contiki/cpu/x86/drivers/quarkX1000/i2c.c
Michael LeMay 4cdb7ba9b6 x86: Add TSS-based protection domain support
This patch extends the protection domain framework with an additional
plugin to use Task-State Segment (TSS) structures to offload much of
the work of switching protection domains to the CPU.  This can save
space compared to paging, since paging requires two 4KiB page tables
and one 32-byte page table plus one whole-system TSS and an additional
32-byte data structure for each protection domain, whereas the
approach implemented by this patch just requires a 128-byte data
structure for each protection domain.  Only a small number of
protection domains will typically be used, so
n * 128 < 8328 + (n * 32).

For additional information, please refer to cpu/x86/mm/README.md.

GCC 6 is introducing named address spaces for the FS and GS segments
[1].  LLVM Clang also provides address spaces for the FS and GS
segments [2].  This patch also adds support to the multi-segment X86
memory management subsystem for using these features instead of inline
assembly blocks, which enables type checking to detect some address
space mismatches.

[1] https://gcc.gnu.org/onlinedocs/gcc/Named-Address-Spaces.html
[2] http://llvm.org/releases/3.3/tools/clang/docs/LanguageExtensions.html#target-specific-extensions
2016-04-22 08:16:39 -07:00

576 lines
16 KiB
C

/*
* Copyright (C) 2015-2016, Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "contiki.h"
#include "i2c.h"
#include "i2c-registers.h"
#include "paging.h"
#include "shared-isr.h"
#include "syscalls.h"
#define I2C_CLOCK_SPEED 25 /* kHz */
#define I2C_FIFO_DEPTH 16
#define I2C_STD_HCNT (I2C_CLOCK_SPEED * 4)
#define I2C_STD_LCNT (I2C_CLOCK_SPEED * 5)
#define I2C_FS_HCNT (I2C_CLOCK_SPEED)
#define I2C_FS_LCNT (I2C_CLOCK_SPEED)
#define I2C_FS_SPKLEN_LCNT_OFFSET 8
#define I2C_FS_SPKLEN_HCNT_OFFSET 6
#define I2C_POLLING_TIMEOUT (CLOCK_SECOND / 10)
#define I2C_IRQ 9
#if X86_CONF_PROT_DOMAINS == X86_CONF_PROT_DOMAINS__PAGING
#define MMIO_SZ MIN_PAGE_SIZE
#else
#define MMIO_SZ (QUARKX1000_IC_HIGHEST + 4)
#endif
typedef enum {
I2C_DIRECTION_READ,
I2C_DIRECTION_WRITE
} I2C_DIRECTION;
PROT_DOMAINS_ALLOC(pci_driver_t, drv);
struct quarkX1000_i2c_config {
QUARKX1000_I2C_SPEED speed;
QUARKX1000_I2C_ADDR_MODE addressing_mode;
quarkX1000_i2c_callback cb_rx;
quarkX1000_i2c_callback cb_tx;
quarkX1000_i2c_callback cb_err;
};
struct i2c_internal_data {
struct quarkX1000_i2c_config config;
I2C_DIRECTION direction;
uint8_t rx_len;
uint8_t *rx_buffer;
uint8_t tx_len;
uint8_t *tx_buffer;
uint8_t rx_tx_len;
uint32_t hcnt;
uint32_t lcnt;
};
static struct i2c_internal_data device;
static int inited = 0;
void quarkX1000_i2c_mmin(uint32_t offset, uint32_t *res);
SYSCALLS_DEFINE_SINGLETON(quarkX1000_i2c_mmin, drv,
uint32_t offset, uint32_t *res)
{
uint32_t *loc_res;
