2010-02-18 17:20:50 +00:00

776 lines
25 KiB
C

/* Copyright (c) 2009, Swedish Institute of Computer Science
* All rights reserved.
*
* Additional fixes for AVR contributed by:
*
* Colin O'Flynn coflynn@newae.com
* Eric Gnoske egnoske@gmail.com
* Blake Leverett bleverett@gmail.com
* Mike Vidales mavida404@gmail.com
* Kevin Brown kbrown3@uccs.edu
* Nate Bohlmann nate@elfwerks.com
* David Kopf dak664@embarqmail.com
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
*/
/**
* \addtogroup wireless
* @{
*/
/**
* \defgroup hal RF230 hardware level drivers
* @{
*/
/**
* \file
* This file contains low-level radio driver code.
* This version is optimized for use with the "barebones" RF230bb driver,
* which communicates directly with the contiki core MAC layer.
*/
/*============================ INCLUDE =======================================*/
#include <stdlib.h>
#include "hal.h"
#include "at86rf230_registermap.h"
/*============================ MACROS ========================================*/
/*
* Macros defined for the radio transceiver's access modes.
*
* These functions are implemented as macros since they are used very often.
*/
#define HAL_DUMMY_READ (0x00) /**< Dummy value for the SPI. */
#define HAL_TRX_CMD_RW (0xC0) /**< Register Write (short mode). */
#define HAL_TRX_CMD_RR (0x80) /**< Register Read (short mode). */
#define HAL_TRX_CMD_FW (0x60) /**< Frame Transmit Mode (long mode). */
#define HAL_TRX_CMD_FR (0x20) /**< Frame Receive Mode (long mode). */
#define HAL_TRX_CMD_SW (0x40) /**< SRAM Write. */
#define HAL_TRX_CMD_SR (0x00) /**< SRAM Read. */
#define HAL_TRX_CMD_RADDRM (0x7F) /**< Register Address Mask. */
#define HAL_CALCULATED_CRC_OK (0) /**< CRC calculated over the frame including the CRC field should be 0. */
/*============================ TYPDEFS =======================================*/
/*============================ VARIABLES =====================================*/
/** \brief This is a file internal variable that contains the 16 MSB of the
* system time.
*
* The system time (32-bit) is the current time in microseconds. For the
* AVR microcontroller implementation this is solved by using a 16-bit
* timer (Timer1) with a clock frequency of 1MHz. The hal_system_time is
* incremented when the 16-bit timer overflows, representing the 16 MSB.
* The timer value it self (TCNT1) is then the 16 LSB.
*
* \see hal_get_system_time
*/
static uint16_t hal_system_time = 0;
/*Flag section.*/
//static uint8_t volatile hal_bat_low_flag; /**< BAT_LOW flag. */
//static uint8_t volatile hal_pll_lock_flag; /**< PLL_LOCK flag. */
/*Callbacks.*/
/** \brief This function is called when a rx_start interrupt is signaled.
*
* If this function pointer is set to something else than NULL, it will
* be called when a RX_START event is signaled. The function takes two
* parameters: timestamp in IEEE 802.15.4 symbols (16 us resolution) and
* frame length. The event handler will be called in the interrupt domain,
* so the function must be kept short and not be blocking! Otherwise the
* system performance will be greatly degraded.
*
* \see hal_set_rx_start_event_handler
*/
//static hal_rx_start_isr_event_handler_t rx_start_callback;
/** \brief This function is called when a trx_end interrupt is signaled.
*
* If this function pointer is set to something else than NULL, it will
* be called when a TRX_END event is signaled. The function takes one
* parameter: timestamp in IEEE 802.15.4 symbols (16 us resolution).
* The event handler will be called in the interrupt domain,
* so the function must not block!
*
* \see hal_set_trx_end_event_handler
*/
//static hal_trx_end_isr_event_handler_t trx_end_callback;
/*============================ PROTOTYPES ====================================*/
/*============================ IMPLEMENTATION ================================*/
/** \brief This function initializes the Hardware Abstraction Layer.
