mirror of
https://github.com/oliverschmidt/contiki.git
synced 2025-01-22 14:30:11 +00:00
12ea1bd492
Signed-off-by: Benoît Thébaudeau <benoit@wsystem.com>
525 lines
21 KiB
C
525 lines
21 KiB
C
/*
|
|
* Copyright (c) 2016, Zolertia
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/**
|
|
* \addtogroup zoul-platforms
|
|
* @{
|
|
*
|
|
* \defgroup remote-revb RE-Mote platform revision B
|
|
*
|
|
* The RE-Mote was designed jointly with universities and industry partners in
|
|
* RERUM European project, to ease the development of private and secure
|
|
* applications for IoT and Smart City applications. The RE-Mote packs several
|
|
* on-board resources, like a RTC, external WDT, Micro-SD, RF switch and a
|
|
* Shutdown mode to reduce its power consumption down to 150nA.
|
|
*
|
|
* This file provides connectivity information on LEDs, Buttons, UART and
|
|
* other RE-Mote revision A peripherals
|
|
*
|
|
* This file can be used as the basis to configure other platforms using the
|
|
* cc2538 SoC.
|
|
* @{
|
|
*
|
|
* \file
|
|
* Header file with definitions related to the I/O connections on the Zolertia's
|
|
* RE-Mote platform (revision B), cc2538-based
|
|
*
|
|
* \note Do not include this file directly. It gets included by contiki-conf
|
|
* after all relevant directives have been set.
|
|
*/
|
|
#ifndef BOARD_H_
|
|
#define BOARD_H_
|
|
|
|
#include "dev/gpio.h"
|
|
#include "dev/nvic.h"
|
|
/*---------------------------------------------------------------------------*/
|
|
/** \name Connector headers
|
|
*
|
|
* The RE-Mote features two 2.54 mm header rows over which exposes the following
|
|
* pins (facing up, Zolertia/RERUM logo above, buttons and micro USB at bottom):
|
|
* ----------------------+---+---+---------------------------------------------
|
|
* PIN_NAME |JP6|JP5| PIN_NAME
|
|
* ----------------------+---+---+---------------------------------------------
|
|
* LED1.R/PD4 |-01|17-| PB2/SPIO0.SCLK/CC1200.SCLK
|
|
* LED2.G/JTAG.TDO/PB7 |-02|16-| PB1/SPIO0.MOSI/CC1200.MOSI
|
|
* LED3.B/JTAG.TDI/PB6 |-03|15-| PB3/SPIO0.MISO/CC1200.MISO
|
|
* UART0.RX/PA0 |-04|14-| PA7/AIN7/USD.CS|ADC5
|
|
* UART0.TX/PA1 |-05|13-| DGND
|
|
* PD0 |-06|12-| D+3.3
|
|
* I2C.SDA/PC2 |-07|11-| PA5/AIN5/ADC1
|
|
* I2C.SCL/PC3 |-08|10-| PA4/AIN4/ADC2
|
|
* DGND |-09|09-| DGND
|
|
* D+3.3 |-10|08-| D+5.0
|
|
* CC1200.GPIO0/PB4 |-11|07-| PA2/AIN2/ADC3
|
|
* CC1200.GPIO2/PB0 |-12|06-| PA6/AIN6/USD.SEL|ADC4
|
|
* UART1.RX/PC1 |-13|05-| PC6/SPI1.MISO
|
|
* UART1.TX/PC0 |-14|04-| PC5/SPI1.MOSI
|
|
* DGND |-15|03-| PC4/SPI1.SCLK
|
|
* D+3.3 |-16|02-| PS+EXT/VIN
|
|
* CC1200.CS/PB5 |-17|01-| DGND
|
|
* ----------------------+---+---+---------------------------------------------
|
|
*
|
|
* Two auxiliary connectors allow to connect an external LiPo battery and
|
|
* access to the RESET/user buttons:
|
|
*
|
|
* - JP4 (placed below JP6 connector): |1-| DGND, |2-| VBAT
|
|
* - JP9 (placed above JP5 connector): |1-| BUTTON.RESET, |2-| BUTTON.USER|ADC6
|
|
*/
|
|
/*---------------------------------------------------------------------------*/
|
|
/** \name RE-Mote LED configuration
|
|
*
|
|
* LEDs on the RE-Mote are exposed in the JP6 port as follows:
|
|
* - LED1 (Red) -> PD4
|
|
* - LED2 (Green) -> PB7 (shared with JTAG.TDO)
|
|
* - LED3 (Blue) -> PB6 (shared with JTAG.TDI)
|
|
*
|
|
* The LEDs are connected to a MOSFET to minimize current draw. The LEDs can
|
|
* be disabled by removing resistors R12, R13 and R14.
