res = RES_OK;
 }
 } else {
 bc = (UINT)sc;
 while (bc && wc) { /* Send data bytes to the card */

 // Send data to the disk
 *((BYTE *) SD_ACCESS) = *buff++;
 wc--; bc--;
 }
 res = RES_OK;
 }

 return res;
}

Determine if AppleSqueezer is installed

To check if an AppleSqueezer is installed on your system, use the following
code:

#define FL_IDLE 0xe2000aL
#define FL_VERSION 0xe2000cL

int isAppleSqueezer(void) {
 return *((char *) FL_IDLE) == 0x01;
}

To get the core version of the AppleSqueezer:

int getCoreVersion(void) {
 if (isAppleSqueezer()) {
 return *((char *) FL_VERSION);
 } else {
 return -1;
 }
}

Changing the speed of the AppleSqueezer

The speed of the AppleSqueezer is the only setting that can be changed
instantly, without requiring a reboot. It can be done by writing to the
SET_SPEED register, see below:

#define SET_SPEED 0xe50000L

#define speedTotal 5

/** These 5 settings correspond to the 5 speed options in
the AppleSqueezer control panel. 255 is the fastest setting,
corresponding to 14MHz. 223 is the slowest setting,
corresponding to 3MHz */
int speedOptions[speedTotal] = { 255, 251, 247, 239, 223 };

...
// set speed instantly (so it doesn't require a reboot)
*((char *) SET_SPEED) = speed;
...

Note that the speed setting is reset when the system is (hard-) rebooted.
Also, it's possible to set the speed to other values than the ones listed in
speedOptions above. Setting it lower than 223 may make the system

unstable.

Changing the speed in this way doesn't disable acceleration completely. To
disable acceleration, the flash settings need to be changed, which is a more
complex procedure. Also, it's important to realize that parts of the system
may still run somewhat faster than expected at a given speed (when
changing it using the procedure above), since parts of the acceleration
functionalities remain active.

