Rewamped TSL2563 light sensor

This commit is contained in:
Antonio Lignan 2016-01-04 09:30:25 +01:00
parent 14be5aae88
commit 881e78cb60
5 changed files with 376 additions and 57 deletions

View File

@ -50,13 +50,8 @@
#include "dev/i2c.h"
#include "dev/tsl2563.h"
/*---------------------------------------------------------------------------*/
#if 1
#define PRINTF(...) printf(__VA_ARGS__)
#else
#define PRINTF(...)
#endif
/*---------------------------------------------------------------------------*/
#define SENSOR_READ_INTERVAL (CLOCK_SECOND / 2)
/* Default sensor's integration cycle is 402ms */
#define SENSOR_READ_INTERVAL (CLOCK_SECOND/2)
/*---------------------------------------------------------------------------*/
PROCESS(remote_tsl2563_process, "TSL2563 test process");
AUTOSTART_PROCESSES(&remote_tsl2563_process);
@ -66,14 +61,21 @@ static struct etimer et;
PROCESS_THREAD(remote_tsl2563_process, ev, data)
{
PROCESS_BEGIN();
int light;
static uint16_t light;
/* Use Contiki's sensor macro to enable the sensor */
SENSORS_ACTIVATE(tsl2563);
/* Default integration time is 402ms with 1x gain, use the below call to
* change the gain and timming, see tsl2563.h for more options
*/
// tsl2563.configure(TSL2563_TIMMING_CFG, TSL2563_G16X_402MS);
while(1) {
etimer_set(&et, SENSOR_READ_INTERVAL);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));
light = tsl2563.value(TSL2563_VAL_READ);
PRINTF("Light = %u\n", light);
printf("Light = %u\n", (uint16_t) light);
}
PROCESS_END();
}