|
|
* @{
|
|
*/
|
|
/*---------------------------------------------------------------------------*/
|
|
#undef LEDS_GREEN
|
|
#undef LEDS_YELLOW
|
|
#undef LEDS_BLUE
|
|
#undef LEDS_RED
|
|
#undef LEDS_CONF_ALL
|
|
|
|
#define LEDS_RED 1 /**< LED1 (Red) -> PD4 */
|
|
#define LEDS_RED_PIN_MASK (1 << 4)
|
|
#define LEDS_RED_PORT_BASE GPIO_D_BASE
|
|
|
|
#define LEDS_GREEN 2 /**< LED2 (Green) -> PB7 */
|
|
#define LEDS_GREEN_PIN_MASK (1 << 7)
|
|
#define LEDS_GREEN_PORT_BASE GPIO_B_BASE
|
|
|
|
#define LEDS_BLUE 4 /**< LED3 (Blue) -> PB6 */
|
|
#define LEDS_BLUE_PIN_MASK (1 << 6)
|
|
#define LEDS_BLUE_PORT_BASE GPIO_B_BASE
|
|
|
|
#define LEDS_CONF_ALL (LEDS_GREEN | LEDS_BLUE | LEDS_RED) /* 7 */
|
|
#define LEDS_LIGHT_BLUE (LEDS_GREEN | LEDS_BLUE) /* 6 */
|
|
#define LEDS_YELLOW (LEDS_GREEN | LEDS_RED) /* 3 */
|
|
#define LEDS_PURPLE (LEDS_BLUE | LEDS_RED) /* 5 */
|
|
#define LEDS_WHITE LEDS_ALL /* 7 */
|
|
|
|
/* Notify various examples that we have LEDs */
|
|
#define PLATFORM_HAS_LEDS 1
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/** \name USB configuration
|
|
*
|
|
* The USB pullup is enabled by an external resistor, not mapped to a GPIO
|
|
*/
|
|
#ifdef USB_PULLUP_PORT
|
|
#undef USB_PULLUP_PORT
|
|
#endif
|
|
#ifdef USB_PULLUP_PIN
|
|
#undef USB_PULLUP_PIN
|
|
#endif
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/** \name UART configuration
|
|
*
|
|
* On the RE-Mote, the UARTs are connected to the following ports/pins:
|
|
*
|
|
* - UART0:
|
|
* - RX: PA0, connected to CP2104 serial-to-usb converter TX pin
|
|
* - TX: PA1, connected to CP2104 serial-to-usb converter RX pin
|
|
* - UART1:
|
|
* - RX: PC1
|
|
* - TX: PC0
|
|
* - CTS: disabled as default, PD0 may be assigned if not using I2C interrupts
|
|
* - RTS: disabled as default
|
|
*
|
|
* We configure the port to use UART0 and UART1, CTS/RTS only for UART1,
|
|
* both without a HW pull-up resistor
|
|
* UART0 and UART1 pins are exposed over the JP6 connector
|
|
* @{
|
|
*/
|
|
#define UART0_RX_PORT GPIO_A_NUM
|
|
#define UART0_RX_PIN 0
|
|
#define UART0_TX_PORT GPIO_A_NUM
|
|
#define UART0_TX_PIN 1
|
|
|
|
#define UART1_RX_PORT GPIO_C_NUM
|
|
#define UART1_RX_PIN 1
|
|
#define UART1_TX_PORT GPIO_C_NUM
|
|
#define UART1_TX_PIN 0
|
|
#define UART1_CTS_PORT (-1)
|
|
#define UART1_CTS_PIN (-1)
|
|
#define UART1_RTS_PORT (-1)
|
|
#define UART1_RTS_PIN (-1)
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \name ADC configuration
|
|
*
|
|
* These values configure which CC2538 pins and ADC channels to use for the ADC
|
|
* inputs. By default the RE-Mote allows two out-of-the-box ADC ports with a
|
|
* phidget-like 3-pin connector (GND/VDD/ADC)
|
|
*
|
|
* The RE-Mote allows both 3.3V and 5V analogue sensors as follow:
|
|
*
|
|
* - ADC1 (PA5): up to 3.3V.
