apple2a/main.c
2018-08-03 18:38:55 -07:00

1069 lines
29 KiB
C

#include <string.h>
#include "exporter.h"
#include "platform.h"
#include "runtime.h"
uint8_t *title = "Apple IIa";
uint8_t title_length = 9;
// 6502 instructions.
#define I_ORA_ZPG 0x05
#define I_CLC 0x18
#define I_JSR 0x20
#define I_SEC 0x38
#define I_JMP_ABS 0x4C
#define I_RTS 0x60
#define I_STA_ZPG 0x85
#define I_STX_ZPG 0x86
#define I_STA_IND_Y 0x91
#define I_LDY_IMM 0xA0
#define I_LDX_IMM 0xA2
#define I_LDA_ZPG 0xA5
#define I_LDX_ZPG 0xA6
#define I_LDA_IMM 0xA9
#define I_BNE_REL 0xD0
#define I_BEQ_REL 0xF0
// Tokens.
#define T_HOME 0x80
#define T_PRINT 0x81
#define T_LIST 0x82
#define T_POKE 0x83
#define T_RUN 0x84
#define T_NEW 0x85
#define T_PLUS 0x86
#define T_MINUS 0x87
#define T_ASTERISK 0x88
#define T_SLASH 0x89
#define T_CARET 0x8A
#define T_AND 0x8B
#define T_OR 0x8C
#define T_GREATER_THAN 0x8D
#define T_EQUAL 0x8E
#define T_LESS_THAN 0x8F
#define T_GOTO 0x90
#define T_IF 0x91
#define T_THEN 0x92
// Operators. These encode both the operator (high nybble) and the precedence
// (low nybble). Lower precedence has a lower low nybble value. For example,
// OP_ADD (0x99) and OP_SUB (0xA9) have the same precedence (9). By convention
// the precedence is the value of the lowest-valued operator in its class
// (OP_ADD = 0x99), but only the relative values of precedence matter. All
// of these are left-associative, as in AppleSoft BASIC. (Even though
// exponentiation really should be right-associative.)
#define OP_PRECEDENCE(op) ((op) & 0x0F)
#define OP_OR 0x00
#define OP_AND 0x11
#define OP_NOT 0x22
#define OP_LTE 0x33
#define OP_GTE 0x43
#define OP_EQ 0x55
#define OP_NEQ 0x65
#define OP_LT 0x75
#define OP_GT 0x85
#define OP_ADD 0x99
#define OP_SUB 0xA9
#define OP_MULT 0xBB
#define OP_DIV 0xCB
#define OP_NEG 0xDD
#define OP_EXP 0xEE
#define OP_CLOSE_PARENS 0xFD // Never on the stack.
#define OP_OPEN_PARENS 0xFE // Ignore precedence.
#define OP_INVALID 0xFF
// Line number used for "no line number".
#define INVALID_LINE_NUMBER 0xFFFF
// Variable for "No more space for variables".
#define OUT_OF_VARIABLE_SPACE 0xFF
// Maximum number of lines in stored program.
#define MAX_LINES 128
// Maximum number of operators in the operator stack.
#define MAX_OP_STACK 16
// Test for whether a character is a digit.
#define IS_DIGIT(ch) ((ch) >= '0' && (ch) <= '9')
// Test for first and subsequent variable name letters.
#define IS_FIRST_VARIABLE_LETTER(ch) ((ch) >= 'A' && (ch) <= 'Z')
#define IS_SUBSEQUENT_VARIABLE_LETTER(ch) (IS_FIRST_VARIABLE_LETTER(ch) || IS_DIGIT(ch))
// List of tokens. The token value is the index plus 0x80.
static uint8_t *TOKEN[] = {
"HOME",
"PRINT",
"LIST",
"POKE",
"RUN",
"NEW",
"+",
"-",
"*",
"/",
"^",
"AND",
"OR",
">",
"=",
"<",
"GOTO",
"IF",
"THEN",
};
static int16_t TOKEN_COUNT = sizeof(TOKEN)/sizeof(TOKEN[0]);
uint8_t g_input_buffer[40];
int16_t g_input_buffer_length = 0;
// Compiled binary.
uint8_t g_compiled[1024];
int16_t g_compiled_length = 0;
void (*g_compiled_function)() = (void (*)()) g_compiled;
// Stored program. Each line is:
// - Two bytes for pointer to next line (or zero if none).
