mirror of
https://github.com/oliverschmidt/contiki.git
synced 2025-01-12 10:30:09 +00:00
baef75752e
Add generic AES functions that should be able to support all the modes of operation of the hardware AES crypto engine, i.e. ECB, CBC, CTR, CBC-MAC, GCM, and CCM. This makes it possible to easily implement these modes of operation without duplicating code. Signed-off-by: Benoît Thébaudeau <benoit.thebaudeau.dev@gmail.com>
332 lines
11 KiB
C
332 lines
11 KiB
C
/*
|
|
* Original file:
|
|
* Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/
|
|
* All rights reserved.
|
|
*
|
|
* Port to Contiki:
|
|
* Copyright (c) 2013, ADVANSEE - http://www.advansee.com/
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/**
|
|
* \addtogroup cc2538-aes
|
|
* @{
|
|
*
|
|
* \file
|
|
* Implementation of the cc2538 AES driver
|
|
*/
|
|
#include "contiki.h"
|
|
#include "dev/rom-util.h"
|
|
#include "dev/nvic.h"
|
|
#include "dev/aes.h"
|
|
#include "reg.h"
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
/*---------------------------------------------------------------------------*/
|
|
uint8_t
|
|
aes_load_keys(const void *keys, uint8_t key_size, uint8_t count,
|
|
uint8_t start_area)
|
|
{
|
|
uint32_t aes_key_store_size;
|
|
uint32_t areas;
|
|
uint64_t aligned_keys[AES_KEY_AREAS * 128 / 8 / sizeof(uint64_t)];
|
|
int i;
|
|
|
|
if(REG(AES_CTRL_ALG_SEL) != 0x00000000) {
|
|
return CRYPTO_RESOURCE_IN_USE;
|
|
}
|
|
|
|
/* 192-bit keys must be padded to 256 bits */
|
|
if(key_size == AES_KEY_STORE_SIZE_KEY_SIZE_192) {
|
|
for(i = 0; i < count; i++) {
|
|
rom_util_memcpy(&aligned_keys[i << 2], &((const uint64_t *)keys)[i * 3],
|
|
192 / 8);
|
|
aligned_keys[(i << 2) + 3] = 0;
|
|
}
|
|
}
|
|
|
|
/* Change count to the number of 128-bit key areas */
|
|
if(key_size != AES_KEY_STORE_SIZE_KEY_SIZE_128) {
|
|
count <<= 1;
|
|
}
|
|
|
|
/* The keys base address needs to be 4-byte aligned */
|
|
if(key_size != AES_KEY_STORE_SIZE_KEY_SIZE_192) {
|
|
rom_util_memcpy(aligned_keys, keys, count << 4);
|
|
}
|
|
|
|
/* Workaround for AES registers not retained after PM2 */
|
|
REG(AES_CTRL_INT_CFG) = AES_CTRL_INT_CFG_LEVEL;
|
|
REG(AES_CTRL_INT_EN) = AES_CTRL_INT_EN_DMA_IN_DONE |
|
|
AES_CTRL_INT_EN_RESULT_AV;
|
|
|
|
/* Configure master control module */
|
|
REG(AES_CTRL_ALG_SEL) = AES_CTRL_ALG_SEL_KEYSTORE;
|
|
|
|
/* Clear any outstanding events */
|
|
REG(AES_CTRL_INT_CLR) = AES_CTRL_INT_CLR_DMA_IN_DONE |
|
|
AES_CTRL_INT_CLR_RESULT_AV;
|
|
|
|
/* Configure key store module (areas, size)
|
|
* Note that writing AES_KEY_STORE_SIZE deletes all stored keys */
|
|
aes_key_store_size = REG(AES_KEY_STORE_SIZE);
|
|