|
|
* - ADC2 (PA4): up to 3.3V
|
|
* - ADC3 (PA2): up to 5V, by means of a 2/3 voltage divider.
|
|
*
|
|
* Also there are other ADC channels shared by default with Micro SD card and
|
|
* user button implementations:
|
|
*
|
|
* - ADC4 (PA6): up to 3.3V.
|
|
* - ADC5 (PA7): up to 3.3V.
|
|
* - ADC6 (PA3): up to 3.3V.
|
|
*
|
|
* ADC inputs can only be on port A.
|
|
* All ADCx are exposed in JP5 connector, but only ADC1 and ADC3 have GND and
|
|
* VDD (3/5V) pins next to it, so these can be exposed into a 3-pin phidget-like
|
|
* connector, for ADC2 either solder a wire to connect, or use a 4-pin connector
|
|
* to expose both ADC1 and ADC2 in a single connector, but this will leave no
|
|
* space for a ADC3 connector.
|
|
*
|
|
* The internal ADC reference is 1190mV, use either a voltage divider as input,
|
|
* or a different voltage reference, like AVDD5, or externally using PA7/AIN7
|
|
* and PA6/AIN6 configurable as differential reference, by removing the R26 and
|
|
* R33 0Ohm resistors to disconnect off the Micro-SD, and those will be
|
|
* accessible from JP5 connector.
|
|
*
|
|
* To enable the ADC[2,4-6], remove any 0Ohm resistors if required (see above),
|
|
* and define in your application `ADC_SENSORS_CONF_ADCx_PIN` and set its
|
|
* value with the corresponding pin number (i.e ADC2 to 4 as mapped to PA4).
|
|
* To disable any ADC[1-6] just define as above, but set to (-1) instead.
|
|
|
|
* Warning: if using ADC6 (PA3), you will need to disable the bootloader by
|
|
* making FLASH_CCA_CONF_BOOTLDR_BACKDOOR equal to zero
|
|
*
|
|
* @{
|
|
*/
|
|
#define ADC_SENSORS_PORT GPIO_A_NUM /**< ADC GPIO control port */
|
|
|
|
#ifndef ADC_SENSORS_CONF_ADC1_PIN
|
|
#define ADC_SENSORS_ADC1_PIN 5 /**< ADC1 to PA5, 3V3 */
|
|
#else
|
|
#if ((ADC_SENSORS_CONF_ADC1_PIN != -1) && (ADC_SENSORS_CONF_ADC1_PIN != 5))
|
|
#error "ADC1 channel should be mapped to PA5 or disabled with -1"
|
|
#else
|
|
#define ADC_SENSORS_ADC1_PIN ADC_SENSORS_CONF_ADC1_PIN
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef ADC_SENSORS_CONF_ADC3_PIN
|
|
#define ADC_SENSORS_ADC3_PIN 2 /**< ADC3 to PA2, 5V */
|
|
#else
|
|
#if ((ADC_SENSORS_CONF_ADC3_PIN != -1) && (ADC_SENSORS_CONF_ADC3_PIN != 2))
|
|
#error "ADC3 channel should be mapped to PA2 or disabled with -1"
|
|
#else
|
|
#define ADC_SENSORS_ADC3_PIN ADC_SENSORS_CONF_ADC3_PIN
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef ADC_SENSORS_CONF_ADC2_PIN
|
|
#define ADC_SENSORS_ADC2_PIN (-1) /**< ADC2 no declared */
|
|
#else
|
|
#define ADC_SENSORS_ADC2_PIN 4 /**< Hard-coded to PA4 */
|
|
#endif
|
|
|
|
#ifndef ADC_SENSORS_CONF_ADC4_PIN
|
|
#define ADC_SENSORS_ADC4_PIN (-1) /**< ADC4 not declared */
|
|
#else
|
|
#define ADC_SENSORS_ADC4_PIN 6 /**< Hard-coded to PA6 */
|
|
#endif
|
|
|
|
#ifndef ADC_SENSORS_CONF_ADC5_PIN
|
|
#define ADC_SENSORS_ADC5_PIN (-1) /**< ADC5 not declared */
|
|
#else
|
|
#define ADC_SENSORS_ADC5_PIN 7 /**< Hard-coded to PA7 */
|
|
#endif
|
|
|
|
#ifndef ADC_SENSORS_CONF_ADC6_PIN
|
|
#define ADC_SENSORS_ADC6_PIN (-1) /**< ADC6 not declared */
|
|
#else
|
|
