contiki/platform/stm32nucleo-spirit1
Mohamed Seliem 1d32a00ebd Fix uip-ds.h table configuration comment
this PR to update uip-ds.h comments, this small change is made to ease the track of Tables implementation places

remove definition of UIP_CONF_DS6_ROUTE_NBU

retire 2 old macros DS6_NBR_NBU, DS6_ROUTE_NBU

Update uip-ds6.h

Update contiki-conf.h

Update contiki-conf.h

Update contiki-conf.h

fix doxygen comment

Update uip-ds6.h
2016-09-05 20:59:36 +02:00
..
dev Compilation flags update: BOARD=ids01a4/5 SENSORBOARD=iks01a1 2015-10-27 12:12:59 +01:00
stm32cube-lib@34e784ff39 Updated radio parameters (in the submodule repo), to have more radio range. 2015-11-11 18:50:38 +01:00
contiki-conf.h Fix uip-ds.h table configuration comment 2016-09-05 20:59:36 +02:00
contiki-spirit1-main.c Compilation flags update: BOARD=ids01a4/5 SENSORBOARD=iks01a1 2015-10-27 12:12:59 +01:00
hw-config.h
Makefile.ids01a4 Compilation flags update: BOARD=ids01a4/5 SENSORBOARD=iks01a1 2015-10-27 12:12:59 +01:00
Makefile.ids01a5 Compilation flags update: BOARD=ids01a4/5 SENSORBOARD=iks01a1 2015-10-27 12:12:59 +01:00
Makefile.iks01a1 Compilation flags update: BOARD=ids01a4/5 SENSORBOARD=iks01a1 2015-10-27 12:12:59 +01:00
Makefile.stm32nucleo-spirit1 Added default BOARD value to let regression tests compile for any platform. 2015-11-11 13:48:38 +01:00
node-id.c
platform-conf.h TSCH: use RTIMER_CLOCK_DIFF to compute estimated drift, fixing a bug that would occur on 16-bit rtimer platforms 2016-04-27 14:13:33 +02:00
README.md Update to stm32nucleo-spirit1 platform README file. 2016-05-05 16:44:07 +02:00
spirit1-arch.c
spirit1-arch.h
spirit1-config.h Modified radio parameters to increase communication range. 2015-11-11 13:53:58 +01:00
spirit1-const.h
spirit1.c
spirit1.h
st-lib.h Compilation flags update: BOARD=ids01a4/5 SENSORBOARD=iks01a1 2015-10-27 12:12:59 +01:00
stm32l-spirit1-config.h
uart-msg.c

Getting Started with Contiki for STM32 Nucleo equipped with sub-1GHz SPIRIT1 expansion boards

This guide explains how to get started with the STM32 Nucleo and expansion boards port to Contiki.

Maintainers and Contacts

Long-term maintainers:

Contributors:

Port Feature

The port supports the following boards from ST:

  • NUCLEO-L152RE board, based on the STM32L152RET6 ultra-low power microcontroller
  • X-NUCLEO-IDS01A4 based on sub-1GHz SPSGRF-868 SPIRIT1 module (operating at 868 MHz)
  • X-NUCLEO-IDS01A5 based on sub-1GHz SPSGRF-915 SPIRIT1 module (operating at 915 MHz)
  • X-NUCLEO-IKS01A1 featuring motion MEMS and environmental sensors (optional)

The following drivers are included:

  • LEDs and user button
  • USB
  • SPIRIT1 sub-1GHz transceiver
  • HTS221, LIS3MDL, LPS25HB, LSM6DS0 sensors

Documentation

  • User Manual: UM2000 "Getting started with the Contiki OS/6LoWPAN on STM32 Nucleo with SPIRIT1 and sensors expansion boards"
  • Quick Start Guide (presentation): "Contiki 6LoWPAN Quick Guide"

To access this documentation and other collaterals, please go to http://www.st.com and search for "STSW-CONTIKI6LP" part number.

Hardware Requirements

  • NUCLEO-L152RE development board

The NUCLEO-L152RE board belongs to the STM32 Nucleo family. It features an STM32L152RET6 ultra-low power microcontroller based on ARM Cortex M3 MCU. For detailed information on the NUCLEO-L152RE development board, please go to http://www.st.com and search for the "NUCLEO-L152RE" part number.

