861 lines
29 KiB
C

/* Copyright (c) 2009, Swedish Institute of Computer Science
* All rights reserved.
*
* Additional fixes for AVR contributed by:
*
* Colin O'Flynn coflynn@newae.com
* Eric Gnoske egnoske@gmail.com
* Blake Leverett bleverett@gmail.com
* Mike Vidales mavida404@gmail.com
* Kevin Brown kbrown3@uccs.edu
* Nate Bohlmann nate@elfwerks.com
* David Kopf dak664@embarqmail.com
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
*/
/**
* \addtogroup wireless
* @{
*/
/**
* \defgroup hal RF230 hardware level drivers
* @{
*/
/**
* \file
* This file contains low-level radio driver code.
* This version is optimized for use with the "barebones" RF230bb driver,
* which communicates directly with the contiki core MAC layer.
* It is optimized for speed at the expense of generality.
*/
/*============================ INCLUDE =======================================*/
#include <stdlib.h>
#include "hal.h"
#include "at86rf230_registermap.h"
/*============================ MACROS ========================================*/
/*
* Macros defined for the radio transceiver's access modes.
*
* These functions are implemented as macros since they are used very often.
*/
#define HAL_DUMMY_READ (0x00) /**< Dummy value for the SPI. */
#define HAL_TRX_CMD_RW (0xC0) /**< Register Write (short mode). */
#define HAL_TRX_CMD_RR (0x80) /**< Register Read (short mode). */
#define HAL_TRX_CMD_FW (0x60) /**< Frame Transmit Mode (long mode). */
#define HAL_TRX_CMD_FR (0x20) /**< Frame Receive Mode (long mode). */
#define HAL_TRX_CMD_SW (0x40) /**< SRAM Write. */
#define HAL_TRX_CMD_SR (0x00) /**< SRAM Read. */
#define HAL_TRX_CMD_RADDRM (0x7F) /**< Register Address Mask. */
#define HAL_CALCULATED_CRC_OK (0) /**< CRC calculated over the frame including the CRC field should be 0. */
/*============================ TYPDEFS =======================================*/
/*============================ VARIABLES =====================================*/
/** \brief This is a file internal variable that contains the 16 MSB of the
* system time.
*
* The system time (32-bit) is the current time in microseconds. For the
* AVR microcontroller implementation this is solved by using a 16-bit
* timer (Timer1) with a clock frequency of 1MHz. The hal_system_time is
* incremented when the 16-bit timer overflows, representing the 16 MSB.
* The timer value it self (TCNT1) is then the 16 LSB.
*
* \see hal_get_system_time
*/
static uint16_t hal_system_time = 0;
volatile extern signed char rf230_last_rssi;
/*Flag section.*/
//static uint8_t volatile hal_bat_low_flag; /**< BAT_LOW flag. */
//static uint8_t volatile hal_pll_lock_flag; /**< PLL_LOCK flag. */
/*Callbacks.*/
/** \brief This function is called when a rx_start interrupt is signaled.
*
* If this function pointer is set to something else than NULL, it will
* be called when a RX_START event is signaled. The function takes two
* parameters: timestamp in IEEE 802.15.4 symbols (16 us resolution) and
* frame length. The event handler will be called in the interrupt domain,
* so the function must be kept short and not be blocking! Otherwise the
* system performance will be greatly degraded.
*
* \see hal_set_rx_start_event_handler
*/
//static hal_rx_start_isr_event_handler_t rx_start_callback;
/** \brief This function is called when a trx_end interrupt is signaled.
*
* If this function pointer is set to something else than NULL, it will
* be called when a TRX_END event is signaled. The function takes one
* parameter: timestamp in IEEE 802.15.4 symbols (16 us resolution).
* The event handler will be called in the interrupt domain,
* so the function must not block!