#define ADC_SENSORS_ADC6_PIN 3 /**< Hard-coded to PA3 */
|
|
#endif
|
|
|
|
#ifndef ADC_SENSORS_CONF_MAX
|
|
#define ADC_SENSORS_MAX 2 /**< Maximum sensors */
|
|
#else
|
|
#define ADC_SENSORS_MAX ADC_SENSORS_CONF_MAX
|
|
#endif
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/** \name RE-Mote Button configuration
|
|
*
|
|
* Buttons on the RE-Mote are connected as follows:
|
|
* - BUTTON_USER -> PA3, S1 user button, shared with bootloader
|
|
* - BUTTON_RESET -> RESET_N line, S2 reset the CC2538
|
|
* - BUTTON_PWR -> Depending on the enabled resistor, it can be used to reset
|
|
* the onboard Low-power PIC, provoking a master reset on all
|
|
* the RE-Mote's onboards components. Note the BUTTON_RESET
|
|
* only resets the CC2538. This is disabled by default, as
|
|
* the R45 0Ohm resistor is not soldered on that position
|
|
* The other R45 position enables a test-button to drive the
|
|
* SYSOFF pin of the power management block, disconnecting the
|
|
* battery when used, leaving only powered the RTCC and
|
|
* Low-Power PIC. Useful if developing applications using the
|
|
* shutdown mode if required to snap out of it.
|
|
* @{
|
|
*/
|
|
#define BUTTON_USER_PORT GPIO_A_NUM
|
|
#define BUTTON_USER_PIN 3
|
|
#define BUTTON_USER_VECTOR GPIO_A_IRQn
|
|
|
|
/* Notify various examples that we have an user button.
|
|
* If ADC6 channel is used, then disable the user button
|
|
*/
|
|
#ifdef PLATFORM_CONF_WITH_BUTTON
|
|
#if (PLATFORM_CONF_WITH_BUTTON && (ADC_SENSORS_ADC6_PIN == 3))
|
|
#error "The ADC6 (PA3) and user button cannot be enabled at the same time"
|
|
#else
|
|
#define PLATFORM_HAS_BUTTON (PLATFORM_CONF_WITH_BUTTON && \
|
|
!(ADC_SENSORS_ADC6_PIN == 3))
|
|
#endif /* (PLATFORM_CONF_WITH_BUTTON && (ADC_SENSORS_ADC6_PIN == 3)) */
|
|
#else
|
|
#define PLATFORM_HAS_BUTTON !(ADC_SENSORS_ADC6_PIN == 3)
|
|
#endif /* PLATFORM_CONF_WITH_BUTTON */
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \name SPI (SSI0) configuration
|
|
*
|
|
* These values configure which CC2538 pins to use for the SPI (SSI0) lines,
|
|
* reserved exclusively for the CC1200 RF transceiver. These pins are not
|
|
* exposed to any connector, and should be avoid to use it.
|
|
* TX -> MOSI, RX -> MISO
|
|
* @{
|
|
*/
|
|
#define SPI0_CLK_PORT GPIO_B_NUM
|
|
#define SPI0_CLK_PIN 2
|
|
#define SPI0_TX_PORT GPIO_B_NUM
|
|
#define SPI0_TX_PIN 1
|
|
#define SPI0_RX_PORT GPIO_B_NUM
|
|
#define SPI0_RX_PIN 3
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \name SPI (SSI1) configuration
|
|
*
|
|
* These values configure which CC2538 pins to use for the SPI (SSI1) lines,
|
|
* shared with the microSD and exposed over JP5 connector.
|
|
* TX -> MOSI, RX -> MISO
|
|
* @{
|
|
*/
|
|
#define SPI1_CLK_PORT GPIO_C_NUM
|
|
#define SPI1_CLK_PIN 4
|
|
#define SPI1_TX_PORT GPIO_C_NUM
|
|
#define SPI1_TX_PIN 5
|
|
#define SPI1_RX_PORT GPIO_C_NUM
|
|
#define SPI1_RX_PIN 6
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \name I2C configuration
|
|
*
|
|
* These values configure which CC2538 pins to use for the I2C lines, exposed
|
|
* over JP6 connector.