*/
void
hal_init(void)
{
/*Reset variables used in file.*/
hal_system_time = 0;
// hal_reset_flags();
/*IO Specific Initialization.*/
DDR_SLP_TR |= (1 << SLP_TR); /* Enable SLP_TR as output. */
DDR_RST |= (1 << RST); /* Enable RST as output. */
/*SPI Specific Initialization.*/
/* Set SS, CLK and MOSI as output. */
HAL_DDR_SPI |= (1 << HAL_DD_SS) | (1 << HAL_DD_SCK) | (1 << HAL_DD_MOSI);
HAL_PORT_SPI |= (1 << HAL_DD_SS) | (1 << HAL_DD_SCK); /* Set SS and CLK high */
/* Run SPI at max speed */
SPCR = (1 << SPE) | (1 << MSTR); /* Enable SPI module and master operation. */
SPSR = (1 << SPI2X); /* Enable doubled SPI speed in master mode. */
/*TIMER1 Specific Initialization.*/
TCCR1B = HAL_TCCR1B_CONFIG; /* Set clock prescaler */
TIFR1 |= (1 << ICF1); /* Clear Input Capture Flag. */
HAL_ENABLE_OVERFLOW_INTERRUPT(); /* Enable Timer1 overflow interrupt. */
hal_enable_trx_interrupt(); /* Enable interrupts from the radio transceiver. */
}
/*----------------------------------------------------------------------------*/
/** \brief This function reset the interrupt flags and interrupt event handlers
* (Callbacks) to their default value.
*/
//void
//hal_reset_flags(void)
//{
// AVR_ENTER_CRITICAL_REGION();
/* Reset Flags. */
// hal_bat_low_flag = 0;
// hal_pll_lock_flag = 0;
/* Reset Associated Event Handlers. */
// rx_start_callback = NULL;
// trx_end_callback = NULL;
// AVR_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief This function returns the current value of the BAT_LOW flag.
*
* The BAT_LOW flag is incremented each time a BAT_LOW event is signaled from the
* radio transceiver. This way it is possible for the end user to poll the flag
* for new event occurances.
*/
//uint8_t
//hal_get_bat_low_flag(void)
//{
// return hal_bat_low_flag;
//}
/*----------------------------------------------------------------------------*/
/** \brief This function clears the BAT_LOW flag.
*/
//void
//hal_clear_bat_low_flag(void)
//{
// AVR_ENTER_CRITICAL_REGION();
// hal_bat_low_flag = 0;
// AVR_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief This function is used to set new TRX_END event handler, overriding
* old handler reference.
*/
//hal_trx_end_isr_event_handler_t
//hal_get_trx_end_event_handler(void)
//{
// return trx_end_callback;
//}
/*----------------------------------------------------------------------------*/
/** \brief This function is used to set new TRX_END event handler, overriding
* old handler reference.
*/
//void
//hal_set_trx_end_event_handler(hal_trx_end_isr_event_handler_t trx_end_callback_handle)
//{
// AVR_ENTER_CRITICAL_REGION();
// trx_end_callback = trx_end_callback_handle;
// AVR_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief Remove event handler reference.
*/
//void
//hal_clear_trx_end_event_handler(void)
//{
// AVR_ENTER_CRITICAL_REGION();
// trx_end_callback = NULL;
// AVR_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief This function returns the active RX_START event handler
*
* \return Current RX_START event handler registered.
*/
//hal_rx_start_isr_event_handler_t
//hal_get_rx_start_event_handler(void)
//{
// return rx_start_callback;
//}
/*----------------------------------------------------------------------------*/
/** \brief This function is used to set new RX_START event handler, overriding
* old handler reference.
*/
//void
//hal_set_rx_start_event_handler(hal_rx_start_isr_event_handler_t rx_start_callback_handle)
//{
// AVR_ENTER_CRITICAL_REGION();
// rx_start_callback = rx_start_callback_handle;
// AVR_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief Remove event handler reference.
