mirror of
https://github.com/oliverschmidt/contiki.git
synced 2024-11-19 18:40:17 +00:00
426 lines
13 KiB
C
426 lines
13 KiB
C
/*
|
|
* Copyright (c) 2008, Swedish Institute of Computer Science.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the Institute nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* This file is part of the Contiki operating system.
|
|
*
|
|
* $Id: lpp.c,v 1.11 2009/03/26 12:50:57 nvt-se Exp $
|
|
*/
|
|
|
|
/**
|
|
* \file
|
|
* Low power probing (R. Musaloiu-Elefteri, C. Liang,
|
|
* A. Terzis. Koala: Ultra-Low Power Data Retrieval in
|
|
* Wireless Sensor Networks, IPSN 2008)
|
|
*
|
|
* \author
|
|
* Adam Dunkels <adam@sics.se>
|
|
*
|
|
*
|
|
* This is an implementation of the LPP (Low-Power Probing) MAC
|
|
* protocol. LPP is a power-saving MAC protocol that works by sending
|
|
* a probe packet each time the radio is turned on. If another node
|
|
* wants to transmit a packet, it can do so after hearing the
|
|
* probe. To send a packet, the sending node turns on its radio to
|
|
* listen for probe packets.
|
|
*
|
|
*/
|
|
|
|
#include "dev/leds.h"
|
|
#include "lib/random.h"
|
|
#include "net/rime.h"
|
|
#include "net/mac/mac.h"
|
|
#include "net/mac/lpp.h"
|
|
#include "net/rime/packetbuf.h"
|
|
#include "net/rime/announcement.h"
|
|
|
|
#include <stdlib.h>
|
|
|
|
#define DEBUG 0
|
|
#if DEBUG
|
|
#include <stdio.h>
|
|
#define PRINTF(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define PRINTF(...)
|
|
#endif
|
|
|
|
|
|
struct announcement_data {
|
|
uint16_t id;
|
|
uint16_t value;
|
|
};
|
|
|
|
#define ANNOUNCEMENT_MSG_HEADERLEN 2
|
|
struct announcement_msg {
|
|
uint16_t num;
|
|
struct announcement_data data[];
|
|
};
|
|
|
|
#define LPP_PROBE_HEADERLEN 2
|
|
|
|
#define TYPE_PROBE 1
|
|
#define TYPE_DATA 2
|
|
struct lpp_hdr {
|
|
uint16_t type;
|
|
rimeaddr_t sender;
|
|
rimeaddr_t receiver;
|
|
};
|
|
|
|
static const struct radio_driver *radio;
|
|
static void (* receiver_callback)(const struct mac_driver *);
|
|
static struct pt pt;
|
|
static struct ctimer timer;
|
|
static struct timer packet_lifetime_timer;
|
|
|
|
static struct queuebuf *queued_packet;
|
|
|
|
static uint8_t is_listening = 0;
|
|
|
|
#ifdef LPP_CONF_LISTEN_TIME
|
|
#define LPP_LISTEN_TIME LPP_CONF_LISTEN_TIME
|
|
#else
|
|
#define LPP_LISTEN_TIME CLOCK_SECOND / 64
|
|
#endif /* LPP_CONF_LISTEN_TIME */
|
|
|
|
#ifdef LPP_CONF_OFF_TIME
|
|
#define LPP_OFF_TIME LPP_CONF_OFF_TIME
|
|
#else
|
|
#define LPP_OFF_TIME CLOCK_SECOND * 1
|
|
#endif /* LPP_CONF_OFF_TIME */
|
|
|
|
#define PACKET_LIFETIME LPP_LISTEN_TIME + LPP_OFF_TIME
|
|
|
|
#define DUMP_QUEUED_PACKET 0
|
|
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
turn_radio_on(void)
|
|
{
|
|
radio->on();
|
|
leds_on(LEDS_YELLOW);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
turn_radio_off(void)
|
|
{
|
|
radio->off();
|
|
leds_off(LEDS_YELLOW);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
remove_queued_packet(void)
|
|
{
|
|
queuebuf_free(queued_packet);
|
|
queued_packet = NULL;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
listen_callback(int periods)
|
|
{
|
|
is_listening = periods;
|
|
turn_radio_on();
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* Send a probe packet.
