adamdunkels 7165a3866f Significant rework of the Contiki data collection protocol:
* the new version makes use of MAC-layer feedback so that bad paths
  can be identified quicker and then avoided.

* the new code uses transport layer ACKs that contain feedback from
  the collect protocol: when a packet cannot be forwarded due to lack
  of resources, the ACK contains a flag that indicates that the packet
  could not be forwarded. ACKs also contain the routing metric of the
  sender, which improves agility in face of rapid path changes.

* loop detection and management has been improved: with higher path
  metric agility, the system is more prone to short-lived routing
  loops. Instead of dropping looping packets, the new version adjusts
  the routing metric for the routes that exhibit loops so that the
  risk for future loops is reduced.

* make use of packet attributes to inform the MAC layer of how many
  times packets should be retransmitted.
2010-02-28 09:18:01 +00:00
2010-01-29 18:03:55 +00:00
2010-02-23 23:06:04 +00:00
2007-03-29 23:42:18 +00:00

Contiki is an open source, highly portable, multi-tasking operating
system for memory-constrained networked embedded systems written by
Adam Dunkels at the Networked Embedded Systems group at the Swedish
Institute of Computer Science.

Contiki is designed for embedded systems with small amounts of
memory. A typical Contiki configuration is 2 kilobytes of RAM and 40
kilobytes of ROM. Contiki consists of an event-driven kernel on top of
which application programs are dynamically loaded and unloaded at
runtime. Contiki processes use light-weight protothreads that provide
a linear, thread-like programming style on top of the event-driven
kernel. Contiki also supports per-process optional preemptive
multi-threading, interprocess communication using message passing
through events, as well as an optional GUI subsystem with either
direct graphic support for locally connected terminals or networked
virtual display with VNC or over Telnet.

Contiki contains two communication stacks: uIP and Rime. uIP is a
small RFC-compliant TCP/IP stack that makes it possible for Contiki to
communicate over the Internet. Rime is a lightweight communication
stack designed for low-power radios. Rime provides a wide range of
communication primitives, from best-effort local area broadcast, to
reliable multi-hop bulk data flooding.

Contiki runs on a variety of platform ranging from embedded
microcontrollers such as the MSP430 and the AVR to old
homecomputers. Code footprint is on the order of kilobytes and memory
usage can be configured to be as low as tens of bytes.

Contiki is written in the C programming language and is freely
available as open source under a BSD-style license. More information
about Contiki can be found at the Contiki home page:
http://www.sics.se/contiki/
Description
Contiki OS for 6502 based computers
Readme 75 MiB
Languages
C 83.7%
Java 11.7%
Python 1.8%
C++ 0.7%
Assembly 0.6%
Other 1.3%