// - Two bytes for line number.
// - Program line.
// - Nul.
uint8_t g_program[1024];
// Address of each line of code when compiled (for GOTO statements).
// Each line takes two words: one for the line number and
// one for the address in memory of the compiled code.
uint16_t g_line_address[MAX_LINES*2];
uint16_t g_line_address_count;
// Operator stack, of the expression-evaluation routines. These are from the
// OP_ constants.
uint8_t g_op_stack[MAX_OP_STACK];
uint8_t g_op_stack_size = 0;
/**
* Print the tokenized string, with tokens displayed as their full text.
* Prints a newline at the end.
*/
static void print_detokenized(uint8_t *s) {
while (*s != '\0') {
if (*s >= 0x80) {
print_char(' ');
print(TOKEN[*s - 0x80]);
print_char(' ');
} else {
print_char(*s);
}
s += 1;
}
print_char('\n');
}
/**
* Get the pointer to the next line in the stored program. Returns 0
* if we're at the end.
*/
static uint8_t *get_next_line(uint8_t *line) {
return *((uint8_t **) line);
}
/**
* Get the line number of a stored program line.
*/
static uint16_t get_line_number(uint8_t *line) {
return *((uint16_t *) (line + 2));
}
/**
* Return a pointer to the end of the program. This is one byte PAST the
* last bytes in the program, which are two nuls. The "line" parameter is
* an optional starting point, to use as an optimization instead of starting
* from the beginning.
*/
static uint8_t *get_end_of_program(uint8_t *line) {
uint8_t *next_line;
if (line == 0) {
// Start at the beginning if not specified.
line = g_program;
}
while ((next_line = get_next_line(line)) != 0) {
line = next_line;
}
// Skip the null "next" pointer.
return line + 2;
}
/**
* Clear the stored program.
*/
static void new_statement() {
g_program[0] = '\0';
g_program[1] = '\0';
}
/**
* List the stored program.
*/
static void list_statement() {
uint8_t *line = g_program;
uint8_t *next_line;
print_newline();
while ((next_line = get_next_line(line)) != 0) {
print_int(get_line_number(line));
print_char(' ');
print_detokenized(line + 4);
line = next_line;
}
}
/**
* If a starts with string b, returns the position in a after b. Else returns null.
*/
static uint8_t *skip_over(uint8_t *a, uint8_t *b) {
while (*a != '\0' && *b != '\0') {
if (*a != *b) {
// Doesn't start with b.
return 0;
}
a += 1;
b += 1;
}
// See if we're at the end of b.
return *b == '\0' ? a : 0;
}
/**
* Add a function call to the compiled buffer.
*/
static void add_call(void *function) {
uint16_t addr = (uint16_t) function;
g_compiled[g_compiled_length++] = I_JSR;
g_compiled[g_compiled_length++] = addr & 0xFF;
g_compiled[g_compiled_length++] = addr >> 8;
}
/**
* Add a function return to the compiled buffer.
*/
static void add_return() {
g_compiled[g_compiled_length++] = I_RTS;
}
/**
* Parse an unsigned integer, returning the value and moving the pointer
* past the end of the number. The pointer must already be at the beginning
* of the number.
*/
static uint16_t parse_uint16(uint8_t **s_ptr) {
uint16_t value = 0;
uint8_t *s = *s_ptr;
while (IS_DIGIT(*s)) {
value = value*10 + (*s - '0');
s += 1;
}
*s_ptr = s;
return value;
}
/**
* Generate code to put the value into AX.
