mirror of
https://github.com/oliverschmidt/contiki.git
synced 2024-11-04 13:06:38 +00:00
439 lines
13 KiB
C
439 lines
13 KiB
C
/**
|
|
* \addtogroup rimecollect_neighbor
|
|
* @{
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2006, Swedish Institute of Computer Science.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the Institute nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* This file is part of the Contiki operating system.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* \file
|
|
* Radio neighborhood management
|
|
* \author
|
|
* Adam Dunkels <adam@sics.se>
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
|
|
#include "contiki.h"
|
|
#include "lib/memb.h"
|
|
#include "lib/list.h"
|
|
|
|
#include "net/rime/collect-neighbor.h"
|
|
#include "net/rime/collect.h"
|
|
|
|
#ifdef COLLECT_NEIGHBOR_CONF_MAX_COLLECT_NEIGHBORS
|
|
#define MAX_COLLECT_NEIGHBORS COLLECT_NEIGHBOR_CONF_MAX_COLLECT_NEIGHBORS
|
|
#else /* COLLECT_NEIGHBOR_CONF_MAX_COLLECT_NEIGHBORS */
|
|
#define MAX_COLLECT_NEIGHBORS 8
|
|
#endif /* COLLECT_NEIGHBOR_CONF_MAX_COLLECT_NEIGHBORS */
|
|
|
|
#define RTMETRIC_MAX COLLECT_MAX_DEPTH
|
|
|
|
MEMB(collect_neighbors_mem, struct collect_neighbor, MAX_COLLECT_NEIGHBORS);
|
|
|
|
#define MAX_AGE 180
|
|
#define MAX_LE_AGE 10
|
|
#define PERIODIC_INTERVAL CLOCK_SECOND * 60
|
|
|
|
#define EXPECTED_CONGESTION_DURATION CLOCK_SECOND * 240
|
|
#define CONGESTION_PENALTY 8 * COLLECT_LINK_ESTIMATE_UNIT
|
|
|
|
#define DEBUG 0
|
|
#if DEBUG
|
|
#include <stdio.h>
|
|
#define PRINTF(...) printf(__VA_ARGS__)
|
|
#else
|
|
#define PRINTF(...)
|
|
#endif
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
static void
|
|
periodic(void *ptr)
|
|
{
|
|
struct collect_neighbor_list *neighbor_list;
|
|
struct collect_neighbor *n;
|
|
|
|
neighbor_list = ptr;
|
|
|
|
/* Go through all collect_neighbors and increase their age. */
|
|
for(n = list_head(neighbor_list->list); n != NULL; n = list_item_next(n)) {
|
|
n->age++;
|
|
n->le_age++;
|
|
}
|
|
for(n = list_head(neighbor_list->list); n != NULL; n = list_item_next(n)) {
|
|
if(n->le_age == MAX_LE_AGE) {
|
|
collect_link_estimate_new(&n->le);
|
|
n->le_age = 0;
|
|
}
|
|
if(n->age == MAX_AGE) {
|
|
memb_free(&collect_neighbors_mem, n);
|
|
list_remove(neighbor_list->list, n);
|
|
n = list_head(neighbor_list->list);
|
|
}
|
|
}
|
|
ctimer_set(&neighbor_list->periodic, PERIODIC_INTERVAL,
|
|
periodic, neighbor_list);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
collect_neighbor_init(void)
|
|
{
|
|
static uint8_t initialized = 0;
|
|
if(initialized == 0) {
|
|
initialized = 1;
|
|
memb_init(&collect_neighbors_mem);
|
|
}
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
collect_neighbor_list_new(struct collect_neighbor_list *neighbors_list)
|
|
{
|
|
LIST_STRUCT_INIT(neighbors_list, list);
|
|
list_init(neighbors_list->list);
|
|
ctimer_set(&neighbors_list->periodic, CLOCK_SECOND, periodic, neighbors_list);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
struct collect_neighbor *
|
|
collect_neighbor_list_find(struct collect_neighbor_list *neighbors_list,
|
|
const rimeaddr_t *addr)
|
|
{
|
|
struct collect_neighbor *n;
|
|
if(neighbors_list == NULL) {
|
|
return NULL;
|
|
}
|
|
for(n = list_head(neighbors_list->list); n != NULL; n = list_item_next(n)) {
|
|
if(rimeaddr_cmp(&n->addr, addr)) {
|
|
return n;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
int
|
|
collect_neighbor_list_add(struct collect_neighbor_list *neighbors_list,
|
|
const rimeaddr_t *addr, uint16_t nrtmetric)
|
|
{
|
|
struct collect_neighbor *n;
|
|
|
|
if(addr == NULL) {
|
|
PRINTF("collect_neighbor_list_add: attempt to add NULL addr\n");
|
|
return 0;
|
|
}
|
|
|
|
if(neighbors_list == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