View File

@ -40,28 +40,69 @@
* Toni Lozano <tlozano@zolertia.com>
*/
/*---------------------------------------------------------------------------*/
#include <stdio.h>
#include "contiki.h"
#include "dev/i2c.h"
#include "dev/gpio.h"
#include "dev/zoul-sensors.h"
#include "lib/sensors.h"
#include "tsl2563.h"
/*---------------------------------------------------------------------------*/
#define DEBUG 1
#if DEBUG
#define PRINTF(...) printf(__VA_ARGS__)
#else
#define PRINTF(...)
#endif
/*---------------------------------------------------------------------------*/
#define TSL2563_INT_PORT_BASE GPIO_PORT_TO_BASE(I2C_INT_PORT)
#define TSL2563_INT_PIN_MASK GPIO_PIN_MASK(I2C_INT_PIN)
/*---------------------------------------------------------------------------*/
static uint8_t enabled;
static uint8_t gain;
static uint8_t timming;
/*---------------------------------------------------------------------------*/
void (*tsl2563_int_callback)(uint8_t value);
/*---------------------------------------------------------------------------*/
static uint16_t
calculateLux(uint8_t *buf)
calculate_lux(uint8_t *buf)
{
uint32_t ch0, ch1 = 0;
uint32_t aux = (1 << 14);
uint32_t chscale;
uint32_t ratio, lratio, tmp = 0;
uint16_t buffer[2];
/* The calculations below assume the integration time is 402ms and the gain
* is 16x (nominal), if not then it is required to normalize the reading
* before converting to lux
*/
buffer[0] = (buf[1] << 8 | (buf[0]));
buffer[1] = (buf[3] << 8 | (buf[2]));
ch0 = (buffer[0] * aux) >> 10;
ch1 = (buffer[1] * aux) >> 10;
ratio = (ch1 << 10);
ratio = ratio / ch0;
switch(timming) {
case TSL2563_TIMMING_INTEG_402MS:
chscale = (1 << CH_SCALE);
break;
case TSL2563_TIMMING_INTEG_101MS:
chscale = CHSCALE_TINT1;
break;
case TSL2563_TIMMING_INTEG_13_7MS:
chscale = CHSCALE_TINT0;
break;
}
if(!gain) {
chscale = chscale << 4;
}
ch0 = (buffer[0] * chscale) >> CH_SCALE;
ch1 = (buffer[1] * chscale) >> CH_SCALE;
if(ch0 > 0) {
ratio = (ch1 << CH_SCALE);
ratio = ratio / ch0;
}
lratio = (ratio + 1) >> 1;
if((lratio >= 0) && (lratio <= K1T)) {
@ -86,14 +127,16 @@ calculateLux(uint8_t *buf)
tmp = 0;
}
tmp += (1 << 13);
return tmp >> 14;
tmp += (1 << (LUX_SCALE - 1));
return tmp >> LUX_SCALE;
}
/*---------------------------------------------------------------------------*/
static int
tsl2563_read_reg(uint8_t reg, uint8_t *buf, uint8_t regNum)
{
i2c_master_enable();
if(i2c_single_send(TSL2563_ADDR, reg) == I2C_MASTER_ERR_NONE) {
while(i2c_master_busy());
if(i2c_burst_receive(TSL2563_ADDR, buf, regNum) == I2C_MASTER_ERR_NONE) {
return TSL2563_SUCCESS;
}
@ -102,49 +145,226 @@ tsl2563_read_reg(uint8_t reg, uint8_t *buf, uint8_t regNum)
}
/*---------------------------------------------------------------------------*/
static int
light_ziglet_on(void)
tsl2563_write_reg(uint8_t *buf, uint8_t num)
{
if(i2c_single_send(TSL2563_ADDR, (uint8_t)TSL2563_PWRN) == I2C_MASTER_ERR_NONE) {
if((buf == NULL) || (num <= 0)) {
PRINTF("TSL2563: invalid write values\n");
return TSL2563_ERROR;
}
i2c_master_enable();
if(i2c_burst_send(TSL2563_ADDR, buf, num) == I2C_MASTER_ERR_NONE) {
return TSL2563_SUCCESS;
}
return TSL2563_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
light_ziglet_off(void)
tsl2563_on(void)
{