  • X-NUCLEO-IDS01Ax sub-1GHz expansion board

The X-NUCLEO-IDS01A4 and X-NUCLEO-IDS01A5 are STM32 Nucleo expansion boards that use the module SPSGRF-868 or SPSGRF-915 based on SPIRIT1 low data rate, low power sub-1 GHz transceiver.

The user can select the X-NUCLEO-IDS01A4 board to operate the SPIRIT1 transceiver at 868MHz or the X-NUCLEO-IDS01A5 board to operate the SPIRIT1 transceiver at 915MHz.

For detailed information on the X-NUCLEO-IDS01A4 or X-NUCLEO-IDS01A5 expansion board, or the SPIRIT1 transceiver please go to http://www.st.com and search for the specific part number.

  • X-NUCLEO-IKS01A1, motion MEMS and environmental sensors expansion board (OPTIONAL)

The X-NUCLEO-IKS01A1 is a motion MEMS and environmental sensor evaluation board. The use of this board is optional in the stm32nucleo-spirit1 Contiki platform.

For detailed information on the X-NUCLEO-IKS01A1 expansion board, please go to http://www.st.com and search for the "X-NUCLEO-IKS01A1" part number.

  • USB type A to Mini-B USB cable, to connect the STM32 Nucleo board to the PC

Software Requirements

The following software are needed:

  • ST port of Contiki for STM32 Nucleo and expansion boards.

The port is automatically installed when both the Contiki and the submodule repository are cloned: the former hosts the Contiki distribution and the ST platform interface, the latter hosts the actual library. The following command downloads the full porting:

git clone --recursive https://github.com/contiki-os/contiki

Alternatively, if you cloned the contiki repository without the "--recursive" option, you can simply download the submodule repository with the following commands:

cd contiki/
git submodule init
git submodule update

The platform name is: stm32nucleo-spirit1

  • A toolchain to build the firmware: The port has been developed and tested with GNU Tools for ARM Embedded Processors.

The toolchain can be found at: https://launchpad.net/gcc-arm-embedded The port was developed and tested using this version: gcc-arm-none-eabi v4.8.3

Examples

The following examples have been successfully tested:

  • examples/stm32nucleo-spirit1/sensor-demo
  • examples/ipv6/simple-udp-rpl (multicast, rpl-border-router, simple-udp-rpl)

Build an example

In order to build an example go to the selected example directory (see a list of tested examples in the previous section).

For example, go to examples/ipv6/simple-udp-rpl directory.

If the X-NUCLEO-IDS01A4 sub-1GHz RF expansion board is used, the following must be run:

make TARGET=stm32nucleo-spirit1 BOARD=ids01a4 clean
make TARGET=stm32nucleo-spirit1 BOARD=ids01a4

If the X-NUCLEO-IDS01A5 sub-1GHz RF expansion board is used, the following must be run:

make TARGET=stm32nucleo-spirit1 BOARD=ids01a5 clean
make TARGET=stm32nucleo-spirit1 BOARD=ids01a5

This will create executables for UDP sender and receiver nodes.

In order to generate binary files that can be flashed on the STM32 Nucleo the following command must be run:

arm-none-eabi-objcopy -O binary unicast-sender.stm32nucleo-spirit1 unicast-sender.bin
arm-none-eabi-objcopy -O binary unicast-receiver.stm32nucleo-spirit1 unicast-receiver.bin

These executables can be programmed on the nodes using the procedure described hereafter.

In case you need to build an example that uses the additional sensors expansion board (for example, considering a system made of NUCLEO-L152RE, X-NUCLEO-IDS01A4 and X-NUCLEO-IKS01A1) then the command to be run would be:

make TARGET=stm32nucleo-spirit1 BOARD=ids01a4 SENSORBOARD=iks01a1

System setup

  1. Check that the jumper on the J1 connector on the X-NUCLEO-IDS01Ax expansion board is connected. This jumper provides the required voltage to the devices on the board.

  2. Connect the X-NUCLEO-IDS01Ax board to the STM32 Nucleo board (NUCLEO-L152RE) from the top.

  3. If the optional X-NUCLEO-IKS01A1 board is used, connect it on top of the X-NUCLEO-IDS01Ax board.

  4. Power the STM32 Nucleo board using the Mini-B USB cable connected to the PC.

  5. Program the firmware on the STM32 Nucleo board. This can be done by copying the binary file on the USB mass storage that is automatically created when plugging the STM32 Nucleo board to the PC.

  6. Reset the MCU by using the reset button on the STM32 Nucleo board