*/
//void
//hal_clear_rx_start_event_handler(void)
//{
// AVR_ENTER_CRITICAL_REGION();
// rx_start_callback = NULL;
// AVR_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief This function returns the current value of the PLL_LOCK flag.
*
* The PLL_LOCK flag is incremented each time a PLL_LOCK event is signaled from the
* radio transceiver. This way it is possible for the end user to poll the flag
* for new event occurances.
*/
//uint8_t
//hal_get_pll_lock_flag(void)
//{
// return hal_pll_lock_flag;
//}
/*----------------------------------------------------------------------------*/
/** \brief This function clears the PLL_LOCK flag.
*/
//void
//hal_clear_pll_lock_flag(void)
//{
// AVR_ENTER_CRITICAL_REGION();
// hal_pll_lock_flag = 0;
// AVR_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief This function reads data from one of the radio transceiver's registers.
*
* \param address Register address to read from. See datasheet for register
* map.
*
* \see Look at the at86rf230_registermap.h file for register address definitions.
*
* \returns The actual value of the read register.
*/
uint8_t
hal_register_read(uint8_t address)
{
/* Add the register read command to the register address. */
address &= HAL_TRX_CMD_RADDRM;
address |= HAL_TRX_CMD_RR;
uint8_t register_value = 0;
AVR_ENTER_CRITICAL_REGION();
HAL_SS_LOW(); /* Start the SPI transaction by pulling the Slave Select low. */
/*Send Register address and read register content.*/
SPDR = address;
while ((SPSR & (1 << SPIF)) == 0) {;}
register_value = SPDR;
SPDR = register_value;
while ((SPSR & (1 << SPIF)) == 0) {;}
register_value = SPDR;
HAL_SS_HIGH(); /* End the transaction by pulling the Slave Select High. */
AVR_LEAVE_CRITICAL_REGION();
return register_value;
}
/*----------------------------------------------------------------------------*/
/** \brief This function writes a new value to one of the radio transceiver's
* registers.
*
* \see Look at the at86rf230_registermap.h file for register address definitions.
*
* \param address Address of register to write.
* \param value Value to write.
*/
void
hal_register_write(uint8_t address, uint8_t value)
{
/* Add the Register Write command to the address. */
address = HAL_TRX_CMD_RW | (HAL_TRX_CMD_RADDRM & address);
AVR_ENTER_CRITICAL_REGION();
HAL_SS_LOW(); /* Start the SPI transaction by pulling the Slave Select low. */
/*Send Register address and write register content.*/
SPDR = address;
while ((SPSR & (1 << SPIF)) == 0) {;}
uint8_t dummy_read = SPDR;
SPDR = value;
while ((SPSR & (1 << SPIF)) == 0) {;}
dummy_read = SPDR;
HAL_SS_HIGH(); /* End the transaction by pulling the Slave Slect High. */
AVR_LEAVE_CRITICAL_REGION();
}
/*----------------------------------------------------------------------------*/
/** \brief This function reads the value of a specific subregister.
*
* \see Look at the at86rf230_registermap.h file for register and subregister
* definitions.
*
* \param address Main register's address.
* \param mask Bit mask of the subregister.
* \param position Bit position of the subregister
* \retval Value of the read subregister.
*/
uint8_t
hal_subregister_read(uint8_t address, uint8_t mask, uint8_t position)
{
/* Read current register value and mask out subregister. */
uint8_t register_value = hal_register_read(address);
register_value &= mask;
register_value >>= position; /* Align subregister value. */
return register_value;
}
/*----------------------------------------------------------------------------*/
/** \brief This function writes a new value to one of the radio transceiver's
* subregisters.
*
* \see Look at the at86rf230_registermap.h file for register and subregister
* definitions.
*
* \param address Main register's address.
* \param mask Bit mask of the subregister.
* \param position Bit position of the subregister
* \param value Value to write into the subregister.