if(i2c_single_send(TSL2563_ADDR, (uint8_t)TSL2563_PWROFF) == I2C_MASTER_ERR_NONE) {
return TSL2563_SUCCESS;
}
return TSL2563_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
light_ziglet_read(uint16_t *lux)
{
uint8_t buf[4];
if(light_ziglet_on() == TSL2563_SUCCESS) {
if(tsl2563_read_reg(TSL2563_READ, buf, 4) == TSL2563_SUCCESS) {
*lux = calculateLux(buf);
return light_ziglet_off();
uint8_t buf[2];
buf[0] = (TSL2563_COMMAND + TSL2563_CONTROL);
buf[1] = TSL2563_CONTROL_POWER_ON;
if(tsl2563_write_reg(buf, 2) == I2C_MASTER_ERR_NONE) {
if(i2c_single_receive(TSL2563_ADDR, &buf[0]) == I2C_MASTER_ERR_NONE) {
if((buf[0] & 0x0F) == TSL2563_CONTROL_POWER_ON) {
PRINTF("TSL2563: powered on\n");
return TSL2563_SUCCESS;
}
}
}
PRINTF("TSL2563: failed to power on\n");
return TSL2563_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
tsl2563_id_register(uint8_t *buf)
{
if(tsl2563_read_reg((TSL2563_COMMAND + TSL2563_ID_REG),
buf, 1) == TSL2563_SUCCESS) {
PRINTF("TSL2563: partnum/revnum 0x%02X\n", *buf);
return TSL2563_SUCCESS;
}
return TSL2563_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
tsl2563_off(void)
{
uint8_t buf[2];
buf[0] = (TSL2563_COMMAND + TSL2563_CONTROL);
buf[1] = TSL2563_CONTROL_POWER_OFF;
if(tsl2563_write_reg(buf, 2) == I2C_MASTER_ERR_NONE) {
PRINTF("TSL2563: powered off\n");
return TSL2563_SUCCESS;
}
PRINTF("TSL2563: failed to power off\n");
return TSL2563_ERROR;
}
/*---------------------------------------------------------------------------*/
static int
tsl2563_read_sensor(uint16_t *lux)
{
uint8_t buf[4];
/* This is hardcoded to use word write/read operations */
if(tsl2563_read_reg((TSL2563_COMMAND + TSL2563_D0LOW),
&buf[0], 2) == TSL2563_SUCCESS) {
if(tsl2563_read_reg((TSL2563_COMMAND + TSL2563_D1LOW),
&buf[2], 2) == TSL2563_SUCCESS) {
*lux = calculate_lux(buf);
return TSL2563_SUCCESS;
}
}
PRINTF("TSL2563: failed to read\n");
return TSL2563_ERROR;
}
/*---------------------------------------------------------------------------*/
PROCESS(tsl2563_int_process, "TSL2563 interrupt process handler");
/*---------------------------------------------------------------------------*/
PROCESS_THREAD(tsl2563_int_process, ev, data)
{
PROCESS_EXITHANDLER();
PROCESS_BEGIN();
while(1) {
PROCESS_YIELD_UNTIL(ev == PROCESS_EVENT_POLL);
/* FIXME: Read interrupt source and clear */
tsl2563_int_callback(0);
}
PROCESS_END();
}
/*---------------------------------------------------------------------------*/
static void
tsl2563_interrupt_handler(uint8_t port, uint8_t pin)
{
/* FIXME: Check if the interrupt is ours */
process_poll(&tsl2563_int_process);
}
/*---------------------------------------------------------------------------*/
static int
configure(int type, int value)
{
if(type != SENSORS_ACTIVE) {
uint8_t buf[2];
if((type != TSL2563_ACTIVE) && (type != TSL2563_INT_OVER) &&
(type != TSL2563_INT_BELOW) && (type != TSL2563_INT_DISABLE) &&
(type != TSL2563_TIMMING_CFG)) {
PRINTF("TSL2563: invalid start value\n");
return TSL2563_ERROR;
}
enabled = value;
if(value) {
i2c_init(I2C_SDA_PORT, I2C_SDA_PIN, I2C_SCL_PORT, I2C_SCL_PIN,
I2C_SCL_NORMAL_BUS_SPEED);
} else {
light_ziglet_off();
/* As default the power-on values of the sensor are gain 1X, 402ms integration
* time (not nominal), with manual control disabled