PROT_DOMAINS_VALIDATE_PTR(loc_res, res, sizeof(*res));
if(QUARKX1000_IC_HIGHEST < offset) {
halt();
}
prot_domains_enable_mmio();
PCI_MMIO_READL(drv, *loc_res, offset);
prot_domains_disable_mmio();
}
static inline uint32_t
read(uint32_t offset)
{
uint32_t res;
quarkX1000_i2c_mmin(offset, &res);
return res;
}
void quarkX1000_i2c_mmout(uint32_t offset, uint32_t val);
SYSCALLS_DEFINE_SINGLETON(quarkX1000_i2c_mmout, drv,
uint32_t offset, uint32_t val)
{
if(QUARKX1000_IC_HIGHEST < offset) {
halt();
}
prot_domains_enable_mmio();
PCI_MMIO_WRITEL(drv, offset, val);
prot_domains_disable_mmio();
}
static inline void
write(uint32_t offset, uint32_t val)
{
quarkX1000_i2c_mmout(offset, val);
}
static uint32_t
get_value(uint32_t offset, uint32_t mask, uint32_t shift)
{
uint32_t register_value = read(offset);
register_value &= ~(0xFFFFFFFF - mask);
return register_value >> shift;
}
static void
set_value(uint32_t offset, uint32_t mask, uint32_t shift, uint32_t value)
{
uint32_t register_value = read(offset);
register_value &= ~mask;
register_value |= value << shift;
write(offset, register_value);
}
static void
i2c_data_read(void)
{
uint8_t i, rx_cnt;
if (device.rx_len == 0)
return;
rx_cnt = get_value(QUARKX1000_IC_RXFLR,
QUARKX1000_IC_RXFLR_MASK, QUARKX1000_IC_RXFLR_SHIFT);
if (rx_cnt > device.rx_len)
rx_cnt = device.rx_len;
for (i = 0; i < rx_cnt; i++) {
device.rx_buffer[i] = get_value(QUARKX1000_IC_DATA_CMD,
QUARKX1000_IC_DATA_CMD_DAT_MASK, QUARKX1000_IC_DATA_CMD_DAT_SHIFT);
}
device.rx_buffer += i;
device.rx_len -= i;
}
static void
i2c_data_send(void)
{
uint32_t data = 0;
uint8_t i, tx_cnt;
if (device.rx_tx_len == 0)
return;
tx_cnt = I2C_FIFO_DEPTH - get_value(QUARKX1000_IC_TXFLR,
QUARKX1000_IC_TXFLR_MASK, QUARKX1000_IC_TXFLR_SHIFT);
if (tx_cnt > device.rx_tx_len)
tx_cnt = device.rx_tx_len;
for (i = 0; i < tx_cnt; i++) {
if (device.tx_len > 0) {
data = device.tx_buffer[i];
if (device.tx_len == 1)
data |= (device.rx_len > 0) ? QUARKX1000_IC_DATA_CMD_RESTART_MASK : QUARKX1000_IC_DATA_CMD_STOP_MASK;
device.tx_len -= 1;
} else {
data = QUARKX1000_IC_DATA_CMD_CMD_MASK;
if (device.rx_tx_len == 1)
data |= QUARKX1000_IC_DATA_CMD_STOP_MASK;
}
write(QUARKX1000_IC_DATA_CMD, data);
device.rx_tx_len -= 1;
}
device.tx_buffer += i;
}
static bool
i2c_isr(void)
{
bool handled = false;
if (read(QUARKX1000_IC_INTR_STAT) & QUARKX1000_IC_INTR_STAT_STOP_DET_MASK) {
i2c_data_read();
write(QUARKX1000_IC_INTR_MASK, 0);
read(QUARKX1000_IC_CLR_INTR);
if (device.direction == I2C_DIRECTION_WRITE) {
if (device.config.cb_tx)
device.config.cb_tx();
} else {
if (device.config.cb_rx)
device.config.cb_rx();
}
handled = true;
}
if (read(QUARKX1000_IC_INTR_STAT) & QUARKX1000_IC_INTR_STAT_TX_EMPTY_MASK) {
i2c_data_send();
if (device.rx_tx_len <= 0) {
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_TX_EMPTY_MASK, QUARKX1000_IC_INTR_STAT_TX_EMPTY_SHIFT, 0);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_STOP_DET_MASK, QUARKX1000_IC_INTR_STAT_STOP_DET_SHIFT, 1);