*
* \see hal_set_trx_end_event_handler
*/
//static hal_trx_end_isr_event_handler_t trx_end_callback;
/*============================ PROTOTYPES ====================================*/
/*============================ IMPLEMENTATION ================================*/
#if defined(__AVR__)
/*
* AVR with hardware SPI tranfers (TODO: move to hw spi hal for avr cpu)
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#define HAL_SPI_TRANSFER_OPEN() { \
HAL_ENTER_CRITICAL_REGION(); \
HAL_SS_LOW(); /* Start the SPI transaction by pulling the Slave Select low. */
#define HAL_SPI_TRANSFER_WRITE(to_write) (SPDR = (to_write))
#define HAL_SPI_TRANSFER_WAIT() ({while ((SPSR & (1 << SPIF)) == 0) {;}}) /* gcc extension, alternative inline function */
#define HAL_SPI_TRANSFER_READ() (SPDR)
#define HAL_SPI_TRANSFER_CLOSE() \
HAL_SS_HIGH(); /* End the transaction by pulling the Slave Select High. */ \
HAL_LEAVE_CRITICAL_REGION(); \
}
#define HAL_SPI_TRANSFER(to_write) ( \
HAL_SPI_TRANSFER_WRITE(to_write), \
HAL_SPI_TRANSFER_WAIT(), \
HAL_SPI_TRANSFER_READ() )
#else /* __AVR__ */
/*
* Other SPI architecture (parts to core, parts to m16c6Xp
*/
#include "contiki-mulle.h" // MULLE_ENTER_CRITICAL_REGION
// Software SPI transfers
#define HAL_SPI_TRANSFER_OPEN() { uint8_t spiTemp; \
HAL_ENTER_CRITICAL_REGION(); \
HAL_SS_LOW(); /* Start the SPI transaction by pulling the Slave Select low. */
#define HAL_SPI_TRANSFER_WRITE(to_write) (spiTemp = spiWrite(to_write))
#define HAL_SPI_TRANSFER_WAIT() ({0;})
#define HAL_SPI_TRANSFER_READ() (spiTemp)
#define HAL_SPI_TRANSFER_CLOSE() \
HAL_SS_HIGH(); /* End the transaction by pulling the Slave Select High. */ \
HAL_LEAVE_CRITICAL_REGION(); \
}
#define HAL_SPI_TRANSFER(to_write) (spiTemp = spiWrite(to_write))
inline uint8_t spiWrite(uint8_t byte)
{
uint8_t data = 0;
uint8_t mask = 0x80;
do
{
if( (byte & mask) != 0 )
HAL_PORT_MOSI |= (1 << HAL_MOSI_PIN); //call MOSI.set();
else
HAL_PORT_MOSI &= ~(1 << HAL_MOSI_PIN); //call MOSI.clr();
HAL_PORT_SCK &= ~(1 << HAL_SCK_PIN); //call SCLK.clr();
if( (HAL_PORT_MISO & (1 << HAL_MISO_PIN)) > 0) //call MISO.get() )
data |= mask;
HAL_PORT_SCK |= (1 << HAL_SCK_PIN); //call SCLK.set();
} while( (mask >>= 1) != 0 );
return data;
}
#endif /* !__AVR__ */
/** \brief This function initializes the Hardware Abstraction Layer.
*/
#if defined(__AVR__)
#define HAL_RF230_ISR() ISR(RADIO_VECT)
#define HAL_TIME_ISR() ISR(TIMER1_OVF_vect)
#define HAL_TICK_UPCNT() (TCNT1)
void
hal_init(void)
{
/*Reset variables used in file.*/
hal_system_time = 0;
// hal_reset_flags();
/*IO Specific Initialization - sleep and reset pins. */
DDR_SLP_TR |= (1 << SLP_TR); /* Enable SLP_TR as output. */
DDR_RST |= (1 << RST); /* Enable RST as output. */
/*SPI Specific Initialization.*/
/* Set SS, CLK and MOSI as output. */
HAL_DDR_SPI |= (1 << HAL_DD_SS) | (1 << HAL_DD_SCK) | (1 << HAL_DD_MOSI);
HAL_PORT_SPI |= (1 << HAL_DD_SS) | (1 << HAL_DD_SCK); /* Set SS and CLK high */
/* Run SPI at max speed */
SPCR = (1 << SPE) | (1 << MSTR); /* Enable SPI module and master operation. */
SPSR = (1 << SPI2X); /* Enable doubled SPI speed in master mode. */
/*TIMER1 Specific Initialization.*/
TCCR1B = HAL_TCCR1B_CONFIG; /* Set clock prescaler */
TIFR1 |= (1 << ICF1); /* Clear Input Capture Flag. */
HAL_ENABLE_OVERFLOW_INTERRUPT(); /* Enable Timer1 overflow interrupt. */
hal_enable_trx_interrupt(); /* Enable interrupts from the radio transceiver. */