if((aes_key_store_size & AES_KEY_STORE_SIZE_KEY_SIZE_M) != key_size) {
|
|
REG(AES_KEY_STORE_SIZE) = (aes_key_store_size &
|
|
~AES_KEY_STORE_SIZE_KEY_SIZE_M) | key_size;
|
|
}
|
|
|
|
/* Free possibly already occupied key areas */
|
|
areas = ((0x00000001 << count) - 1) << start_area;
|
|
REG(AES_KEY_STORE_WRITTEN_AREA) = areas;
|
|
|
|
/* Enable key areas to write */
|
|
REG(AES_KEY_STORE_WRITE_AREA) = areas;
|
|
|
|
/* Configure DMAC
|
|
* Enable DMA channel 0 */
|
|
REG(AES_DMAC_CH0_CTRL) = AES_DMAC_CH_CTRL_EN;
|
|
|
|
/* Base address of the keys in ext. memory */
|
|
REG(AES_DMAC_CH0_EXTADDR) = (uint32_t)aligned_keys;
|
|
|
|
/* Total keys length in bytes (e.g. 16 for 1 x 128-bit key) */
|
|
REG(AES_DMAC_CH0_DMALENGTH) = (REG(AES_DMAC_CH0_DMALENGTH) &
|
|
~AES_DMAC_CH_DMALENGTH_DMALEN_M) |
|
|
(count << (4 + AES_DMAC_CH_DMALENGTH_DMALEN_S));
|
|
|
|
/* Wait for operation to complete */
|
|
while(!(REG(AES_CTRL_INT_STAT) & AES_CTRL_INT_STAT_RESULT_AV));
|
|
|
|
/* Check for absence of errors in DMA and key store */
|
|
if(REG(AES_CTRL_INT_STAT) & AES_CTRL_INT_STAT_DMA_BUS_ERR) {
|
|
REG(AES_CTRL_INT_CLR) = AES_CTRL_INT_CLR_DMA_BUS_ERR;
|
|
/* Disable master control / DMA clock */
|
|
REG(AES_CTRL_ALG_SEL) = 0x00000000;
|
|
return CRYPTO_DMA_BUS_ERROR;
|
|
}
|
|
if(REG(AES_CTRL_INT_STAT) & AES_CTRL_INT_STAT_KEY_ST_WR_ERR) {
|
|
REG(AES_CTRL_INT_CLR) = AES_CTRL_INT_CLR_KEY_ST_WR_ERR;
|
|
/* Disable master control / DMA clock */
|
|
REG(AES_CTRL_ALG_SEL) = 0x00000000;
|
|
return AES_KEYSTORE_WRITE_ERROR;
|
|
}
|
|
|
|
/* Acknowledge the interrupt */
|
|
REG(AES_CTRL_INT_CLR) = AES_CTRL_INT_CLR_DMA_IN_DONE |
|
|
AES_CTRL_INT_CLR_RESULT_AV;
|
|
|
|
/* Disable master control / DMA clock */
|
|
REG(AES_CTRL_ALG_SEL) = 0x00000000;
|
|
|
|
/* Check status, if error return error code */
|
|
if((REG(AES_KEY_STORE_WRITTEN_AREA) & areas) != areas) {
|
|
return AES_KEYSTORE_WRITE_ERROR;
|
|
}
|
|
|
|
return CRYPTO_SUCCESS;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
uint8_t
|
|
aes_auth_crypt_start(uint32_t ctrl, uint8_t key_area, const void *iv,
|
|
const void *adata, uint16_t adata_len,
|
|
const void *data_in, void *data_out, uint16_t data_len,
|
|
struct process *process)
|
|
{
|
|
if(REG(AES_CTRL_ALG_SEL) != 0x00000000) {
|
|
return CRYPTO_RESOURCE_IN_USE;
|
|
}
|
|
|
|
/* Workaround for AES registers not retained after PM2 */
|
|
REG(AES_CTRL_INT_CFG) = AES_CTRL_INT_CFG_LEVEL;
|
|
REG(AES_CTRL_INT_EN) = AES_CTRL_INT_EN_DMA_IN_DONE |
|
|
AES_CTRL_INT_EN_RESULT_AV;
|
|
|
|
REG(AES_CTRL_ALG_SEL) = AES_CTRL_ALG_SEL_AES;
|
|
REG(AES_CTRL_INT_CLR) = AES_CTRL_INT_CLR_DMA_IN_DONE |
|
|