*/
void
hal_subregister_write(uint8_t address, uint8_t mask, uint8_t position,
uint8_t value)
{
/* Read current register value and mask area outside the subregister. */
uint8_t register_value = hal_register_read(address);
register_value &= ~mask;
/* Start preparing the new subregister value. shift in place and mask. */
value <<= position;
value &= mask;
value |= register_value; /* Set the new subregister value. */
/* Write the modified register value. */
hal_register_write(address, value);
}
/*----------------------------------------------------------------------------*/
/** \brief This function will upload a frame from the radio transceiver's frame
* buffer.
*
* If the frame currently available in the radio transceiver's frame buffer
* is out of the defined bounds. Then the frame length, lqi value and crc
* be set to zero. This is done to indicate an error.
* This version is optimized for use with contiki RF230BB driver
*
* \param rx_frame Pointer to the data structure where the frame is stored.
* \param rx_callback Pointer to callback function for receiving one byte at a time.
*/
void
hal_frame_read(hal_rx_frame_t *rx_frame, rx_callback_t rx_callback)
{
uint8_t *rx_data=0;
/* check that we have either valid frame pointer or callback pointer */
// if (!rx_frame && !rx_callback)
// return;
AVR_ENTER_CRITICAL_REGION();
HAL_SS_LOW();
/*Send frame read command.*/
SPDR = HAL_TRX_CMD_FR;
while ((SPSR & (1 << SPIF)) == 0) {;}
uint8_t frame_length = SPDR;
/*Read frame length.*/
SPDR = frame_length;
while ((SPSR & (1 << SPIF)) == 0) {;}
frame_length = SPDR;
/*Check for correct frame length.*/
if ((frame_length >= HAL_MIN_FRAME_LENGTH) && (frame_length <= HAL_MAX_FRAME_LENGTH)){
uint16_t crc = 0;
// if (rx_frame){
rx_data = (rx_frame->data);
rx_frame->length = frame_length;
// } else {
// rx_callback(frame_length);
// }
/*Upload frame buffer to data pointer. Calculate CRC.*/
SPDR = frame_length;
while ((SPSR & (1 << SPIF)) == 0) {;}
do{
uint8_t tempData = SPDR;
SPDR = 0; /* dummy write */
// if (rx_frame){
*rx_data++ = tempData;
// } else {
// rx_callback(tempData);
// }
crc = _crc_ccitt_update(crc, tempData);
while ((SPSR & (1 << SPIF)) == 0) {;}
} while (--frame_length > 0);
/*Read LQI value for this frame.*/
// if (rx_frame){
rx_frame->lqi = SPDR;
// } else {
// rx_callback(SPDR);
// }
HAL_SS_HIGH();
/*Check calculated crc, and set crc field in hal_rx_frame_t accordingly.*/
// if (rx_frame){
rx_frame->crc = (crc == HAL_CALCULATED_CRC_OK);
// } else {
// rx_callback(crc != HAL_CALCULATED_CRC_OK);
// }
} else {
HAL_SS_HIGH();
// if (rx_frame){
rx_frame->length = 0;
rx_frame->lqi = 0;
rx_frame->crc = false;
// }
}
AVR_LEAVE_CRITICAL_REGION();
}
/*----------------------------------------------------------------------------*/
/** \brief This function will download a frame to the radio transceiver's frame
* buffer.
*
* \param write_buffer Pointer to data that is to be written to frame buffer.
* \param length Length of data. The maximum length is 127 bytes.
*/
void
hal_frame_write(uint8_t *write_buffer, uint8_t length)
{
length &= HAL_TRX_CMD_RADDRM; /* Truncate length to maximum frame length. */
AVR_ENTER_CRITICAL_REGION();
HAL_SS_LOW(); /* Initiate the SPI transaction. */
/*SEND FRAME WRITE COMMAND AND FRAME LENGTH.*/
SPDR = HAL_TRX_CMD_FW;
while ((SPSR & (1 << SPIF)) == 0) {;}
uint8_t dummy_read = SPDR;
SPDR = length;
while ((SPSR & (1 << SPIF)) == 0) {;}
dummy_read = SPDR;
/* Download to the Frame Buffer. */
do{
SPDR = *write_buffer++;
--length;
while ((SPSR & (1 << SPIF)) == 0) {;}
dummy_read = SPDR;
} while (length > 0);
HAL_SS_HIGH(); /* Terminate SPI transaction. */
AVR_LEAVE_CRITICAL_REGION();
}
/*----------------------------------------------------------------------------*/
/** \brief Read SRAM
*
* This function reads from the SRAM of the radio transceiver.