}
#else /* __AVR__ */
#define HAL_RF230_ISR() M16C_INTERRUPT(M16C_INT1)
#define HAL_TIME_ISR() M16C_INTERRUPT(M16C_TMRB4)
#define HAL_TICK_UPCNT() (0xFFFF-TB4) // TB4 counts down so we need to convert it to upcounting
void
hal_init(void)
{
/*Reset variables used in file.*/
hal_system_time = 0;
// hal_reset_flags();
/*IO Specific Initialization - sleep and reset pins. */
DDR_SLP_TR |= (1 << SLP_TR); /* Enable SLP_TR as output. */
DDR_RST |= (1 << RST); /* Enable RST as output. */
/*SPI Specific Initialization.*/
/* Set SS, CLK and MOSI as output. */
HAL_DDR_SS |= (1 << HAL_SS_PIN);
HAL_DDR_SCK |= (1 << HAL_SCK_PIN);
HAL_DDR_MOSI |= (1 << HAL_MOSI_PIN);
HAL_DDR_MISO &= ~(1 << HAL_MISO_PIN);
/* Set SS */
HAL_PORT_SS |= (1 << HAL_SS_PIN); // HAL_SS_HIGH()
HAL_PORT_SCK |= (1 << HAL_SCK_PIN);
/*TIMER Specific Initialization.*/
// Init count source (Timer B3)
TB3 = ((16*10) - 1); // 16 us ticks
TB3MR.BYTE = 0b00000000; // Timer mode, F1
TBSR.BIT.TB3S = 1; // Start Timer B3
TB4 = 0xFFFF; //
TB4MR.BYTE = 0b10000001; // Counter mode, count TB3
TBSR.BIT.TB4S = 1; // Start Timer B4
INT1IC.BIT.POL = 1; // Select rising edge
HAL_ENABLE_OVERFLOW_INTERRUPT(); /* Enable Timer overflow interrupt. */
hal_enable_trx_interrupt(); /* Enable interrupts from the radio transceiver. */
}
#endif /* !__AVR__ */
/*----------------------------------------------------------------------------*/
/** \brief This function reset the interrupt flags and interrupt event handlers
* (Callbacks) to their default value.
*/
//void
//hal_reset_flags(void)
//{
// HAL_ENTER_CRITICAL_REGION();
/* Reset Flags. */
// hal_bat_low_flag = 0;
// hal_pll_lock_flag = 0;
/* Reset Associated Event Handlers. */
// rx_start_callback = NULL;
// trx_end_callback = NULL;
// HAL_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief This function returns the current value of the BAT_LOW flag.
*
* The BAT_LOW flag is incremented each time a BAT_LOW event is signaled from the
* radio transceiver. This way it is possible for the end user to poll the flag
* for new event occurances.
*/
//uint8_t
//hal_get_bat_low_flag(void)
//{
// return hal_bat_low_flag;
//}
/*----------------------------------------------------------------------------*/
/** \brief This function clears the BAT_LOW flag.
*/
//void
//hal_clear_bat_low_flag(void)
//{
// HAL_ENTER_CRITICAL_REGION();
// hal_bat_low_flag = 0;
// HAL_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief This function is used to set new TRX_END event handler, overriding
* old handler reference.
*/
//hal_trx_end_isr_event_handler_t
//hal_get_trx_end_event_handler(void)
//{
// return trx_end_callback;
//}
/*----------------------------------------------------------------------------*/
/** \brief This function is used to set new TRX_END event handler, overriding
* old handler reference.
*/
//void
//hal_set_trx_end_event_handler(hal_trx_end_isr_event_handler_t trx_end_callback_handle)
//{
// HAL_ENTER_CRITICAL_REGION();
// trx_end_callback = trx_end_callback_handle;
// HAL_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief Remove event handler reference.
*/
//void
//hal_clear_trx_end_event_handler(void)
//{
// HAL_ENTER_CRITICAL_REGION();
// trx_end_callback = NULL;
// HAL_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief This function returns the active RX_START event handler
*
* \return Current RX_START event handler registered.