PRINTF("collect_neighbor_add: adding %d.%d\n", addr->u8[0], addr->u8[1]);
|
|
|
|
/* Check if the collect_neighbor is already on the list. */
|
|
for(n = list_head(neighbors_list->list); n != NULL; n = list_item_next(n)) {
|
|
if(rimeaddr_cmp(&n->addr, addr)) {
|
|
PRINTF("collect_neighbor_add: already on list %d.%d\n",
|
|
addr->u8[0], addr->u8[1]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If the collect_neighbor was not on the list, we try to allocate memory
|
|
for it. */
|
|
if(n == NULL) {
|
|
PRINTF("collect_neighbor_add: not on list, allocating %d.%d\n",
|
|
addr->u8[0], addr->u8[1]);
|
|
n = memb_alloc(&collect_neighbors_mem);
|
|
if(n != NULL) {
|
|
list_add(neighbors_list->list, n);
|
|
}
|
|
}
|
|
|
|
/* If we could not allocate memory, we try to recycle an old
|
|
neighbor. XXX Should also look for the one with the worst
|
|
rtmetric (not link esimate). XXX Also make sure that we don't
|
|
replace a neighbor with a neighbor that has a worse metric. */
|
|
if(n == NULL) {
|
|
uint16_t worst_rtmetric;
|
|
struct collect_neighbor *worst_neighbor;
|
|
|
|
/* Find the neighbor that has the highest rtmetric. This is the
|
|
neighbor that we are least likely to be using in the
|
|
future. But we also need to make sure that the neighbor we are
|
|
currently adding is not worst than the one we would be
|
|
replacing. If so, we don't put the new neighbor on the list. */
|
|
worst_rtmetric = 0;
|
|
worst_neighbor = NULL;
|
|
|
|
for(n = list_head(neighbors_list->list);
|
|
n != NULL; n = list_item_next(n)) {
|
|
if(n->rtmetric > worst_rtmetric) {
|
|
worst_neighbor = n;
|
|
worst_rtmetric = n->rtmetric;
|
|
}
|
|
}
|
|
|
|
/* Only add this new neighbor if its rtmetric is lower than the
|
|
one it would replace. */
|
|
if(nrtmetric < worst_rtmetric) {
|
|
n = worst_neighbor;
|
|
}
|
|
if(n != NULL) {
|
|
PRINTF("collect_neighbor_add: not on list, not allocated, recycling %d.%d\n",
|
|
n->addr.u8[0], n->addr.u8[1]);
|
|
}
|
|
}
|
|
|
|
if(n != NULL) {
|
|
n->age = 0;
|
|
rimeaddr_copy(&n->addr, addr);
|
|
n->rtmetric = nrtmetric;
|
|
collect_link_estimate_new(&n->le);
|
|
n->le_age = 0;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
list_t
|
|
collect_neighbor_list(struct collect_neighbor_list *neighbors_list)
|
|
{
|
|
if(neighbors_list == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return neighbors_list->list;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
collect_neighbor_list_remove(struct collect_neighbor_list *neighbors_list,
|
|
const rimeaddr_t *addr)
|
|
{
|
|
struct collect_neighbor *n;
|
|
|
|
if(neighbors_list == NULL) {
|
|
return;
|
|
}
|
|
|
|
n = collect_neighbor_list_find(neighbors_list, addr);
|
|
|
|
if(n != NULL) {
|
|
list_remove(neighbors_list->list, n);
|
|
memb_free(&collect_neighbors_mem, n);
|
|
}
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
struct collect_neighbor *
|
|
collect_neighbor_list_best(struct collect_neighbor_list *neighbors_list)
|
|
{
|
|
int found;
|
|
struct collect_neighbor *n, *best;
|
|
uint16_t rtmetric;
|
|
|
|
rtmetric = RTMETRIC_MAX;
|
|
best = NULL;
|
|
found = 0;
|
|
|
|
if(neighbors_list == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/* PRINTF("%d: ", node_id);*/
|
|
PRINTF("collect_neighbor_best: ");
|
|
|
|
/* Find the neighbor with the lowest rtmetric + linkt estimate. */
|
|
for(n = list_head(neighbors_list->list); n != NULL; n = list_item_next(n)) {
|
|
PRINTF("%d.%d %d+%d=%d, ",
|
|
n->addr.u8[0], n->addr.u8[1],
|
|
n->rtmetric, collect_neighbor_link_estimate(n),
|
|
collect_neighbor_rtmetric(n));
|
|
if(collect_neighbor_rtmetric_link_estimate(n) < rtmetric) {
|
|
rtmetric = collect_neighbor_rtmetric_link_estimate(n);
|
|
best = n;
|
|
}
|
|
}
|
|
PRINTF("\n");
|
|
|
|
return best;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