*/
static void compile_load_ax(uint16_t value) {
g_compiled[g_compiled_length++] = I_LDX_IMM;
g_compiled[g_compiled_length++] = value >> 8;
g_compiled[g_compiled_length++] = I_LDA_IMM;
g_compiled[g_compiled_length++] = value & 0xFF;
}
/**
* Find a variable by name. Only the first two letters are considered.
* Advances the pointer past the variable name (including letters after
* the first two). Returns the memory address of the variable. If we
* ran out of space for variables, returns OUT_OF_VARIABLE_SPACE
* and does not modify the buffer pointer.
*/
static uint8_t find_variable(uint8_t **buffer) {
uint8_t *s = *buffer;
uint8_t *existing_name = g_variable_names;
uint8_t name[2];
int16_t var;
// Pull out the variable name.
name[0] = *s++;
if (IS_SUBSEQUENT_VARIABLE_LETTER(*s)) {
name[1] = *s++;
} else {
name[1] = 0;
}
// Skip rest of name.
while (IS_SUBSEQUENT_VARIABLE_LETTER(*s)) {
s++;
}
for (var = 0; var < MAX_VARIABLES; var++) {
if (existing_name[0] == 0 && existing_name[1] == 0) {
// First free entry. Allocate it.
existing_name[0] = name[0];
existing_name[1] = name[1];
break;
} else if (existing_name[0] == name[0] && existing_name[1] == name[1]) {
// Found it.
break;
}
existing_name += 2;
}
if (var == MAX_VARIABLES) {
var = OUT_OF_VARIABLE_SPACE;
} else {
// Convert index to address.
var = FIRST_VARIABLE + 2*var;
// Advance pointer.
*buffer = s;
}
return (uint8_t) var;
}
/**
* Find the address of a line in the compiled buffer, or 0xFFFF if not found.
*/
static uint16_t find_line_address(uint16_t line_number) {
int i;
for (i = 0; i < g_line_address_count; i++) {
if (g_line_address[i*2] == line_number) {
return g_line_address[i*2 + 1];
}
}
return 0xFFFF;
}
/**
* Pop an operator off the operator stack and compile it.
*/
static void pop_operator_stack() {
uint8_t op = g_op_stack[--g_op_stack_size];
switch (op) {
case OP_ADD:
add_call(tosaddax);
break;
case OP_SUB:
add_call(tossubax);
break;
case OP_MULT:
add_call(tosmulax);
break;
case OP_DIV:
add_call(tosdivax);
break;
case OP_EQ:
add_call(toseqax);
break;
case OP_NEQ:
add_call(tosneax);
break;
case OP_LT:
add_call(tosltax);
break;
case OP_GT:
add_call(tosgtax);
break;
case OP_LTE:
add_call(tosleax);
break;
case OP_GTE:
add_call(tosgeax);
break;
case OP_OPEN_PARENS:
// No-op.
break;
default:
print("Unhandled operator\n");
break;
}
}
/**
* Push an operator onto the operator stack. Follow the Shunting-yard
* algorithm so that higher-precedence operators are performed
* first.
*
* https://en.wikipedia.org/wiki/Shunting-yard_algorithm
*/
static void push_operator_stack(uint8_t op) {
// All our operators are left-associative, so no special check for the case
// of equal precedence.
while (g_op_stack_size > 0 &&
g_op_stack[g_op_stack_size - 1] != OP_OPEN_PARENS &&
OP_PRECEDENCE(g_op_stack[g_op_stack_size - 1]) >= OP_PRECEDENCE(op)) {
pop_operator_stack();
}
// TODO Check for g_op_stack overflow.
g_op_stack[g_op_stack_size++] = op;
}
/**
* Parse an expression, generating code to compute it, leaving the
* result in AX.
