contiki/tests/flasher.c
2009-05-09 14:55:48 -04:00

284 lines
6.4 KiB
C

#define GPIO_FUNC_SEL0 0x80000018 /* GPIO 15 - 0; 2 bit blocks */
#define BASE_UART1 0x80005000
#define UART1_CON 0x80005000
#define UART1_STAT 0x80005004
#define UART1_DATA 0x80005008
#define UR1CON 0x8000500c
#define UT1CON 0x80005010
#define UART1_CTS 0x80005014
#define UART1_BR 0x80005018
#define GPIO_PAD_DIR0 0x80000000
#define GPIO_DATA0 0x80000008
#include "embedded_types.h"
#include "nvm.h"
#include "maca.h"
#define reg(x) (*(volatile uint32_t *)(x))
#define DELAY 400000
#define DEBUG 1
#if DEBUG
#define dbg_putc(...) putc(__VA_ARGS__)
#define dbg_puts(...) puts(__VA_ARGS__)
#define dbg_put_hex(...) put_hex(__VA_ARGS__)
#define dbg_put_hex16(...) put_hex16(__VA_ARGS__)
#define dbg_put_hex32(...) put_hex32(__VA_ARGS__)
#else
#define dbg_putc(...)
#define dbg_puts(...)
#define dbg_put_hex(...)
#define dbg_put_hex16(...)
#define dbg_put_hex32(...)
#endif
const uint8_t hex[16]={'0','1','2','3','4','5','6','7',
'8','9','a','b','c','d','e','f'};
uint8_t getc(void);
void flushrx(void);
uint32_t to_u32(char *c);
#include "isr.h"
#define NBYTES 16
enum parse_states {
SCAN_X,
READ_CHARS,
PROCESS,
MAX_STATE,
};
__attribute__ ((section ("startup")))
void main(void) {
nvmType_t type=0;
nvmErr_t err;
volatile uint8_t c;
volatile uint32_t buf[NBYTES/4];
volatile uint32_t i;
volatile uint32_t len=0;
volatile uint32_t state = SCAN_X;
volatile uint32_t addr,data;
*(volatile uint32_t *)GPIO_PAD_DIR0 = 0x00000100;
/* Restore UART regs. to default */
/* in case there is still bootloader state leftover */
reg(UART1_CON) = 0x0000c800; /* mask interrupts, 16 bit sample --- helps explain the baud rate */
/* INC = 767; MOD = 9999 works: 115200 @ 24 MHz 16 bit sample */
#define INC 767
#define MOD 9999
reg(UART1_BR) = INC<<16 | MOD;
/* see Section 11.5.1.2 Alternate Modes */
/* you must enable the peripheral first BEFORE setting the function in GPIO_FUNC_SEL */
/* From the datasheet: "The peripheral function will control operation of the pad IF */
/* THE PERIPHERAL IS ENABLED. */
reg(UART1_CON) = 0x00000003; /* enable receive and transmit */
reg(GPIO_FUNC_SEL0) = ( (0x01 << (14*2)) | (0x01 << (15*2)) ); /* set GPIO15-14 to UART (UART1 TX and RX)*/
vreg_init();
// puts("CRM status: 0x");
// put_hex32(reg(0x80003018));
// puts("\n\r");
// puts("Detecting internal nvm\n\r");
err = nvm_detect(gNvmInternalInterface_c, &type);
/*
puts("nvm_detect returned: 0x");
put_hex(err);
puts(" type is: 0x");
put_hex32(type);
puts("\n\r");
*/
/* erase the flash */
// err = nvm_erase(gNvmInternalInterface_c, type, 0x4fffffff);
err = nvm_erase(gNvmInternalInterface_c, 1, 0x4fffffff);
/*
puts("nvm_erase returned: 0x");
put_hex(err);
puts("\n\r");
*/
/* say we are ready */
len = 0;
puts("ready");
flushrx();
/* read the length */
for(i=0; i<4; i++) {
c = getc();
/* bail if the first byte of the length is zero */
len += (c<<(i*8));
}
// puts("len: ");
// put_hex32(len);