AES_CTRL_INT_CLR_RESULT_AV;
|
|
|
|
REG(AES_KEY_STORE_READ_AREA) = key_area;
|
|
|
|
/* Wait until key is loaded to the AES module */
|
|
while(REG(AES_KEY_STORE_READ_AREA) & AES_KEY_STORE_READ_AREA_BUSY);
|
|
|
|
/* Check for Key Store read error */
|
|
if(REG(AES_CTRL_INT_STAT) & AES_CTRL_INT_STAT_KEY_ST_RD_ERR) {
|
|
/* Clear the Keystore Read error bit */
|
|
REG(AES_CTRL_INT_CLR) = AES_CTRL_INT_CLR_KEY_ST_RD_ERR;
|
|
/* Disable the master control / DMA clock */
|
|
REG(AES_CTRL_ALG_SEL) = 0x00000000;
|
|
return AES_KEYSTORE_READ_ERROR;
|
|
}
|
|
|
|
if(iv != NULL) {
|
|
/* Write initialization vector */
|
|
REG(AES_AES_IV_0) = ((const uint32_t *)iv)[0];
|
|
REG(AES_AES_IV_1) = ((const uint32_t *)iv)[1];
|
|
REG(AES_AES_IV_2) = ((const uint32_t *)iv)[2];
|
|
REG(AES_AES_IV_3) = ((const uint32_t *)iv)[3];
|
|
}
|
|
|
|
/* Program AES authentication/crypto operation */
|
|
REG(AES_AES_CTRL) = ctrl;
|
|
|
|
/* Write the length of the payload block (lo) */
|
|
REG(AES_AES_C_LENGTH_0) = data_len;
|
|
/* Write the length of the payload block (hi) */
|
|
REG(AES_AES_C_LENGTH_1) = 0;
|
|
|
|
/* For combined modes only (CCM or GCM) */
|
|
if(ctrl & (AES_AES_CTRL_CCM | AES_AES_CTRL_GCM)) {
|
|
/* Write the length of the AAD data block (may be non-block size-aligned) */
|
|
REG(AES_AES_AUTH_LENGTH) = adata_len;
|
|
|
|
if(adata_len != 0) {
|
|
/* Configure DMAC to fetch the AAD data
|
|
* Enable DMA channel 0 */
|
|
REG(AES_DMAC_CH0_CTRL) = AES_DMAC_CH_CTRL_EN;
|
|
/* Base address of the AAD data buffer */
|
|
REG(AES_DMAC_CH0_EXTADDR) = (uint32_t)adata;
|
|
/* AAD data length in bytes */
|
|
REG(AES_DMAC_CH0_DMALENGTH) = adata_len;
|
|
|
|
/* Wait for completion of the AAD data transfer, DMA_IN_DONE */
|
|
while(!(REG(AES_CTRL_INT_STAT) & AES_CTRL_INT_STAT_DMA_IN_DONE));
|
|
|
|
/* Check for the absence of error */
|
|
if(REG(AES_CTRL_INT_STAT) & AES_CTRL_INT_STAT_DMA_BUS_ERR) {
|
|
/* Clear the DMA error */
|
|
REG(AES_CTRL_INT_CLR) = AES_CTRL_INT_CLR_DMA_BUS_ERR;
|
|
/* Disable the master control / DMA clock */
|
|
REG(AES_CTRL_ALG_SEL) = 0x00000000;
|
|
return CRYPTO_DMA_BUS_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Clear interrupt status */
|
|
REG(AES_CTRL_INT_CLR) = AES_CTRL_INT_CLR_DMA_IN_DONE |
|
|
AES_CTRL_INT_CLR_RESULT_AV;
|
|
|
|
if(process != NULL) {
|
|
crypto_register_process_notification(process);
|
|
nvic_interrupt_unpend(NVIC_INT_AES);
|
|
nvic_interrupt_enable(NVIC_INT_AES);
|
|
}
|
|
|
|
/* Enable result available bit in interrupt enable */
|
|
REG(AES_CTRL_INT_EN) = AES_CTRL_INT_EN_RESULT_AV;
|
|
|
|
if(data_len != 0) {
|
|
/* Configure DMAC
|
|
* Enable DMA channel 0 */
|