*/
//hal_rx_start_isr_event_handler_t
//hal_get_rx_start_event_handler(void)
//{
// return rx_start_callback;
//}
/*----------------------------------------------------------------------------*/
/** \brief This function is used to set new RX_START event handler, overriding
* old handler reference.
*/
//void
//hal_set_rx_start_event_handler(hal_rx_start_isr_event_handler_t rx_start_callback_handle)
//{
// HAL_ENTER_CRITICAL_REGION();
// rx_start_callback = rx_start_callback_handle;
// HAL_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief Remove event handler reference.
*/
//void
//hal_clear_rx_start_event_handler(void)
//{
// HAL_ENTER_CRITICAL_REGION();
// rx_start_callback = NULL;
// HAL_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief This function returns the current value of the PLL_LOCK flag.
*
* The PLL_LOCK flag is incremented each time a PLL_LOCK event is signaled from the
* radio transceiver. This way it is possible for the end user to poll the flag
* for new event occurances.
*/
//uint8_t
//hal_get_pll_lock_flag(void)
//{
// return hal_pll_lock_flag;
//}
/*----------------------------------------------------------------------------*/
/** \brief This function clears the PLL_LOCK flag.
*/
//void
//hal_clear_pll_lock_flag(void)
//{
// HAL_ENTER_CRITICAL_REGION();
// hal_pll_lock_flag = 0;
// HAL_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief This function reads data from one of the radio transceiver's registers.
*
* \param address Register address to read from. See datasheet for register
* map.
*
* \see Look at the at86rf230_registermap.h file for register address definitions.
*
* \returns The actual value of the read register.
*/
uint8_t
hal_register_read(uint8_t address)
{
/* Add the register read command to the register address. */
address &= HAL_TRX_CMD_RADDRM;
address |= HAL_TRX_CMD_RR;
uint8_t register_value = 0;
HAL_SPI_TRANSFER_OPEN();
/*Send Register address and read register content.*/
register_value = HAL_SPI_TRANSFER(address); // dummy read
register_value = HAL_SPI_TRANSFER(register_value); // dummy write
HAL_SPI_TRANSFER_CLOSE();
return register_value;
}
/*----------------------------------------------------------------------------*/
/** \brief This function writes a new value to one of the radio transceiver's
* registers.
*
* \see Look at the at86rf230_registermap.h file for register address definitions.
*
* \param address Address of register to write.
* \param value Value to write.
*/
void
hal_register_write(uint8_t address, uint8_t value)
{
/* Add the Register Write command to the address. */
address = HAL_TRX_CMD_RW | (HAL_TRX_CMD_RADDRM & address);
HAL_SPI_TRANSFER_OPEN();
/*Send Register address and write register content.*/
uint8_t dummy_read = HAL_SPI_TRANSFER(address);
dummy_read = HAL_SPI_TRANSFER(value);
HAL_SPI_TRANSFER_CLOSE();
}
/*----------------------------------------------------------------------------*/
/** \brief This function reads the value of a specific subregister.
*
* \see Look at the at86rf230_registermap.h file for register and subregister
* definitions.
*
* \param address Main register's address.
* \param mask Bit mask of the subregister.
* \param position Bit position of the subregister
* \retval Value of the read subregister.
*/
uint8_t
hal_subregister_read(uint8_t address, uint8_t mask, uint8_t position)
{
/* Read current register value and mask out subregister. */
uint8_t register_value = hal_register_read(address);
register_value &= mask;
register_value >>= position; /* Align subregister value. */
return register_value;
}
/*----------------------------------------------------------------------------*/
/** \brief This function writes a new value to one of the radio transceiver's
* subregisters.
*
* \see Look at the at86rf230_registermap.h file for register and subregister
* definitions.
*
* \param address Main register's address.
* \param mask Bit mask of the subregister.
* \param position Bit position of the subregister
* \param value Value to write into the subregister.
*/
void
hal_subregister_write(uint8_t address, uint8_t mask, uint8_t position,
uint8_t value)
{
/* Read current register value and mask area outside the subregister. */
uint8_t register_value = hal_register_read(address);
register_value &= ~mask;
/* Start preparing the new subregister value. shift in place and mask. */
value <<= position;
value &= mask;
value |= register_value; /* Set the new subregister value. */
/* Write the modified register value. */
hal_register_write(address, value);
}
/*----------------------------------------------------------------------------*/
/** \brief This function will upload a frame from the radio transceiver's frame
* buffer.