*/
static uint8_t *compile_expression(uint8_t *s) {
char have_value_in_ax = 0;
while (1) {
if (IS_DIGIT(*s)) {
// Parse number.
if (have_value_in_ax) {
// Push on the number stack.
add_call(pushax);
}
compile_load_ax(parse_uint16(&s));
have_value_in_ax = 1;
} else if (IS_FIRST_VARIABLE_LETTER(*s)) {
// Variable reference.
uint8_t var = find_variable(&s);
if (have_value_in_ax) {
// Push on the number stack.
add_call(pushax);
}
if (var == OUT_OF_VARIABLE_SPACE) {
// TODO: Not sure how to deal with this. For now just
// fill in with zero, since assigning to this elsewhere
// will cause an error.
compile_load_ax(0);
} else {
// Load from var.
g_compiled[g_compiled_length++] = I_LDA_ZPG;
g_compiled[g_compiled_length++] = var;
g_compiled[g_compiled_length++] = I_LDX_ZPG;
g_compiled[g_compiled_length++] = var + 1;
}
have_value_in_ax = 1;
} else {
// Check if it's an operator.
uint8_t op = OP_INVALID;
if (*s == T_PLUS) {
op = OP_ADD;
} else if (*s == T_MINUS) {
// TODO check for unary.
op = OP_SUB;
} else if (*s == T_ASTERISK) {
op = OP_MULT;
} else if (*s == T_SLASH) {
op = OP_DIV;
} else if (*s == T_EQUAL) {
if (s[1] == T_LESS_THAN) {
s += 1;
op = OP_LTE;
} else if (s[1] == T_GREATER_THAN) {
s += 1;
op = OP_GTE;
} else {
op = OP_EQ;
}
} else if (*s == T_LESS_THAN) {
if (s[1] == T_EQUAL) {
s += 1;
op = OP_LTE;
} else if (s[1] == T_GREATER_THAN) {
s += 1;
op = OP_NEQ;
} else {
op = OP_LT;
}
} else if (*s == T_GREATER_THAN) {
if (s[1] == T_EQUAL) {
s += 1;
op = OP_GTE;
} else if (s[1] == T_LESS_THAN) {
s += 1;
op = OP_NEQ;
} else {
op = OP_GT;
}
} else if (*s == '(') { // Parentheses are not tokenized.
op = OP_OPEN_PARENS;
} else if (*s == ')') { // Parentheses are not tokenized.
op = OP_CLOSE_PARENS;
// Pop until open parethesis.
while (g_op_stack_size > 0 && g_op_stack[g_op_stack_size - 1] != OP_OPEN_PARENS) {
pop_operator_stack();
}
if (g_op_stack_size == 0) {
print("Extra close parenthesis\n");
} else {
// Pop open parenthesis.
pop_operator_stack();
}
}
if (op != OP_INVALID) {
s += 1;
if (op != OP_CLOSE_PARENS) {
push_operator_stack(op);
}
} else {
break;
}
}
}
if (have_value_in_ax) {
// Empty the operator stack.
while (g_op_stack_size > 0) {
if (g_op_stack[g_op_stack_size - 1] == OP_OPEN_PARENS) {
print("Extra open parenthesis\n");
}
pop_operator_stack();
}
} else {
// Something went wrong, we never got anything.
print("Expression has no content\n");
compile_load_ax(0);
}
return s;
}
/**
* Tokenize a string in place. Returns (and removes) any line number, or
* INVALID_LINE_NUMBER if there's none.
*/
static uint16_t tokenize(uint8_t *s) {
uint8_t *t = s; // Tokenized version.
int16_t line_number;
// Parse optional line number.
if (IS_DIGIT(*s)) {
line_number = parse_uint16(&s);
} else {
line_number = INVALID_LINE_NUMBER;
}
// Convert tokens.
while (*s != '\0') {
if (*s == ' ') {
// Skip spaces.
s++;
} else {
int16_t i;
uint8_t *skipped = 0;
for (i = 0; i < TOKEN_COUNT; i++) {
skipped = skip_over(s, TOKEN[i]);
if (skipped != 0) {
// Record token.
*t++ = 0x80 + i;
s = skipped;
break;
}
}
if (skipped == 0) {
// Didn't find a token, just copy text.
*t++ = *s++;
}
}
}
// Terminate string.