|
|
* The I2C bus is shared with the on-board RTC and the Low-Power PIC
|
|
* The I2C is exposed over the JP6 header, using a 5-pin connector with 2.54 mm
|
|
* spacing, providing also D+3.3V, GND and PD0 pin that can be used as an
|
|
* interrupt pin if required
|
|
* @{
|
|
*/
|
|
#define I2C_SCL_PORT GPIO_C_NUM
|
|
#define I2C_SCL_PIN 3
|
|
#define I2C_SDA_PORT GPIO_C_NUM
|
|
#define I2C_SDA_PIN 2
|
|
#define I2C_INT_PORT GPIO_D_NUM
|
|
#define I2C_INT_PIN 0
|
|
#define I2C_INT_VECTOR GPIO_D_IRQn
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \name Antenna switch configuration
|
|
*
|
|
* These values configure the required pin to drive the RF antenna switch, to
|
|
* either enable the sub-1Ghz RF interface (power-up the CC1200) or the 2.4GHz
|
|
* RF interface of the CC2538, both alternatively routed to a RP-SMA connector
|
|
* to allow using an external antenna for both cases.
|
|
*
|
|
* Note it is also possible to enable both RF interfaces at the same time, by
|
|
* switching On the sub-1GHz RF interface, and placing an 0Ohm resistor (R19),
|
|
* to select between using a ceramic chip antenna (not mounted), or to connect
|
|
* and external antenna over a pigtail to the U.Fl connector (not mounted).
|
|
*
|
|
* RF switch state:
|
|
* - LOW: 2.4GHz RF interface on RP-SMA connector, CC1200 powered-off.
|
|
* - HIGH: Sub-1GHz RF interface on RP-SMA connector.
|
|
* @{
|
|
*/
|
|
#define ANTENNA_RF_SW_PORT GPIO_D_NUM
|
|
#define ANTENNA_RF_SW_PIN 2
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \name Dual RF interface support
|
|
*
|
|
* Enables support for dual band operation (both CC1200 and 2.4GHz enabled).
|
|
* The driver checks the selected Radio stack, and forces the antenna switch to
|
|
* either position. Enabling the definition below forces to skip this check.
|
|
* @{
|
|
*/
|
|
#define REMOTE_DUAL_RF_ENABLED 0
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \name CC1200 configuration
|
|
*
|
|
* These values configure the required pins to drive the CC1200
|
|
* None of the following pins are exposed to any connector, kept for internal
|
|
* use only
|
|
* @{
|
|
*/
|
|
#define CC1200_SPI_INSTANCE 0
|
|
#define CC1200_SPI_SCLK_PORT SPI0_CLK_PORT
|
|
#define CC1200_SPI_SCLK_PIN SPI0_CLK_PIN
|
|
#define CC1200_SPI_MOSI_PORT SPI0_TX_PORT
|
|
#define CC1200_SPI_MOSI_PIN SPI0_TX_PIN
|
|
#define CC1200_SPI_MISO_PORT SPI0_RX_PORT
|
|
#define CC1200_SPI_MISO_PIN SPI0_RX_PIN
|
|
#define CC1200_SPI_CSN_PORT GPIO_B_NUM
|
|
#define CC1200_SPI_CSN_PIN 5
|
|
#define CC1200_GDO0_PORT GPIO_B_NUM
|
|
#define CC1200_GDO0_PIN 4
|
|
#define CC1200_GDO2_PORT GPIO_B_NUM
|
|
#define CC1200_GDO2_PIN 0
|
|
#define CC1200_RESET_PORT GPIO_C_NUM
|
|
#define CC1200_RESET_PIN 7
|
|
#define CC1200_GPIOx_VECTOR GPIO_B_IRQn
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \name microSD configuration
|
|
*
|
|
* These values configure the required pins to drive the built-in microSD
|
|
* external module, to be used with SSI1. USD_CSN and USD_SEL are shared with
|
|
* ADC4/ADC5, but it is disabled by default as there are 0Ohm resistors
|
|
* connecting the PA6/PA7 pins to the microSD (see ADC block above for comments)
|
|
* The USD_SEL pin can be used both as output and input, to detect if there is
|
|
* a microSD in the slot, or when connected to disable the microSD to save power