*
* If the frame currently available in the radio transceiver's frame buffer
* is out of the defined bounds. Then the frame length, lqi value and crc
* be set to zero. This is done to indicate an error.
* This version is optimized for use with contiki RF230BB driver.
* The callback routine and CRC are left out for speed in reading the rx buffrer .
*
* \param rx_frame Pointer to the data structure where the frame is stored.
* \param rx_callback Pointer to callback function for receiving one byte at a time.
*/
void
//hal_frame_read(hal_rx_frame_t *rx_frame, rx_callback_t rx_callback)
hal_frame_read(hal_rx_frame_t *rx_frame)
{
// uint8_t *rx_data=0;
uint8_t *rx_data;
/* check that we have either valid frame pointer or callback pointer */
// if (!rx_frame && !rx_callback)
// return;
HAL_SPI_TRANSFER_OPEN();
/*Send frame read command.*/
(void)HAL_SPI_TRANSFER(HAL_TRX_CMD_FR);
/*Read frame length.*/
uint8_t frame_length = HAL_SPI_TRANSFER(0);
/*Check for correct frame length.*/
if ((frame_length >= HAL_MIN_FRAME_LENGTH) && (frame_length <= HAL_MAX_FRAME_LENGTH)){
// uint16_t crc = 0;
// if (rx_frame){
rx_data = (rx_frame->data);
rx_frame->length = frame_length;
// } else {
// rx_callback(frame_length);
// }
/*Upload frame buffer to data pointer */
HAL_SPI_TRANSFER_WRITE(0);
HAL_SPI_TRANSFER_WAIT();
do{
*rx_data++ = HAL_SPI_TRANSFER_READ();
HAL_SPI_TRANSFER_WRITE(0);
// if (rx_frame){
// *rx_data++ = tempData;
// } else {
// rx_callback(tempData);
// }
/* RF230 does crc in hardware, doing the checksum here ensures the rx buffer has not been overwritten by the next packet */
/* Since doing the checksum makes such overwrites more probable, we skip it and hope for the best. */
/* A full buffer should be read in 320us at 2x spi clocking, so with a low interrupt latency overwrites should not occur */
// crc = _crc_ccitt_update(crc, tempData);
HAL_SPI_TRANSFER_WAIT();
} while (--frame_length > 0);
/*Read LQI value for this frame.*/
// if (rx_frame){
rx_frame->lqi = HAL_SPI_TRANSFER_READ();
// } else {
// rx_callback(HAL_SPI_TRANSFER_READ());
// }
/*Check calculated crc, and set crc field in hal_rx_frame_t accordingly.*/
// if (rx_frame){
rx_frame->crc = 1;
// } else {
// rx_callback(crc != HAL_CALCULATED_CRC_OK);
// }
} else {
// if (rx_frame){
rx_frame->length = 0;
rx_frame->lqi = 0;
rx_frame->crc = false;
// }
}
HAL_SPI_TRANSFER_CLOSE();
}
/*----------------------------------------------------------------------------*/
/** \brief This function will download a frame to the radio transceiver's frame
* buffer.
*
* \param write_buffer Pointer to data that is to be written to frame buffer.
* \param length Length of data. The maximum length is 127 bytes.
*/
void
hal_frame_write(uint8_t *write_buffer, uint8_t length)
{
length &= HAL_TRX_CMD_RADDRM; /* Truncate length to maximum frame length. */
HAL_SPI_TRANSFER_OPEN();
/*SEND FRAME WRITE COMMAND AND FRAME LENGTH.*/
uint8_t dummy_read = HAL_SPI_TRANSFER(HAL_TRX_CMD_FW);
dummy_read = HAL_SPI_TRANSFER(length);
/* Download to the Frame Buffer. */
do{
dummy_read = HAL_SPI_TRANSFER(*write_buffer++);
} while (--length > 0);
HAL_SPI_TRANSFER_CLOSE();
}
/*----------------------------------------------------------------------------*/
/** \brief Read SRAM
*
* This function reads from the SRAM of the radio transceiver.