*t++ = '\0';
return line_number;
}
/**
* Find the stored program line with the given line number. If the line does
* not exist, returns a pointer to the location where it should be inserted.
*/
static uint8_t *find_line(uint16_t line_number) {
uint8_t *line = g_program;
uint8_t *next_line;
while ((next_line = get_next_line(line)) != 0) {
// See if we hit it or just blew past it.
if (get_line_number(line) >= line_number) {
break;
}
line = next_line;
}
return line;
}
/**
* Call to configure the compilation step.
*/
static void set_up_compile(void) {
g_compiled_length = 0;
g_line_address_count = 0;
}
/**
* Compile the tokenized line of BASIC, adding it to the g_compiled binary.
*/
static void compile_buffer(uint8_t *buffer, uint16_t line_number) {
uint8_t *s = buffer;
uint8_t done;
// Keep track of addresses that point to the end of the line.
uint8_t **end_of_line_address[4];
uint8_t end_of_line_count = 0;
do {
int8_t error = 0;
int8_t continue_statement = 0;
// Default to being done after one statement.
done = 1;
if (*s == '\0' || *s == ':') {
// Empty statement. We skip the colon below.
} else if (IS_FIRST_VARIABLE_LETTER(*s)) {
// Must be variable assignment.
uint8_t var = find_variable(&s);
if (var == OUT_OF_VARIABLE_SPACE) {
// TODO: Nicer error specifically for out of variable space.
error = 1;
} else {
if (*s != T_EQUAL) {
error = 1;
} else {
s += 1;
// Parse address.
s = compile_expression(s);
// Copy to var.
g_compiled[g_compiled_length++] = I_STA_ZPG;
g_compiled[g_compiled_length++] = var;
g_compiled[g_compiled_length++] = I_STX_ZPG;
g_compiled[g_compiled_length++] = var + 1;
}
}
} else if (*s == T_HOME) {
s += 1;
add_call(home);
} else if (*s == T_PRINT) {
s += 1;
if (*s != '\0' && *s != ':') {
// Parse expression.
s = compile_expression(s);
add_call(print_int);
}
add_call(print_newline);
} else if (*s == T_LIST) {
s += 1;
add_call(list_statement);
} else if (*s == T_POKE) {
s += 1;
// Parse address.
s = compile_expression(s);
// Copy from AX to ptr1.
g_compiled[g_compiled_length++] = I_STA_ZPG;
g_compiled[g_compiled_length++] = (uint8_t) &ptr1;
g_compiled[g_compiled_length++] = I_STX_ZPG;
g_compiled[g_compiled_length++] = (uint8_t) &ptr1 + 1;
if (*s != ',') {
error = 1;
} else {
s++;
// Parse value. LSB is in A.
s = compile_expression(s);
g_compiled[g_compiled_length++] = I_LDY_IMM;
g_compiled[g_compiled_length++] = 0;
g_compiled[g_compiled_length++] = I_STA_IND_Y;
g_compiled[g_compiled_length++] = (uint8_t) &ptr1;
}
} else if (*s == T_GOTO) {
s += 1;
if (!IS_DIGIT(*s)) {
error = 1;
} else {
uint16_t target_line_number = parse_uint16(&s);
uint16_t addr = find_line_address(target_line_number);
if (addr == 0xFFFF) {
// Line not found.
// TODO better error message.
error = 1;
} else {
g_compiled[g_compiled_length++] = I_JMP_ABS;
g_compiled[g_compiled_length++] = addr & 0xFF;
g_compiled[g_compiled_length++] = addr >> 8;
}
}
} else if (*s == T_IF) {
uint16_t saved_compiled_length = g_compiled_length;
s += 1;
// Parse conditional expression.
s = compile_expression(s);
// Check if AX is zero. Or the two bytes together, through the zero page.
g_compiled[g_compiled_length++] = I_STX_ZPG;
g_compiled[g_compiled_length++] = (uint8_t) &tmp1;
g_compiled[g_compiled_length++] = I_ORA_ZPG;
g_compiled[g_compiled_length++] = (uint8_t) &tmp1;
// If so, skip to end of this line.