*/
if(type == TSL2563_ACTIVE) {
if(value) {
i2c_init(I2C_SDA_PORT, I2C_SDA_PIN, I2C_SCL_PORT, I2C_SCL_PIN,
I2C_SCL_NORMAL_BUS_SPEED);
/* Power on the sensor and check for the part number */
if(tsl2563_on() == TSL2563_SUCCESS) {
if(tsl2563_id_register(&buf[0]) == TSL2563_SUCCESS) {
if((buf[0] & TSL2563_ID_PARTNO_MASK) == TSL2563_EXPECTED_PARTNO) {
/* Read the timming/gain configuration */
if(tsl2563_read_reg((TSL2563_COMMAND + TSL2563_TIMMING),
&buf[0], 1) == TSL2563_SUCCESS) {
gain = buf[0] & TSL2563_TIMMING_GAIN;
timming = buf[0] & TSL2563_TIMMING_INTEG_MASK;
PRINTF("TSL2563: enabled, timming %u gain %u\n", timming, gain);
return TSL2563_SUCCESS;
}
}
}
}
return TSL2563_ERROR;
} else {
if(tsl2563_off() == TSL2563_SUCCESS) {
PRINTF("TSL2563: stopped\n");
return TSL2563_SUCCESS;
}
return TSL2563_ERROR;
}
}
if(type == TSL2563_INT_DISABLE) {
/* FIXME: disable interrupt */
GPIO_DISABLE_INTERRUPT(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK);
return TSL2563_SUCCESS;
}
/* Configure the timming and gain */
if(type == TSL2563_TIMMING_CFG) {
if((value != TSL2563_G16X_402MS) && (value != TSL2563_G1X_402MS) &&
(value != TSL2563_G1X_101MS) && (value != TSL2563_G1X_13_7MS)) {
PRINTF("TSL2563: invalid timming configuration values\n");
return TSL2563_ERROR;
}
buf[0] = (TSL2563_COMMAND + TSL2563_TIMMING);
buf[1] = value;
if(tsl2563_write_reg(buf, 2) == TSL2563_SUCCESS) {
if(value == TSL2563_G16X_402MS) {
gain = 1;
}
switch(value) {
case TSL2563_G16X_402MS:
case TSL2563_G1X_402MS:
timming = TSL2563_TIMMING_INTEG_402MS;
break;
case TSL2563_G1X_101MS:
timming = TSL2563_TIMMING_INTEG_101MS;
break;
case TSL2563_G1X_13_7MS:
timming = TSL2563_TIMMING_INTEG_13_7MS;
break;
}
PRINTF("TSL2563: new timming %u gain %u\n", timming, gain);
return TSL2563_SUCCESS;
}
PRINTF("TSL2563: failed to configure timming\n");
return TSL2563_ERROR;
}
/* Configure interrupt pins and initialize interrupts handlers */
tsl2563_int_callback = NULL;
/* Configure the interrupts pins */
GPIO_SOFTWARE_CONTROL(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK);
GPIO_SET_INPUT(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK);
/* Pull-up resistor, detect falling edge */
GPIO_DETECT_EDGE(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK);
GPIO_TRIGGER_SINGLE_EDGE(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK);
GPIO_DETECT_FALLING(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK);
gpio_register_callback(tsl2563_interrupt_handler, I2C_INT_PORT, I2C_INT_PIN);
/* Spin process until an interrupt is received */
process_start(&tsl2563_int_process, NULL);
if(type == TSL2563_INT_OVER) {
/* FIXME: add code */
} else if(type == TSL2563_INT_BELOW) {
/* FIXME: add code */
}
/* Enable interrupts */
GPIO_ENABLE_INTERRUPT(TSL2563_INT_PORT_BASE, TSL2563_INT_PIN_MASK);
ioc_set_over(I2C_INT_PORT, I2C_INT_PIN, IOC_OVERRIDE_PUE);
nvic_interrupt_enable(I2C_INT_VECTOR);
return TSL2563_SUCCESS;
}
/*---------------------------------------------------------------------------*/
@ -164,9 +384,10 @@ value(int type)
{
uint16_t lux;
if(type == TSL2563_VAL_READ) {
if(light_ziglet_read(&lux) != TSL2563_ERROR) {
if(tsl2563_read_sensor(&lux) != TSL2563_ERROR) {
return lux;
}
PRINTF("TSL2563: fail to read\n");
}
return TSL2563_ERROR;
}