int
|
|
collect_neighbor_list_num(struct collect_neighbor_list *neighbors_list)
|
|
{
|
|
if(neighbors_list == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
PRINTF("collect_neighbor_num %d\n", list_length(neighbors_list->list));
|
|
return list_length(neighbors_list->list);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
struct collect_neighbor *
|
|
collect_neighbor_list_get(struct collect_neighbor_list *neighbors_list, int num)
|
|
{
|
|
int i;
|
|
struct collect_neighbor *n;
|
|
|
|
if(neighbors_list == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
PRINTF("collect_neighbor_get %d\n", num);
|
|
|
|
i = 0;
|
|
for(n = list_head(neighbors_list->list); n != NULL; n = list_item_next(n)) {
|
|
if(i == num) {
|
|
PRINTF("collect_neighbor_get found %d.%d\n",
|
|
n->addr.u8[0], n->addr.u8[1]);
|
|
return n;
|
|
}
|
|
i++;
|
|
}
|
|
return NULL;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
collect_neighbor_list_purge(struct collect_neighbor_list *neighbors_list)
|
|
{
|
|
if(neighbors_list == NULL) {
|
|
return;
|
|
}
|
|
|
|
while(list_head(neighbors_list->list) != NULL) {
|
|
memb_free(&collect_neighbors_mem, list_pop(neighbors_list->list));
|
|
}
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
collect_neighbor_update_rtmetric(struct collect_neighbor *n, uint16_t rtmetric)
|
|
{
|
|
if(n != NULL) {
|
|
PRINTF("%d.%d: collect_neighbor_update %d.%d rtmetric %d\n",
|
|
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1],
|
|
n->addr.u8[0], n->addr.u8[1], rtmetric);
|
|
n->rtmetric = rtmetric;
|
|
n->age = 0;
|
|
}
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
collect_neighbor_tx_fail(struct collect_neighbor *n, uint16_t num_tx)
|
|
{
|
|
if(n == NULL) {
|
|
return;
|
|
}
|
|
collect_link_estimate_update_tx_fail(&n->le, num_tx);
|
|
n->le_age = 0;
|
|
n->age = 0;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
collect_neighbor_tx(struct collect_neighbor *n, uint16_t num_tx)
|
|
{
|
|
if(n == NULL) {
|
|
return;
|
|
}
|
|
collect_link_estimate_update_tx(&n->le, num_tx);
|
|
n->le_age = 0;
|
|
n->age = 0;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
collect_neighbor_rx(struct collect_neighbor *n)
|
|
{
|
|
if(n == NULL) {
|
|
return;
|
|
}
|
|
collect_link_estimate_update_rx(&n->le);
|
|
n->age = 0;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
uint16_t
|
|
collect_neighbor_link_estimate(struct collect_neighbor *n)
|
|
{
|
|
if(n == NULL) {
|
|
return 0;
|
|
}
|
|
if(collect_neighbor_is_congested(n)) {
|
|
/* printf("Congested %d.%d, sould return %d, returning %d\n",
|
|
n->addr.u8[0], n->addr.u8[1],
|
|
collect_link_estimate(&n->le),
|
|
collect_link_estimate(&n->le) + CONGESTION_PENALTY);*/
|
|
return collect_link_estimate(&n->le) + CONGESTION_PENALTY;
|
|
} else {
|
|
return collect_link_estimate(&n->le);
|
|
}
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
uint16_t
|
|
collect_neighbor_rtmetric_link_estimate(struct collect_neighbor *n)
|
|
{
|
|
if(n == NULL) {
|
|
return 0;
|
|
}
|
|
return n->rtmetric + collect_link_estimate(&n->le);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
uint16_t
|
|
collect_neighbor_rtmetric(struct collect_neighbor *n)
|
|
{
|
|
if(n == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
return n->rtmetric;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
void
|
|
collect_neighbor_set_congested(struct collect_neighbor *n)
|
|
{
|
|
if(n == NULL) {
|
|
return;
|
|
}
|
|
timer_set(&n->congested_timer, EXPECTED_CONGESTION_DURATION);
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
int
|
|
collect_neighbor_is_congested(struct collect_neighbor *n)
|
|
{
|
|
if(n == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if(timer_expired(&n->congested_timer)) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
/** @} */
|