*
* \param address Address in the TRX's SRAM where the read burst should start
* \param length Length of the read burst
* \param data Pointer to buffer where data is stored.
*/
//void
//hal_sram_read(uint8_t address, uint8_t length, uint8_t *data)
//{
// AVR_ENTER_CRITICAL_REGION();
// HAL_SS_LOW(); /* Initiate the SPI transaction. */
/*Send SRAM read command.*/
// SPDR = HAL_TRX_CMD_SR;
// while ((SPSR & (1 << SPIF)) == 0) {;}
// uint8_t dummy_read = SPDR;
/*Send address where to start reading.*/
// SPDR = address;
// while ((SPSR & (1 << SPIF)) == 0) {;}
// dummy_read = SPDR;
/*Upload the chosen memory area.*/
// do{
// SPDR = HAL_DUMMY_READ;
// while ((SPSR & (1 << SPIF)) == 0) {;}
// *data++ = SPDR;
// } while (--length > 0);
// HAL_SS_HIGH();
// AVR_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/** \brief Write SRAM
*
* This function writes into the SRAM of the radio transceiver.
*
* \param address Address in the TRX's SRAM where the write burst should start
* \param length Length of the write burst
* \param data Pointer to an array of bytes that should be written
*/
//void
//hal_sram_write(uint8_t address, uint8_t length, uint8_t *data)
//{
// AVR_ENTER_CRITICAL_REGION();
// HAL_SS_LOW();
/*Send SRAM write command.*/
// SPDR = HAL_TRX_CMD_SW;
// while ((SPSR & (1 << SPIF)) == 0) {;}
// uint8_t dummy_read = SPDR;
/*Send address where to start writing to.*/
// SPDR = address;
// while ((SPSR & (1 << SPIF)) == 0) {;}
// dummy_read = SPDR;
/*Upload the chosen memory area.*/
// do{
// SPDR = *data++;
// while ((SPSR & (1 << SPIF)) == 0) {;}
// dummy_read = SPDR;
// } while (--length > 0);
// HAL_SS_HIGH();
// AVR_LEAVE_CRITICAL_REGION();
//}
/*----------------------------------------------------------------------------*/
/* This #if compile switch is used to provide a "standard" function body for the */
/* doxygen documentation. */
#if defined(DOXYGEN)
/** \brief ISR for the radio IRQ line, triggered by the input capture.
* This is the interrupt service routine for timer1.ICIE1 input capture.
* It is triggered of a rising edge on the radio transceivers IRQ line.
*/
void RADIO_VECT(void);
#else /* !DOXYGEN */
/* These link to the RF230BB driver in rf230.c */
void rf230_interrupt(void);
extern hal_rx_frame_t rxframe;
#define DEBUG 0
#if DEBUG
volatile int rf230_interrupt_flag=0;
#define INTERRUPTDEBUG(arg) rf230_interrupt_flag=arg
#else
#define INTERRUPTDEBUG(arg)
#endif
ISR(RADIO_VECT)
{
/*The following code reads the current system time. This is done by first
reading the hal_system_time and then adding the 16 LSB directly from the
TCNT1 register.
*/
uint32_t isr_timestamp = hal_system_time;
isr_timestamp <<= 16;
isr_timestamp |= TCNT1;
volatile uint8_t state;
INTERRUPTDEBUG(1);
/*Read Interrupt source.*/
HAL_SS_LOW();
/*Send Register address and read register content.*/
SPDR = RG_IRQ_STATUS | HAL_TRX_CMD_RR;
/* This is the second part of the convertion of system time to a 16 us time
base. The division is moved here so we can spend less time waiting for SPI
data.