View File

@ -49,24 +49,93 @@
* Toni Lozano <tlozano@zolertia.com>
*/
/*---------------------------------------------------------------------------*/
#ifndef LIGHT_SENSOR_H_
#define LIGHT_SENSOR_H_
#ifndef TSL2563_H_
#define TSL2563_H_
#include <stdio.h>
#include "lib/sensors.h"
#include "dev/zoul-sensors.h"
#include "i2c.h"
/* -------------------------------------------------------------------------- */
/**
* \name TSL2563 digital Light sensor
* \name TSL2563 digital Light sensor address and registers
* @{
*/
/* -------------------------------------------------------------------------- */
#define TSL2563_ADDR 0x39 /**< TSL2563 slave address */
#define TSL2563_ADDR 0x39
/* -------------------------------------------------------------------------- */
#define TSL2563_READ 0xAC /**< TSL2563 read register */
#define TSL2563_PWRN 0x03 /**< TSL2563 enable register */
#define TSL2563_PWROFF 0x00 /**< TSL2563 Power OFF */
#define TSL2563_CONTROL 0x00
#define TSL2563_TIMMING 0x01
#define TSL2563_THRLOWLOW 0x02
#define TSL2563_THRLOWHIGH 0x03
#define TSL2563_THRHIGHLOW 0x04
#define TSL2563_THRHIGHHIGH 0x05
#define TSL2563_INTERRUPT 0x06
#define TSL2563_CRC 0x08
#define TSL2563_ID_REG 0x0A
#define TSL2563_D0LOW 0x0C
#define TSL2563_D0HIGH 0x0D
#define TSL2563_D1LOW 0x0E
#define TSL2563_D1HIGH 0x0F
/* -------------------------------------------------------------------------- */
#define K1T 0X0040 /**< Calibration values (hardcoded) */
/* Uses the word read/write operation protocol */
#define TSL2563_COMMAND 0xA0
/* -------------------------------------------------------------------------- */
#define TSL2563_CONTROL_POWER_ON 0x03
#define TSL2563_CONTROL_POWER_OFF 0x00
#define TSL2563_TIMMING_GAIN 0x10
#define TSL2563_TIMMING_MANUAL 0x08
#define TSL2563_TIMMING_INTEG_MANUAL 0x03
#define TSL2563_TIMMING_INTEG_402MS 0x02
#define TSL2563_TIMMING_INTEG_101MS 0x01
#define TSL2563_TIMMING_INTEG_13_7MS 0x00
#define TSL2563_TIMMING_INTEG_MASK 0x03
#define TSL2563_G16X_402MS (TSL2563_TIMMING_INTEG_402MS + TSL2563_TIMMING_GAIN)
#define TSL2563_G1X_402MS TSL2563_TIMMING_INTEG_402MS
#define TSL2563_G1X_101MS TSL2563_TIMMING_INTEG_101MS
#define TSL2563_G1X_13_7MS TSL2563_TIMMING_INTEG_13_7MS
#define TSL2563_INTR_SHIFT 0x04
#define TSL2563_INTR_DISABLED 0x00
#define TSL2563_INTR_LEVEL 0x01
#define TSL2563_INTR_SMB_ALERT 0x02
#define TSL2563_INTR_TEST 0x03
#define TSL2563_INT_PERSIST_EVERY 0x00
#define TSL2563_INT_PERSIST_ANY 0x01
#define TSL2563_INT_PERSIST_2_CYCLES 0x02
#define TSL2563_INT_PERSIST_3_CYCLES 0x03
#define TSL2563_INT_PERSIST_4_CYCLES 0x04
#define TSL2563_INT_PERSIST_5_CYCLES 0x05
#define TSL2563_INT_PERSIST_6_CYCLES 0x06
#define TSL2563_INT_PERSIST_7_CYCLES 0x07
#define TSL2563_INT_PERSIST_8_CYCLES 0x08
#define TSL2563_INT_PERSIST_9_CYCLES 0x09
#define TSL2563_INT_PERSIST_10_CYCLES 0x0A
#define TSL2563_INT_PERSIST_11_CYCLES 0x0B
#define TSL2563_INT_PERSIST_12_CYCLES 0x0C
#define TSL2563_INT_PERSIST_13_CYCLES 0x0D
#define TSL2563_INT_PERSIST_14_CYCLES 0x0E
#define TSL2563_INT_PERSIST_15_CYCLES 0x0F
#define TSL2563_ID_PARTNO_MASK 0xF0
#define TSL2563_ID_REV_MASK 0x0F
#define TSL2563_EXPECTED_PARTNO 0x30
/** @} */
/* -------------------------------------------------------------------------- */
/**
* \name TSL2563 convertion and calibration values
* @{
*/
#define LUX_SCALE 14 /**< scale by 2^14 */
#define RATIO_SCALE 9 /**< scale ratio */
#define CH_SCALE 10 /**< scale channel values by 2^10 */
#define CHSCALE_TINT0 0x7517 /**< 322/11 * 2^CH_SCALE */
#define CHSCALE_TINT1 0x0fe7 /**< 322/81 * 2^CH_SCALE */
/* T/FN/CL package coefficients (hardcoded) */
#define K1T 0X0040
#define B1T 0x01f2
#define M1T 0x01b2
#define K2T 0x0080
@ -92,11 +161,30 @@
#define M8T 0x0000
/** @} */
/* -------------------------------------------------------------------------- */
#define TSL2563_SUCCESS 0x00
#define TSL2563_LIGHT 0x01
#define TSL2563_ERROR -1
/**
* \name Callback function to handle the TSL2563 alarm interrupt and macro
* @{
*/
#define TSL2563_REGISTER_INT(ptr) tsl2563_int_callback = ptr;
extern void (*tsl2563_int_callback)(uint8_t value);
/** @} */
/* -------------------------------------------------------------------------- */
#define TSL2563_VAL_READ 0x01
/**
* \name TSL2563 return and command values
* @{
*/
#define TSL2563_SUCCESS 0x00
#define TSL2563_LIGHT 0x01
#define TSL2563_ERROR -1
#define TSL2563_ACTIVE SENSORS_ACTIVE
#define TSL2563_INT_OVER HW_INT_OVER_THRS
#define TSL2563_INT_BELOW HW_INT_BELOW_THRS
#define TSL2563_INT_DISABLE HW_INT_DISABLE
#define TSL2563_TIMMING_CFG (HW_INT_DISABLE + 1)
#define TSL2563_VAL_READ 0x01
/** @} */
/* -------------------------------------------------------------------------- */
#define TSL2563_SENSOR "TSL2563 Light Sensor"
/* -------------------------------------------------------------------------- */