*
* \param address Address in the TRX's SRAM where the read burst should start
* \param length Length of the read burst
* \param data Pointer to buffer where data is stored.
*/
//void
//hal_sram_read(uint8_t address, uint8_t length, uint8_t *data)
//{
// HAL_SPI_TRANSFER_OPEN();
/*Send SRAM read command.*/
// uint8_t dummy_read = HAL_SPI_TRANSFER(HAL_TRX_CMD_SR);
/*Send address where to start reading.*/
// dummy_read = HAL_SPI_TRANSFER(address);
/*Upload the chosen memory area.*/
// do{
// *data++ = HAL_SPI_TRANSFER(HAL_DUMMY_READ);
// } while (--length > 0);
// HAL_SPI_TRANSFER_CLOSE();
//}
/*----------------------------------------------------------------------------*/
/** \brief Write SRAM
*
* This function writes into the SRAM of the radio transceiver.
*
* \param address Address in the TRX's SRAM where the write burst should start
* \param length Length of the write burst
* \param data Pointer to an array of bytes that should be written
*/
//void
//hal_sram_write(uint8_t address, uint8_t length, uint8_t *data)
//{
// HAL_SPI_TRANSFER_OPEN();
/*Send SRAM write command.*/
// uint8_t dummy_read = HAL_SPI_TRANSFER(HAL_TRX_CMD_SW);
/*Send address where to start writing to.*/
// dummy_read = HAL_SPI_TRANSFER(address);
/*Upload the chosen memory area.*/
// do{
// dummy_read = HAL_SPI_TRANSFER(*data++);
// } while (--length > 0);
// HAL_SPI_TRANSFER_CLOSE();
//}
/*----------------------------------------------------------------------------*/
/* This #if compile switch is used to provide a "standard" function body for the */
/* doxygen documentation. */
#if defined(DOXYGEN)
/** \brief ISR for the radio IRQ line, triggered by the input capture.
* This is the interrupt service routine for timer1.ICIE1 input capture.
* It is triggered of a rising edge on the radio transceivers IRQ line.
*/
void RADIO_VECT(void);
#else /* !DOXYGEN */
/* These link to the RF230BB driver in rf230.c */
void rf230_interrupt(void);
extern hal_rx_frame_t rxframe;
/* rf230interruptflag can be printed in the main idle loop for debugging */
#define DEBUG 0
#if DEBUG
volatile char rf230interruptflag;
#define INTERRUPTDEBUG(arg) rf230interruptflag=arg
#else
#define INTERRUPTDEBUG(arg)
#endif
HAL_RF230_ISR()
{
/*The following code reads the current system time. This is done by first
reading the hal_system_time and then adding the 16 LSB directly from the
hardware counter.
*/
// uint32_t isr_timestamp = hal_system_time;
// isr_timestamp <<= 16;
// isr_timestamp |= HAL_TICK_UPCNT(); // TODO: what if this wraps after reading hal_system_time?
volatile uint8_t state;
uint8_t interrupt_source; /* used after HAL_SPI_TRANSFER_OPEN/CLOSE block */
INTERRUPTDEBUG(1);
/* Using SPI bus from ISR is generally a bad idea... */
/* Note: all IRQ are not always automatically disabled when running in ISR */
HAL_SPI_TRANSFER_OPEN();
/*Read Interrupt source.*/
/*Send Register address and read register content.*/
HAL_SPI_TRANSFER_WRITE(RG_IRQ_STATUS | HAL_TRX_CMD_RR);
/* This is the second part of the convertion of system time to a 16 us time
base. The division is moved here so we can spend less time waiting for SPI
data.