}
handled = true;
}
if(read(QUARKX1000_IC_INTR_STAT) & QUARKX1000_IC_INTR_STAT_RX_FULL_MASK) {
i2c_data_read();
handled = true;
}
if (read(QUARKX1000_IC_INTR_STAT) & (QUARKX1000_IC_INTR_STAT_TX_ABRT_MASK
| QUARKX1000_IC_INTR_STAT_TX_OVER_MASK | QUARKX1000_IC_INTR_STAT_RX_OVER_MASK
| QUARKX1000_IC_INTR_STAT_RX_UNDER_MASK)) {
write(QUARKX1000_IC_INTR_MASK, 0);
read(QUARKX1000_IC_CLR_INTR);
if (device.config.cb_err)
device.config.cb_err();
handled = true;
}
return handled;
}
void
quarkX1000_i2c_configure(QUARKX1000_I2C_SPEED speed,
QUARKX1000_I2C_ADDR_MODE addressing_mode)
{
uint32_t hcnt, lcnt;
uint8_t ic_fs_spklen;
device.config.speed = speed;
device.config.addressing_mode = addressing_mode;
if (device.config.speed == QUARKX1000_I2C_SPEED_STANDARD) {
lcnt = I2C_STD_LCNT;
hcnt = I2C_STD_HCNT;
} else {
lcnt = I2C_FS_LCNT;
hcnt = I2C_FS_HCNT;
}
ic_fs_spklen = get_value(QUARKX1000_IC_FS_SPKLEN,
QUARKX1000_IC_FS_SPKLEN_MASK, QUARKX1000_IC_FS_SPKLEN_SHIFT);
/* We adjust the Low Count and High Count based on the Spike Suppression Limit */
device.lcnt = (lcnt < (ic_fs_spklen + I2C_FS_SPKLEN_LCNT_OFFSET)) ? ic_fs_spklen + I2C_FS_SPKLEN_LCNT_OFFSET : lcnt;
device.hcnt = (hcnt < (ic_fs_spklen + I2C_FS_SPKLEN_HCNT_OFFSET)) ? ic_fs_spklen + I2C_FS_SPKLEN_HCNT_OFFSET : hcnt;
/* Clear interrupts. */
read(QUARKX1000_IC_CLR_INTR);
}
void
quarkX1000_i2c_set_callbacks(quarkX1000_i2c_callback rx,
quarkX1000_i2c_callback tx,
quarkX1000_i2c_callback err)
{
device.config.cb_rx = rx;
device.config.cb_tx = tx;
device.config.cb_err = err;
}
static int
i2c_setup(void)
{
/* Clear all values */
write(QUARKX1000_IC_CON, 0);
/* Clear interrupts */
read(QUARKX1000_IC_CLR_INTR);
/* Quark X1000 SoC I2C only supports master mode. */
set_value(QUARKX1000_IC_CON,
QUARKX1000_IC_CON_MASTER_MODE_MASK, QUARKX1000_IC_CON_MASTER_MODE_SHIFT, 1);
/* Set restart enable */
set_value(QUARKX1000_IC_CON,
QUARKX1000_IC_CON_RESTART_EN_MASK, QUARKX1000_IC_CON_RESTART_EN_SHIFT, 1);
/* Set addressing mode */
if (device.config.addressing_mode == QUARKX1000_I2C_ADDR_MODE_10BIT) {
set_value(QUARKX1000_IC_CON,
QUARKX1000_IC_CON_10BITADDR_MASTER_MASK, QUARKX1000_IC_CON_10BITADDR_MASTER_SHIFT, 1);
}
if (device.config.speed == QUARKX1000_I2C_SPEED_STANDARD) {
set_value(QUARKX1000_IC_SS_SCL_LCNT,
QUARKX1000_IC_SS_SCL_LCNT_MASK, QUARKX1000_IC_SS_SCL_LCNT_SHIFT, device.lcnt);
set_value(QUARKX1000_IC_SS_SCL_HCNT,
QUARKX1000_IC_SS_SCL_HCNT_MASK, QUARKX1000_IC_SS_SCL_HCNT_SHIFT, device.hcnt);
set_value(QUARKX1000_IC_CON,
QUARKX1000_IC_CON_SPEED_MASK, QUARKX1000_IC_CON_SPEED_SHIFT, 0x1);
} else {
set_value(QUARKX1000_IC_FS_SCL_LCNT,
QUARKX1000_IC_FS_SCL_LCNT_MASK, QUARKX1000_IC_FS_SCL_LCNT_SHIFT, device.lcnt);
set_value(QUARKX1000_IC_FS_SCL_HCNT,