View File

@ -55,9 +55,12 @@
* \name Zoul sensor constants
*
* These constants are used by various sensors on the Zoul. They can be used
* to configure ADC decimation rate (where applicable).
* to configure ADC decimation rate (where applicable), enable interrupts, etc.
* @{
*/
#define HW_INT_OVER_THRS 0x01
#define HW_INT_BELOW_THRS 0x02
#define HW_INT_DISABLE 0x03
#define ZOUL_SENSORS_CONFIGURE_TYPE_DECIMATION_RATE 0x0100
#define ZOUL_SENSORS_ERROR CC2538_SENSORS_ERROR
/** @} */

View File

@ -261,12 +261,18 @@
* These values configure which CC2538 pins to use for the I2C lines, exposed
* over JP6 connector, also available as testpoints T2 (PC2) and T3 (PC3).
* The I2C bus is shared with the on-board RTC.
* The I2C is exposed over the JP6 header, using a 5-pin connector with 2.54 mm
* spacing, providing also D+3.3V, GND and a generic pin that can be used as an
* interrupt pin
* @{
*/
#define I2C_SCL_PORT GPIO_C_NUM
#define I2C_SCL_PIN 3
#define I2C_SDA_PORT GPIO_C_NUM
#define I2C_SDA_PIN 2
#define I2C_INT_PORT GPIO_D_NUM
#define I2C_INT_PIN 1
#define I2C_INT_VECTOR NVIC_INT_GPIO_PORT_D
/** @} */
/*---------------------------------------------------------------------------*/
/**
@ -374,7 +380,6 @@
/**
* \name On-board RTC
*
* The Abracon AB0805 RTC is used by both the
* The shutdown mode can be disabled by hardware by short-circuiting or placing
* an 0Ohm resistor across W1 pad. As the RTC_INT1 pin is also shared with the
* BUTTON_USER, so either disable or not use the user button, or upon receiving