|
REG(AES_DMAC_CH0_CTRL) = AES_DMAC_CH_CTRL_EN;
|
|
/* Base address of the input payload data buffer */
|
|
REG(AES_DMAC_CH0_EXTADDR) = (uint32_t)data_in;
|
|
/* Input payload data length in bytes */
|
|
REG(AES_DMAC_CH0_DMALENGTH) = data_len;
|
|
|
|
if(data_out != NULL) {
|
|
/* Enable DMA channel 1 */
|
|
REG(AES_DMAC_CH1_CTRL) = AES_DMAC_CH_CTRL_EN;
|
|
/* Base address of the output payload data buffer */
|
|
REG(AES_DMAC_CH1_EXTADDR) = (uint32_t)data_out;
|
|
/* Output payload data length in bytes */
|
|
REG(AES_DMAC_CH1_DMALENGTH) = data_len;
|
|
}
|
|
}
|
|
|
|
return CRYPTO_SUCCESS;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
uint8_t
|
|
aes_auth_crypt_check_status(void)
|
|
{
|
|
return !!(REG(AES_CTRL_INT_STAT) &
|
|
(AES_CTRL_INT_STAT_DMA_BUS_ERR | AES_CTRL_INT_STAT_KEY_ST_WR_ERR |
|
|
AES_CTRL_INT_STAT_KEY_ST_RD_ERR | AES_CTRL_INT_STAT_RESULT_AV));
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
uint8_t
|
|
aes_auth_crypt_get_result(void *iv, void *tag)
|
|
{
|
|
uint32_t aes_ctrl_int_stat;
|
|
|
|
aes_ctrl_int_stat = REG(AES_CTRL_INT_STAT);
|
|
/* Clear the error bits */
|
|
REG(AES_CTRL_INT_CLR) = AES_CTRL_INT_CLR_DMA_BUS_ERR |
|
|
AES_CTRL_INT_CLR_KEY_ST_WR_ERR |
|
|
AES_CTRL_INT_CLR_KEY_ST_RD_ERR;
|
|
|
|
nvic_interrupt_disable(NVIC_INT_AES);
|
|
crypto_register_process_notification(NULL);
|
|
|
|
/* Disable the master control / DMA clock */
|
|
REG(AES_CTRL_ALG_SEL) = 0x00000000;
|
|
|
|
if(aes_ctrl_int_stat & AES_CTRL_INT_STAT_DMA_BUS_ERR) {
|
|
return CRYPTO_DMA_BUS_ERROR;
|
|
}
|
|
if(aes_ctrl_int_stat & AES_CTRL_INT_STAT_KEY_ST_WR_ERR) {
|
|
return AES_KEYSTORE_WRITE_ERROR;
|
|
}
|
|
if(aes_ctrl_int_stat & AES_CTRL_INT_STAT_KEY_ST_RD_ERR) {
|
|
return AES_KEYSTORE_READ_ERROR;
|
|
}
|
|
|
|
if(iv != NULL || tag != NULL) {
|
|
/* Read result
|
|
* Wait for the context ready bit */
|
|
while(!(REG(AES_AES_CTRL) & AES_AES_CTRL_SAVED_CONTEXT_READY));
|
|
|
|
if(iv != NULL) {
|
|
/* Read the initialization vector registers */
|
|
((uint32_t *)iv)[0] = REG(AES_AES_IV_0);
|
|
((uint32_t *)iv)[1] = REG(AES_AES_IV_1);
|
|
((uint32_t *)iv)[2] = REG(AES_AES_IV_2);
|
|
((uint32_t *)iv)[3] = REG(AES_AES_IV_3);
|
|
}
|
|
|
|
if(tag != NULL) {
|
|
/* Read the tag registers */
|
|
((uint32_t *)tag)[0] = REG(AES_AES_TAG_OUT_0);
|
|
((uint32_t *)tag)[1] = REG(AES_AES_TAG_OUT_1);
|
|
((uint32_t *)tag)[2] = REG(AES_AES_TAG_OUT_2);
|
|
((uint32_t *)tag)[3] = REG(AES_AES_TAG_OUT_3);
|
|
}
|
|
}
|
|
|
|
/* Clear the interrupt status */
|
|
REG(AES_CTRL_INT_CLR) = AES_CTRL_INT_CLR_DMA_IN_DONE |
|
|
AES_CTRL_INT_CLR_RESULT_AV;
|
|
|
|
return CRYPTO_SUCCESS;
|
|
}
|
|
|
|
/** @} */
|