QUARKX1000_IC_FS_SCL_HCNT_MASK, QUARKX1000_IC_FS_SCL_HCNT_SHIFT, device.hcnt);
set_value(QUARKX1000_IC_CON,
QUARKX1000_IC_CON_SPEED_MASK, QUARKX1000_IC_CON_SPEED_SHIFT, 0x2);
}
return 0;
}
static void
i2c_operation_setup(uint8_t *write_buf, uint8_t write_len,
uint8_t *read_buf, uint8_t read_len, uint16_t addr)
{
device.rx_len = read_len;
device.rx_buffer = read_buf;
device.tx_len = write_len;
device.tx_buffer = write_buf;
device.rx_tx_len = device.rx_len + device.tx_len;
/* Disable controller */
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
i2c_setup();
/* Disable interrupts */
write(QUARKX1000_IC_INTR_MASK, 0);
/* Clear interrupts */
read(QUARKX1000_IC_CLR_INTR);
/* Set address of target slave */
set_value(QUARKX1000_IC_TAR,
QUARKX1000_IC_TAR_MASK, QUARKX1000_IC_TAR_SHIFT, addr);
}
/* This is an interrupt based operation */
static int
i2c_operation(uint8_t *write_buf, uint8_t write_len,
uint8_t *read_buf, uint8_t read_len, uint16_t addr)
{
if (read(QUARKX1000_IC_STATUS) & QUARKX1000_IC_STATUS_ACTIVITY_MASK)
return -1;
i2c_operation_setup(write_buf, write_len, read_buf, read_len, addr);
/* Enable master TX and RX interrupts */
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_TX_OVER_MASK, QUARKX1000_IC_INTR_STAT_TX_OVER_SHIFT, 1);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_TX_EMPTY_MASK, QUARKX1000_IC_INTR_STAT_TX_EMPTY_SHIFT, 1);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_TX_ABRT_MASK, QUARKX1000_IC_INTR_STAT_TX_ABRT_SHIFT, 1);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_RX_UNDER_MASK, QUARKX1000_IC_INTR_STAT_RX_UNDER_SHIFT, 1);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_RX_OVER_MASK, QUARKX1000_IC_INTR_STAT_RX_OVER_SHIFT, 1);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_RX_FULL_MASK, QUARKX1000_IC_INTR_STAT_RX_FULL_SHIFT, 1);
set_value(QUARKX1000_IC_INTR_MASK,
QUARKX1000_IC_INTR_STAT_STOP_DET_MASK, QUARKX1000_IC_INTR_STAT_STOP_DET_SHIFT, 1);
/* Enable controller */
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 1);
return 0;
}
/* This is an interrupt based write */
int
quarkX1000_i2c_write(uint8_t *buf, uint8_t len, uint16_t addr)
{
device.direction = I2C_DIRECTION_WRITE;
return i2c_operation(buf, len, 0, 0, addr);
}
/* This is an interrupt based read */
int
quarkX1000_i2c_read(uint8_t *buf, uint8_t len, uint16_t addr)
{
device.direction = I2C_DIRECTION_READ;
return i2c_operation(0, 0, buf, len, addr);
}
static int
i2c_polling_operation(uint8_t *write_buf, uint8_t write_len,
uint8_t *read_buf, uint8_t read_len, uint16_t addr)
{
uint32_t start_time, intr_mask_stat;
if (!(read(QUARKX1000_IC_CON) & QUARKX1000_IC_CON_MASTER_MODE_MASK))
return -1;
/* Wait i2c idle */
start_time = clock_seconds();
while (read(QUARKX1000_IC_STATUS) & QUARKX1000_IC_STATUS_ACTIVITY_MASK) {
if ((clock_seconds() - start_time) > I2C_POLLING_TIMEOUT) {
return -1;
}
}