*/
isr_timestamp /= HAL_US_PER_SYMBOL; /* Divide so that we get time in 16us resolution. */
isr_timestamp &= HAL_SYMBOL_MASK;
while ((SPSR & (1 << SPIF)) == 0) {;}
uint8_t interrupt_source = SPDR; /* The interrupt variable is used as a dummy read. */
SPDR = interrupt_source;
while ((SPSR & (1 << SPIF)) == 0) {;}
interrupt_source = SPDR; /* The interrupt source is read. */
HAL_SS_HIGH();
/*Handle the incomming interrupt. Prioritized.*/
if ((interrupt_source & HAL_RX_START_MASK)){
INTERRUPTDEBUG(10);
// if(rx_start_callback != NULL){
// /* Read Frame length and call rx_start callback. */
// HAL_SS_LOW();
// SPDR = HAL_TRX_CMD_FR;
// while ((SPSR & (1 << SPIF)) == 0) {;}
// uint8_t frame_length = SPDR;
// SPDR = frame_length; /* frame_length used for dummy data */
// while ((SPSR & (1 << SPIF)) == 0) {;}
// frame_length = SPDR;
// HAL_SS_HIGH();
// rx_start_callback(isr_timestamp, frame_length);
// }
} else if (interrupt_source & HAL_TRX_END_MASK){
INTERRUPTDEBUG(11);
// if(trx_end_callback != NULL){
// INTERRUPTDEBUG(12);
// trx_end_callback(isr_timestamp);
// }
state = hal_subregister_read(SR_TRX_STATUS);
if((state == BUSY_RX_AACK) || (state == RX_ON) || (state == BUSY_RX) || (state == RX_AACK_ON)){
/* Received packet interrupt */
/* Buffer the frame and call rf230_interrupt to schedule poll for rf230 receive process */
// if (rxframe.length) break; //toss packet if last one not processed yet
INTERRUPTDEBUG(42);
hal_frame_read(&rxframe, NULL);
rf230_interrupt();
// trx_end_callback(isr_timestamp);
/* Enable reception of next packet */
#if RF230_CONF_NO_AUTO_ACK
hal_subregister_write(SR_TRX_CMD, RX_ON);
#else
hal_subregister_write(SR_TRX_CMD, RX_AACK_ON);
#endif
}
} else if (interrupt_source & HAL_TRX_UR_MASK){
INTERRUPTDEBUG(13);
;
} else if (interrupt_source & HAL_PLL_UNLOCK_MASK){
INTERRUPTDEBUG(14);
;
} else if (interrupt_source & HAL_PLL_LOCK_MASK){
INTERRUPTDEBUG(15);
// hal_pll_lock_flag++;
;
} else if (interrupt_source & HAL_BAT_LOW_MASK){
/* Disable BAT_LOW interrupt to prevent endless interrupts. The interrupt */
/* will continously be asserted while the supply voltage is less than the */
/* user-defined voltage threshold. */
uint8_t trx_isr_mask = hal_register_read(RG_IRQ_MASK);
trx_isr_mask &= ~HAL_BAT_LOW_MASK;
hal_register_write(RG_IRQ_MASK, trx_isr_mask);
// hal_bat_low_flag++; /* Increment BAT_LOW flag. */
INTERRUPTDEBUG(16);
;
} else {
INTERRUPTDEBUG(99);
;
}
}
# endif /* defined(DOXYGEN) */
/*----------------------------------------------------------------------------*/
/* This #if compile switch is used to provide a "standard" function body for the */
/* doxygen documentation. */
#if defined(DOXYGEN)
/** \brief Timer Overflow ISR
* This is the interrupt service routine for timer1 overflow.
*/
void TIMER1_OVF_vect(void);
#else /* !DOXYGEN */
ISR(TIMER1_OVF_vect)
{
hal_system_time++;
}
#endif
/** @} */
/** @} */
/*EOF*/