|
|
*/
|
|
static void
|
|
send_probe(void)
|
|
{
|
|
struct lpp_hdr *hdr;
|
|
struct announcement_msg *adata;
|
|
struct announcement *a;
|
|
|
|
/* Set up the probe header. */
|
|
packetbuf_clear();
|
|
packetbuf_set_datalen(sizeof(struct lpp_hdr));
|
|
hdr = packetbuf_dataptr();
|
|
hdr->type = TYPE_PROBE;
|
|
rimeaddr_copy(&hdr->sender, &rimeaddr_node_addr);
|
|
rimeaddr_copy(&hdr->receiver, packetbuf_addr(PACKETBUF_ADDR_RECEIVER));
|
|
|
|
|
|
/* Construct the announcements */
|
|
adata = (struct announcement_msg *)((char *)hdr + sizeof(struct lpp_hdr));
|
|
|
|
adata->num = 0;
|
|
for(a = announcement_list(); a != NULL; a = a->next) {
|
|
adata->data[adata->num].id = a->id;
|
|
adata->data[adata->num].value = a->value;
|
|
adata->num++;
|
|
}
|
|
|
|
packetbuf_set_datalen(sizeof(struct lpp_hdr) +
|
|
ANNOUNCEMENT_MSG_HEADERLEN +
|
|
sizeof(struct announcement_data) * adata->num);
|
|
|
|
/* PRINTF("Sending probe\n");*/
|
|
radio->send(packetbuf_hdrptr(), packetbuf_totlen());
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* Duty cycle the radio. The protothread is driven by a ctimer that is
|
|
* initiated in the lpp_init() function.
|
|
*/
|
|
static int
|
|
dutycycle(void *ptr)
|
|
{
|
|
struct ctimer *t = ptr;
|
|
|
|
PT_BEGIN(&pt);
|
|
|
|
while(1) {
|
|
turn_radio_on();
|
|
send_probe();
|
|
ctimer_set(t, LPP_LISTEN_TIME, (void (*)(void *))dutycycle, t);
|
|
PT_YIELD(&pt);
|
|
|
|
if(queued_packet == NULL) {
|
|
if(is_listening == 0) {
|
|
turn_radio_off();
|
|
/* There is a bit of randomness here right now to avoid collisions
|
|
due to synchronization effects. Not sure how needed it is
|
|
though. XXX */
|
|
ctimer_set(t, LPP_OFF_TIME / 2 + (random_rand() % (LPP_OFF_TIME / 2)),
|
|
(void (*)(void *))dutycycle, t);
|
|
PT_YIELD(&pt);
|
|
} else {
|
|
is_listening--;
|
|
ctimer_set(t, LPP_OFF_TIME,
|
|
(void (*)(void *))dutycycle, t);
|
|
PT_YIELD(&pt);
|
|
}
|
|
} else {
|
|
/* We are currently sending a packet so we should keep the radio
|
|
turned on and not send any probes at this point. */
|
|
ctimer_set(t, PACKET_LIFETIME, (void (*)(void *))dutycycle, t);
|
|
PT_YIELD(&pt);
|
|
remove_queued_packet();
|
|
PRINTF("Removing old packet\n");
|
|
}
|
|
}
|
|
|
|
PT_END(&pt);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
*
|
|
* Send a packet. This function builds a complete packet with an LPP
|
|
* header and queues the packet. When a probe is heard (in the
|
|
* read_packet() function), and the sender of the probe matches the
|
|
* receiver of the queued packet, the queued packet is sent.
|
|
*
|
|
* ACK packets are treated differently from other packets: if a node
|
|
* sends a packet that it expects to be ACKed, the sending node keeps
|
|
* its radio on for some time after sending its packet. So we do not
|
|
* need to wait for a probe packet: we just transmit the ACK packet
|
|
* immediately.
|
|
*
|
|
*/
|
|
static int
|
|
send_packet(void)
|
|
{
|
|
struct lpp_hdr *hdr;
|
|
|
|
packetbuf_hdralloc(sizeof(struct lpp_hdr));
|
|
hdr = packetbuf_hdrptr();
|
|
|
|
rimeaddr_copy(&hdr->sender, &rimeaddr_node_addr);
|
|
rimeaddr_copy(&hdr->receiver, packetbuf_addr(PACKETBUF_ADDR_RECEIVER));
|
|
hdr->type = TYPE_DATA;
|
|
|
|
packetbuf_compact();
|
|
PRINTF("%d.%d: queueing packet to %d.%d, channel %d\n",
|
|
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1],
|
|
hdr->receiver.u8[0], hdr->receiver.u8[1],
|
|
packetbuf_attr(PACKETBUF_ATTR_CHANNEL));
|
|
|
|
if(packetbuf_attr(PACKETBUF_ATTR_PACKET_TYPE) == PACKETBUF_ATTR_PACKET_TYPE_ACK) {
|
|
/* Immediately send ACKs - we're assuming that the other node is
|
|
listening. */
|
|
/* printf("Immediately sending ACK\n");*/
|
|
return radio->send(packetbuf_hdrptr(), packetbuf_totlen());
|
|
} else {
|
|
|
|
/* If a packet is already queued, the DUMP_QUEUED_PACKET option
|
|
determines if the queued packet should be replaced with the new
|
|
packet, or if the new packet should be dropped. XXX haven't
|
|
measured the effect of this option */
|
|
#if DUMP_QUEUED_PACKET
|
|
if(queued_packet != NULL) {
|
|
remove_queued_packet();
|
|
}
|
|
queued_packet = queuebuf_new_from_packetbuf();
|
|
#else /* DUMP_QUEUED_PACKET */
|
|
if(queued_packet == NULL) {
|
|
queued_packet = queuebuf_new_from_packetbuf();
|
|
}
|
|
#endif /* DUMP_QUEUED_PACKET */
|
|
|
|
timer_set(&packet_lifetime_timer, PACKET_LIFETIME);
|
|
/* Wait for a probe packet from a neighbor */
|
|
turn_radio_on();
|
|
}
|
|
return 1;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/**
|
|
* Read a packet from the underlying radio driver. If the incoming
|
|
* packet is a probe packet and the sender of the probe matches the
|
|
* destination address of the queued packet (if any), the queued packet
|
|
* is sent.