/* Get interrupt mask to restore in the end of polling operation */
intr_mask_stat = read(QUARKX1000_IC_INTR_MASK);
i2c_operation_setup(write_buf, write_len, read_buf, read_len, addr);
/* Enable controller */
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 1);
/* Transmit */
if (device.tx_len != 0) {
while (device.tx_len > 0) {
start_time = clock_seconds();
while (!(read(QUARKX1000_IC_STATUS) & QUARKX1000_IC_STATUS_TFNF_MASK)) {
if ((clock_seconds() - start_time) > I2C_POLLING_TIMEOUT) {
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
return -1;
}
}
i2c_data_send();
}
start_time = clock_seconds();
while (!(read(QUARKX1000_IC_STATUS) & QUARKX1000_IC_STATUS_TFE_MASK)) {
if ((clock_seconds() - start_time) > I2C_POLLING_TIMEOUT) {
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
return -1;
}
}
}
i2c_data_send();
/* Receive */
if (device.rx_len != 0) {
while (device.rx_len > 0) {
start_time = clock_seconds();
while (!(read(QUARKX1000_IC_STATUS) & QUARKX1000_IC_STATUS_RFNE_MASK)) {
if ((clock_seconds() - start_time) > I2C_POLLING_TIMEOUT) {
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
return -1;
}
}
i2c_data_read();
}
}
/* Stop Det */
start_time = clock_seconds();
while (!(read(QUARKX1000_IC_RAW_INTR_STAT) & QUARKX1000_IC_INTR_STAT_STOP_DET_MASK)) {
if ((clock_seconds() - start_time) > I2C_POLLING_TIMEOUT) {
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
return -1;
}
}
read(QUARKX1000_IC_CLR_STOP_DET);
/* Wait i2c idle */
start_time = clock_seconds();
while (read(QUARKX1000_IC_STATUS) & QUARKX1000_IC_STATUS_ACTIVITY_MASK) {
if ((clock_seconds() - start_time) > I2C_POLLING_TIMEOUT) {
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
return -1;
}
}
/* Disable controller */
set_value(QUARKX1000_IC_ENABLE,
QUARKX1000_IC_ENABLE_MASK, QUARKX1000_IC_ENABLE_SHIFT, 0);
/* Restore interrupt mask */
write(QUARKX1000_IC_INTR_MASK, intr_mask_stat);
return 0;
}
int
quarkX1000_i2c_polling_write(uint8_t *buf, uint8_t len, uint16_t addr)
{
device.direction = I2C_DIRECTION_WRITE;
return i2c_polling_operation(buf, len, 0, 0, addr);
}
int
quarkX1000_i2c_polling_read(uint8_t *buf, uint8_t len, uint16_t addr)
{
device.direction = I2C_DIRECTION_READ;
return i2c_polling_operation(0, 0, buf, len ,addr);
}
int
quarkX1000_i2c_is_available(void)
{
return inited;
}
DEFINE_SHARED_IRQ(I2C_IRQ, IRQAGENT3, INTC, PIRQC, i2c_isr);
int
quarkX1000_i2c_init(void)
{
pci_config_addr_t pci_addr;
pci_addr.raw = 0;
pci_addr.bus = 0;
pci_addr.dev = 21;
pci_addr.func = 2;
pci_addr.reg_off = PCI_CONFIG_REG_BAR0;
pci_command_enable(pci_addr, PCI_CMD_1_MEM_SPACE_EN);
PROT_DOMAINS_INIT_ID(drv);
pci_init(&drv, pci_addr, MMIO_SZ, 0, 0);
SYSCALLS_INIT(quarkX1000_i2c_mmin);
SYSCALLS_AUTHZ(quarkX1000_i2c_mmin, drv);
SYSCALLS_INIT(quarkX1000_i2c_mmout);
SYSCALLS_AUTHZ(quarkX1000_i2c_mmout, drv);
inited = 1;
return 0;
}