g_compiled[g_compiled_length++] = I_BNE_REL;
g_compiled[g_compiled_length++] = 3; // Skip over absolute jump.
g_compiled[g_compiled_length++] = I_JMP_ABS;
// TODO Check for overflow of end_of_line_address:
end_of_line_address[end_of_line_count++] = (uint8_t **) &g_compiled[g_compiled_length];
g_compiled[g_compiled_length++] = 0; // Address of next line.
g_compiled[g_compiled_length++] = 0; // Address of next line.
if (*s == T_THEN) {
// Skip THEN and continue
s += 1;
continue_statement = 1;
} else if (*s == T_GOTO) {
// Just continue, we'll pick it up after the loop.
continue_statement = 1;
} else {
// Must be THEN or GOTO. Erase what we've done.
g_compiled_length = saved_compiled_length;
error = 1;
}
} else {
error = 1;
}
// Now we're at the end of our statement.
if (!error) {
if (continue_statement) {
// No problem, just continue from here.
done = 0;
} else if (*s == ':') {
// Skip colon.
s += 1;
// Next statement.
done = 0;
} else if (*s != '\0') {
// Junk at the end of the statement.
error = 1;
}
}
if (error) {
end_of_line_count = 0;
if (line_number != INVALID_LINE_NUMBER) {
compile_load_ax(line_number);
add_call(syntax_error_in_line);
} else {
add_call(syntax_error);
}
// TODO This won't work after a GOSUB. Maybe we should have our
// own stack for that.
add_return();
}
} while (!done);
// Fill in the places where we needed the address of the end of the line.
while (end_of_line_count > 0) {
*end_of_line_address[--end_of_line_count] = &g_compiled[g_compiled_length];
}
}
/**
* Complete the compilation buffer and run it.
*/
static void complete_compile_and_execute(void) {
// Return from function.
add_return();
// Dump compiled buffer to the terminal.
{
int i;
uint8_t *debug_port = (uint8_t *) 0xBFFE;
// Size of program (including initial address).
debug_port[0] = 2 + g_compiled_length;
// Address of program start, little endian.
debug_port[1] = ((uint16_t) &g_compiled[0]) & 0xFF;
debug_port[1] = ((uint16_t) &g_compiled[0]) >> 8;
// Program bytes.
for (i = 0; i < g_compiled_length; i++) {
debug_port[1] = g_compiled[i];
}
}
if (g_compiled_length > sizeof(g_compiled)) {
// TODO: Check while adding bytes, not at the end.
print("\n?Binary length exceeded");
} else {
// Call it.
g_compiled_function();
}
}
/**
* Clear out all variables. This does not clear their value, only our
* knowledge of them.
*/
void clear_variables(void) {
memset(g_variable_names, 0, sizeof(g_variable_names));
}
/**
* Compile the stored program and execute it.
*/
static void compile_stored_program(void) {
uint8_t *line = g_program;
uint8_t *next_line;
// Clear out all variables.
clear_variables();
set_up_compile();
// Generate code to zero out all variable values. Do this in the program
// itself because each RUN should clear them out.
add_call(clear_variable_values);
while ((next_line = get_next_line(line)) != 0) {
uint16_t line_number = get_line_number(line);
// Store address of line in compiled buffer.
if (g_line_address_count == MAX_LINES) {
// TODO not sure what to do here.
print("Program too large");
break;
} else {
g_line_address[g_line_address_count++] = line_number;
g_line_address[g_line_address_count++] = (uint16_t) (g_compiled + g_compiled_length);
}
compile_buffer(line + 4, line_number);
line = next_line;
}
complete_compile_and_execute();
}
/**
* Process the user's line of input, possibly compiling the code.
* and executing it.