|
|
*/
|
|
static int
|
|
read_packet(void)
|
|
{
|
|
int len;
|
|
struct lpp_hdr *hdr, *qhdr;
|
|
|
|
packetbuf_clear();
|
|
len = radio->read(packetbuf_dataptr(), PACKETBUF_SIZE);
|
|
if(len > 0) {
|
|
packetbuf_set_datalen(len);
|
|
hdr = packetbuf_dataptr();
|
|
packetbuf_hdrreduce(sizeof(struct lpp_hdr));
|
|
/* PRINTF("got packet type %d\n", hdr->type);*/
|
|
if(hdr->type == TYPE_PROBE) {
|
|
/* Parse incoming announcements */
|
|
struct announcement_msg *adata = packetbuf_dataptr();
|
|
int i;
|
|
|
|
/* PRINTF("%d.%d: probe from %d.%d with %d announcements\n",
|
|
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1],
|
|
hdr->sender.u8[0], hdr->sender.u8[1], adata->num);*/
|
|
|
|
for(i = 0; i < adata->num; ++i) {
|
|
/* PRINTF("%d.%d: announcement %d: %d\n",
|
|
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1],
|
|
adata->data[i].id,
|
|
adata->data[i].value);*/
|
|
|
|
announcement_heard(&hdr->sender,
|
|
adata->data[i].id,
|
|
adata->data[i].value);
|
|
}
|
|
|
|
/* Check if the outbound packet has been waiting too long in the
|
|
queue. If so, we remove the packet from the queue. */
|
|
if(queued_packet != NULL && timer_expired(&packet_lifetime_timer)) {
|
|
remove_queued_packet();
|
|
}
|
|
if(queued_packet != NULL) {
|
|
qhdr = queuebuf_dataptr(queued_packet);
|
|
if(rimeaddr_cmp(&qhdr->receiver, &hdr->sender) ||
|
|
rimeaddr_cmp(&qhdr->receiver, &rimeaddr_null)) {
|
|
PRINTF("%d.%d: got a probe from %d.%d, sending packet to %d.%d\n",
|
|
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1],
|
|
hdr->sender.u8[0], hdr->sender.u8[1],
|
|
qhdr->receiver.u8[0], qhdr->receiver.u8[1]);
|
|
|
|
radio->send(queuebuf_dataptr(queued_packet),
|
|
queuebuf_datalen(queued_packet));
|
|
|
|
/* If the packet was not a broadcast packet, we dequeue it
|
|
now. Broadcast packets should be transmitted to all
|
|
neighbors, and are dequeued by the dutycycling function
|
|
instead, after the appropriate time. */
|
|
if(!rimeaddr_cmp(&qhdr->receiver, &rimeaddr_null)) {
|
|
remove_queued_packet();
|
|
}
|
|
|
|
|
|
turn_radio_on(); /* XXX Awaiting an ACK: we should check the
|
|
packet type of the queued packet to see
|
|
if it is a data packet. If not, we
|
|
should not turn the radio on. */
|
|
}
|
|
}
|
|
} else if(hdr->type == TYPE_DATA) {
|
|
PRINTF("%d.%d: got data from %d.%d\n",
|
|
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1],
|
|
hdr->sender.u8[0], hdr->sender.u8[1]);
|
|
}
|
|
len = packetbuf_datalen();
|
|
}
|
|
return len;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
set_receive_function(void (* recv)(const struct mac_driver *))
|
|
{
|
|
receiver_callback = recv;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static int
|
|
on(void)
|
|
{
|
|
turn_radio_on();
|
|
return 1;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static int
|
|
off(int keep_radio_on)
|
|
{
|
|
if(keep_radio_on) {
|
|
turn_radio_on();
|
|
} else {
|
|
turn_radio_off();
|
|
}
|
|
return 1;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
static const struct mac_driver lpp_driver = {
|
|
"LPP",
|
|
send_packet,
|
|
read_packet,
|
|
set_receive_function,
|
|
on,
|
|
off,
|
|
};
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
input_packet(const struct radio_driver *d)
|
|
{
|
|
if(receiver_callback) {
|
|
receiver_callback(&lpp_driver);
|
|
}
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
const struct mac_driver *
|
|
lpp_init(const struct radio_driver *d)
|
|
{
|
|
radio = d;
|
|
radio->set_receive_function(input_packet);
|
|
ctimer_set(&timer, LPP_LISTEN_TIME, (void (*)(void *))dutycycle, &timer);
|
|
|
|
announcement_register_listen_callback(listen_callback);
|
|
|
|
return &lpp_driver;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|