*/
// isr_timestamp /= HAL_US_PER_SYMBOL; /* Divide so that we get time in 16us resolution. */
// isr_timestamp &= HAL_SYMBOL_MASK;
HAL_SPI_TRANSFER_WAIT(); /* AFTER possible interleaved processing */
interrupt_source = HAL_SPI_TRANSFER_READ(); /* The interrupt variable is used as a dummy read. */
interrupt_source = HAL_SPI_TRANSFER(interrupt_source);
HAL_SPI_TRANSFER_CLOSE();
/*Handle the incomming interrupt. Prioritized.*/
if ((interrupt_source & HAL_RX_START_MASK)){
INTERRUPTDEBUG(10);
/* Save RSSI for this packet if not in extended mode, scaling to 1dB resolution */
#if !RF230_CONF_AUTOACK
#if 0 // 3-clock shift and add is faster on machines with no hardware multiply
rf230_last_rssi = hal_subregister_read(SR_RSSI);
rf230_last_rssi = (rf230_last_rssi <<1) + rf230_last_rssi;
#else // Faster with 1-clock multiply. Raven and Jackdaw have 2-clock multiply so same speed while saving 2 bytes of program memory
rf230_last_rssi = 3 * hal_subregister_read(SR_RSSI);
#endif
#endif
// if(rx_start_callback != NULL){
// /* Read Frame length and call rx_start callback. */
// HAL_SPI_TRANSFER_OPEN();
// uint8_t frame_length = HAL_SPI_TRANSFER(HAL_TRX_CMD_FR);
// frame_length = HAL_SPI_TRANSFER(frame_length);
// HAL_SPI_TRANSFER_CLOSE();
// rx_start_callback(isr_timestamp, frame_length);
// }
} else if (interrupt_source & HAL_TRX_END_MASK){
INTERRUPTDEBUG(11);
// if(trx_end_callback != NULL){
// trx_end_callback(isr_timestamp);
// }
state = hal_subregister_read(SR_TRX_STATUS);
if((state == BUSY_RX_AACK) || (state == RX_ON) || (state == BUSY_RX) || (state == RX_AACK_ON)){
/* Received packet interrupt */
/* Buffer the frame and call rf230_interrupt to schedule poll for rf230 receive process */
// if (rxframe.length) break; //toss packet if last one not processed yet
if (rxframe.length) INTERRUPTDEBUG(42); else INTERRUPTDEBUG(12);
#ifdef RF230_MIN_RX_POWER
/* Discard packets weaker than the minimum if defined. This is for testing miniature meshes.*/
/* Save the rssi for printing in the main loop */
#if RF230_CONF_AUTOACK
rf230_last_rssi=hal_subregister_read(SR_ED_LEVEL);
#endif
if (rf230_last_rssi >= RF230_MIN_RX_POWER) {
#endif
// hal_frame_read(&rxframe, NULL);
hal_frame_read(&rxframe);
rf230_interrupt();
// trx_end_callback(isr_timestamp);
#ifdef RF230_MIN_RX_POWER
}
#endif
#if 0
/* Enable reception of next packet */
#if RF230_CONF_AUTOACK
hal_subregister_write(SR_TRX_CMD, RX_AACK_ON);
#else
hal_subregister_write(SR_TRX_CMD, RX_ON);
#endif
#endif
}
} else if (interrupt_source & HAL_TRX_UR_MASK){
INTERRUPTDEBUG(13);
;
} else if (interrupt_source & HAL_PLL_UNLOCK_MASK){
INTERRUPTDEBUG(14);
;
} else if (interrupt_source & HAL_PLL_LOCK_MASK){
INTERRUPTDEBUG(15);
// hal_pll_lock_flag++;
;
} else if (interrupt_source & HAL_BAT_LOW_MASK){
/* Disable BAT_LOW interrupt to prevent endless interrupts. The interrupt */
/* will continously be asserted while the supply voltage is less than the */
/* user-defined voltage threshold. */
uint8_t trx_isr_mask = hal_register_read(RG_IRQ_MASK);
trx_isr_mask &= ~HAL_BAT_LOW_MASK;
hal_register_write(RG_IRQ_MASK, trx_isr_mask);
// hal_bat_low_flag++; /* Increment BAT_LOW flag. */
INTERRUPTDEBUG(16);
;
} else {
INTERRUPTDEBUG(99);
;
}
}
# endif /* defined(DOXYGEN) */
/*----------------------------------------------------------------------------*/
/* This #if compile switch is used to provide a "standard" function body for the */
/* doxygen documentation. */
#if defined(DOXYGEN)
/** \brief Timer Overflow ISR
* This is the interrupt service routine for timer1 overflow.
*/
void TIMER1_OVF_vect(void);
#else /* !DOXYGEN */
HAL_TIME_ISR()
{
hal_system_time++;
}
#endif
/** @} */
/** @} */
/*EOF*/