// puts("\n\r");
/* write the OKOK magic */
((uint8_t *)buf)[0] = 'O'; ((uint8_t *)buf)[1] = 'K'; ((uint8_t *)buf)[2] = 'O'; ((uint8_t *)buf)[3] = 'K';
// ((uint8_t *)buf)[3] = 'x';
// err = nvm_write(gNvmInternalInterface_c, type, (uint8_t *)buf, 0, 4);
err = nvm_write(gNvmInternalInterface_c, 1, (uint8_t *)buf, 0, 4);
// puts("nvm_write returned: 0x");
// put_hex(err);
// puts("\n\r");
/* write the length */
err = nvm_write(gNvmInternalInterface_c, 1, (uint8_t *)&len, 4, 4);
/* read a byte, write a byte */
/* byte at a time will make this work as a contiki process better */
/* for OTAP */
for(i=0; i<len; i++) {
c = getc();
// put_hex(c);
// puts(": ");
// err = nvm_write(gNvmInternalInterface_c, type, &c, 4+i, 1);
err = nvm_write(gNvmInternalInterface_c, 1, &c, 8+i, 1);
// if(err==0) { putc('.'); } else { putc('x'); }
// puts("nvm_write returned: 0x");
// put_hex(err);
// puts("\n\r");
}
puts("flasher done\n\r");
state = SCAN_X; addr=0;
while((c=getc())) {
if(state == SCAN_X) {
/* read until we see an 'x' */
if(c==0) { break; }
if(c!='x'){ continue; }
/* go to read_chars once we have an 'x' */
state = READ_CHARS;
i = 0;
}
if(state == READ_CHARS) {
/* read all the chars up to a ',' */
((uint8_t *)buf)[i++] = c;
/* after reading a ',' */
/* goto PROCESS state */
if((c == ',') || (c == 0)) { state = PROCESS; }
}
if(state == PROCESS) {
if(addr==0) {
/*interpret the string as the starting address */
addr = to_u32((uint8_t *)buf);
} else {
/* string is data to write */
data = to_u32((uint8_t *)buf);
puts("writing addr ");
put_hex32(addr);
puts(" data ");
put_hex32(data);
puts("\n\r");
err = nvm_write(gNvmInternalInterface_c, 1, (uint8_t *)&data, addr, 4);
addr += 4;
}
/* look for the next 'x' */
state=SCAN_X;
}
}
while(1) {continue;};
}
void flushrx(void)
{
volatile uint8_t c;
while(reg(UR1CON) !=0) {
c = reg(UART1_DATA);
}
}
/* Convert from ASCII hex. Returns
the value, or 16 if it was space/newline, or
32 if some other character. */
uint8_t from_hex(uint8_t ch)
{
if(ch==' ' || ch=='\r' || ch=='\n')
return 16;
if(ch < '0')
goto bad;
if(ch <= '9')
return ch - '0';
ch |= 0x20;
if(ch < 'a')
goto bad;
if(ch <= 'f')
return ch - 'a' + 10;
bad:
return 32;
}
uint32_t to_u32(char *c)
{
volatile uint32_t ret=0;
volatile uint32_t i,val;
/* c should be /x\d+,/ */
i=1; /* skip x */
while(c[i] != ',') {
ret = ret<<4;
val = from_hex(c[i++]);
ret += val;
}
return ret;
}
uint8_t getc(void)
{
volatile uint8_t c;
while(reg(UR1CON) == 0);
c = reg(UART1_DATA);
return c;
}
void putc(uint8_t c) {
while(reg(UT1CON)==31); /* wait for there to be room in the buffer */
reg(UART1_DATA) = c;
}
void puts(uint8_t *s) {
while(s && *s!=0) {
putc(*s++);
}
}
void put_hex(uint8_t x)
{
putc(hex[x >> 4]);
putc(hex[x & 15]);
}
void put_hex16(uint16_t x)
{
put_hex((x >> 8) & 0xFF);
put_hex((x) & 0xFF);
}
void put_hex32(uint32_t x)
{
put_hex((x >> 24) & 0xFF);
put_hex((x >> 16) & 0xFF);
put_hex((x >> 8) & 0xFF);
put_hex((x) & 0xFF);
}