|
|
* @{
|
|
*/
|
|
#define USD_SPI_INSTANCE 1
|
|
#define USD_CLK_PORT SPI1_CLK_PORT
|
|
#define USD_CLK_PIN SPI1_CLK_PIN
|
|
#define USD_MOSI_PORT SPI1_TX_PORT
|
|
#define USD_MOSI_PIN SPI1_TX_PIN
|
|
#define USD_MISO_PORT SPI1_RX_PORT
|
|
#define USD_MISO_PIN SPI1_RX_PIN
|
|
#define USD_CSN_PORT GPIO_A_NUM
|
|
#define USD_CSN_PIN 7
|
|
#define USD_SEL_PORT GPIO_A_NUM
|
|
#define USD_SEL_PIN 6
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \name Power management and shutdown mode
|
|
*
|
|
* The shutdown mode is an ultra-low power operation mode that effectively
|
|
* powers-down the entire RE-Mote (CC2538, CC1200, attached sensors, etc) and
|
|
* only keeps running a the on-board RTC and an ultra-low power consumption MCU
|
|
* The Shutdown mode allows:
|
|
*
|
|
* - Put the board in an ultra-low power sleep (shutdown) drawing <150nA avg.
|
|
* - Awake the system by scheduling the RTCC to awake the Low-Power PIC after
|
|
* it disconnects the battery and goes to sleep mode.
|
|
* - Awake the system by using the Low-Power PIC's timer
|
|
*
|
|
* As commented above, S3 can be used to restart the entire board (power
|
|
* management block included), or to kick the board out of shutdown mode by
|
|
* reconnecting the battery.
|
|
* @{
|
|
*/
|
|
#define PM_ENABLE_PORT GPIO_D_NUM
|
|
#define PM_ENABLE_PIN 1
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \name On-board RTCC
|
|
*
|
|
* The on-board RTCC (real time clock-calendar) is powered over USB/battery,
|
|
* and it will remain powered in shutdown mode with the Low-Power PIC. The
|
|
* RTC_INT1 is connected to the CC2538, so it is possible to receive interrupts
|
|
* from a pre-configured alarm, even waking up the CC2538 from PM3.
|
|
* A second interruption pin (RTC_INT2) is connected to the Low-Power PIC, after
|
|
* configuring the RTCC the Low-Power PIC can drive the board to shutdown mode,
|
|
* and enter into low-power mode (sleep), being the RTCC interrupt the waking up
|
|
* source to resume operation.
|
|
*
|
|
* @{
|
|
*/
|
|
#define PLATFORM_HAS_RTC 1
|
|
#define RTC_SDA_PORT I2C_SDA_PORT
|
|
#define RTC_SDA_PIN I2C_SDA_PIN
|
|
#define RTC_SCL_PORT I2C_SCL_PORT
|
|
#define RTC_SCL_PIN I2C_SCL_PIN
|
|
#define RTC_INT1_PORT GPIO_D_NUM
|
|
#define RTC_INT1_PIN 3
|
|
#define RTC_INT1_VECTOR GPIO_D_IRQn
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \name On-board external WDT
|
|
* The RE-Mote features an on-board external WDT and battery monitor, which
|
|
* adds more robustness and prevents the mote to run wild if any unexpected
|
|
* problem shows-up.
|
|
* The external WDT requires a short pulse (<1ms) to be sent before a 2-second
|
|
* period. The battery monitor keeps the device in Reset if the voltage input
|
|
* is lower than 2.5V.
|
|
* The external WDT can be disabled by removing the R34 0Ohm resistor.
|
|
* As default the Texas Instrument's TPS3823 WDT is not mounted.
|
|
* Alternatively the testpoint or unused WDT's pad can be used to re-use as GPIO
|
|
* @{
|
|
*/
|
|
#define EXT_WDT_PORT GPIO_D_NUM
|
|
#define EXT_WDT_PIN 5
|
|
/** @} */
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* \name Device string used on startup
|
|
* @{
|
|
*/
|
|
#define BOARD_STRING "Zolertia RE-Mote revision B platform"
|
|
/** @} */
|
|
|
|
#endif /* BOARD_H_ */
|
|
|
|
/**
|
|
* @}
|
|
* @}
|
|
*/
|