*/
static void process_input_buffer() {
uint16_t line_number;
g_input_buffer[g_input_buffer_length] = '\0';
// Tokenize in-place.
line_number = tokenize(g_input_buffer);
if (line_number == INVALID_LINE_NUMBER) {
// Immediate mode.
if (g_input_buffer[0] == T_RUN) {
// We don't compile "RUN".
compile_stored_program();
} else if (g_input_buffer[0] == T_NEW) {
// We don't compile "NEW".
new_statement();
} else {
// Compile the immediate mode line.
set_up_compile();
compile_buffer(g_input_buffer, INVALID_LINE_NUMBER);
complete_compile_and_execute();
}
} else {
// Stored mode. Add line to program.
// Return line to replace or delete, or location to insert new line.
uint8_t *line = find_line(line_number);
uint8_t *next_line = get_next_line(line);
uint8_t *end_of_program = get_end_of_program(line);
int16_t adjustment = 0;
if (next_line == 0 || get_line_number(line) != line_number) {
// Didn't find line. Insert it here.
// Next pointer, line number, line, and nul.
uint8_t buffer_length = strlen(g_input_buffer);
adjustment = 4 + buffer_length + 1;
// Shift rest of program over.
memmove(line + adjustment, line, end_of_program - line);
// Next line. Point to yourself initially, we'll adjust below.
*((uint8_t **) line) = line;
// Line number.
*((uint16_t *) (line + 2)) = line_number;
// Buffer and nul.
memmove(line + 4, g_input_buffer, buffer_length + 1);
} else {
// Found line.
if (g_input_buffer[0] == '\0') {
// Empty line, delete old one.
// Adjustment is negative.
adjustment = line - next_line;
memmove(line, next_line, end_of_program - next_line);
} else {
// Replace line.
// Compute adjustment.
uint8_t buffer_length = strlen(g_input_buffer);
adjustment = line - next_line + 4 + buffer_length + 1;
memmove(next_line + adjustment, next_line, end_of_program - next_line);
// Buffer and nul.
memmove(line + 4, g_input_buffer, buffer_length + 1);
}
}
if (adjustment != 0) {
// Adjust all the next pointers.
while ((next_line = get_next_line(line)) != 0) {
// Adjust by the amount we inserted or deleted.
next_line += adjustment;
*((uint8_t **) line) = next_line;
line = next_line;
}
}
}
}
int16_t main(void)
{
int16_t blink;
// For testing generated code. TODO remove
{
int16_t a, b, c;
b = 5;
c = 6;
a = b == c;
}
// Clear stored program.
new_statement();
// Clear out all variables.
clear_variables();
// Initialize UI.
home();
// Display the character set.
/*
if (1) {
int16_t i;
for (i = 0; i < 256; i++) {
uint8_t *loc;
// Fails with: unhandled instruction B2
move_cursor(i % 16, i >> 4);
// Works.
// move_cursor(i & 0x0F, i >> 4);
loc = cursor_pos();
*loc = i;
}
while(1);
}
*/
// Print title.
move_cursor((40 - title_length) / 2, 0);
print(title);
// Prompt.
print("\n\n]");
// Keyboard input.
blink = 0;
g_input_buffer_length = 0;
show_cursor();
while(1) {
// Blink cursor.
blink += 1;
if (blink == 3000) {
if (g_showing_cursor) {
hide_cursor();
} else {
show_cursor();
}
blink = 0;
}
if(keyboard_test()) {
hide_cursor();
while(keyboard_test()) {
uint8_t key;
key = keyboard_get();
if (key == 8) {
// Backspace.
if (g_input_buffer_length > 0) {
move_cursor(g_cursor_x - 1, g_cursor_y);
g_input_buffer_length -= 1;
}
} else if (key == 13) {
// Return.
clear_to_eol();
print_char('\n');
process_input_buffer();
print("\n]");
g_input_buffer_length = 0;
} else {
if (g_input_buffer_length < sizeof(g_input_buffer) - 1) {
uint8_t *loc = cursor_pos();
*loc = key | 0x80;
move_cursor(g_cursor_x + 1, g_cursor_y);
g_input_buffer[g_input_buffer_length++] = key;
}
}
}
show_cursor();
}
}
return 0;
}