dos33fsprogs/gr-sim/tfv_flying_float.c

427 lines
7.3 KiB
C
Raw Normal View History

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include "gr-sim.h"
#include "tfv_utils.h"
#include "tfv_zp.h"
#include "6502_emulate.h"
#include "tfv_sprites.h"
/* Mode7 code based on code from: */
/* http://www.helixsoft.nl/articles/circle/sincos.htm */
static unsigned char flying_map[64]= {
2,15,15,15, 15,15,15, 2,
13,12,12, 8, 4, 4, 0,13,
13,12,12,12, 8, 4, 4,13,
13,12,12, 8, 4, 4, 4,13,
13,12, 9, 9, 8, 4, 4,13,
13,12, 9, 8, 4, 4, 4,13,
13,12, 9, 9, 1, 4, 4,13,
2,13,13,13, 13,13,13, 2};
static unsigned char water_map[32]={
2,2,2,2, 2,2,2,2,
14,2,2,2, 2,2,2,2,
2, 2,2,2, 2,2,2,2,
2,2,2,2, 14,2,2,2,
};
#define TILE_W 64
#define TILE_H 64
#define MASK_X (TILE_W - 1)
#define MASK_Y (TILE_H - 1)
#define LOWRES_W 40
#define LOWRES_H 40
static int displayed=0;
static int over_water=0;
static int lookup_map(int xx, int yy) {
int color,offset;
color=2;
xx=xx&MASK_X;
yy=yy&MASK_Y;
if (!displayed) {
printf("XX,YY! %x,%x\n",xx,yy);
}
// if ( ((y&0x3)==1) && ((x&7)==0) ) color=14;
// if ( ((y&0x3)==3) && ((x&7)==4) ) color=14;
offset=yy<<3;
offset+=xx;
// color=water_map[((yy*8)+xx)&0x1f];
color=water_map[offset&0x1f];
/* 2 2 2 2 2 2 2 2 */
/* e 2 2 2 2 2 2 2 */
/* 2 2 2 2 2 2 2 2 */
/* 2 2 2 2 e 2 2 2 */
if ((yy<8) && (xx<8)) {
color=flying_map[offset];
}
if (!displayed) {
printf("COLOR! %x\n",color);
}
return color;
}
// current screen position
static int screen_x, screen_y;
static char angle=1;
// Speed
#define SPEED_STOPPED 0
static unsigned char speed=SPEED_STOPPED; // 0..4, with 0=stopped
// map coordinates
double dx,dy;
double cx=0.0,cy=0.0;
static double space_z=4.5; // height of the camera above the plane
static int horizon=-2; // number of pixels line 0 is below the horizon
static double scale_x=20, scale_y=20;
double factor;
double BETA=-0.5;
#define ANGLE_STEPS 32
double our_sin(unsigned char angle) {
double r;
r=3.14159265358979*2.0*(double)angle/(double)ANGLE_STEPS;
return sin(r);
}
double our_cos(unsigned char angle) {
double r;
r=3.14159265358979*2.0*(double)angle/(double)ANGLE_STEPS;
return cos(r);
}
//
// Detailed version
//
//
void draw_background_mode7(void) {
// the distance and horizontal scale of the line we are drawing
double distance, horizontal_scale;
// step for points in space between two pixels on a horizontal line
double line_dx, line_dy;
// current space position
double space_x, space_y;
int map_color;
over_water=0;
/* Draw Sky */
/* Originally wanted to be fancy and have sun too, but no */
color_equals(COLOR_MEDIUMBLUE);
for(screen_y=0;screen_y<6;screen_y+=2) {
hlin_double(ram[DRAW_PAGE], 0, 40, screen_y);
}
/* Draw hazy horizon */
color_equals(COLOR_GREY);
hlin_double(ram[DRAW_PAGE], 0, 40, 6);
// Move camera back a bit
factor=space_z*BETA;
printf("space_z=%lf BETA=%lf factor=%lf\n",space_z,BETA,factor);
for (screen_y = 8; screen_y < LOWRES_H; screen_y++) {
// first calculate the distance of the line we are drawing
distance = (space_z * scale_y) / (screen_y + horizon);
// then calculate the horizontal scale, or the distance between
// space points on this horizontal line
horizontal_scale = (distance / scale_x);
// calculate the dx and dy of points in space when we step
// through all points on this line
line_dx = -our_sin(angle) * horizontal_scale;
line_dy = our_cos(angle) * horizontal_scale;
// calculate the starting position
space_x = cx + ((distance+factor) * our_cos(angle)) - LOWRES_W/2 * line_dx;
space_y = cy + ((distance+factor) * our_sin(angle)) - LOWRES_W/2 * line_dy;
// go through all points in this screen line
for (screen_x = 0; screen_x < LOWRES_W-1; screen_x++) {
// get a pixel from the tile and put it on the screen
map_color=lookup_map((int)space_x,(int)space_y);
color_equals(map_color);
if ((screen_x==20) && (screen_y==38)) {
if (map_color==COLOR_DARKBLUE) over_water=1;
}
plot(screen_x,screen_y);
// advance to the next position in space
space_x += line_dx;
space_y += line_dy;
}
}
}
#define SHIPX 15
int flying(void) {
unsigned char ch;
int shipy;
int turning=0;
int draw_splash=0,splash_count=0;
int zint;
/************************************************/
/* Flying */
/************************************************/
gr();
ram[DRAW_PAGE]=PAGE0;
clear_bottom();
ram[DRAW_PAGE]=PAGE1;
clear_bottom();
shipy=20;
while(1) {
if (splash_count>0) splash_count--;
ch=grsim_input();
if ((ch=='q') || (ch==27)) break;
#if 0
if (ch=='g') {
BETA+=0.1;
printf("Horizon=%lf\n",BETA);
}
if (ch=='h') {
BETA-=0.1;
printf("Horizon=%lf\n",BETA);
}
if (ch=='s') {
scale_x++;
scale_y++;
printf("Scale=%lf\n",scale_x);
}
#endif
if ((ch=='w') || (ch==APPLE_UP)) {
if (shipy>16) {
shipy-=2;
space_z+=1;
}
splash_count=0;
// printf("Z=%lf\n",space_z);
}
if ((ch=='s') || (ch==APPLE_DOWN)) {
if (shipy<28) {
shipy+=2;
space_z-=1;
}
else {
splash_count=10;
}
// printf("Z=%lf\n",space_z);
}
if ((ch=='a') || (ch==APPLE_LEFT)) {
if (turning>0) {
turning=0;
}
else {
turning=-20;
angle-=1;
if (angle<0) angle+=ANGLE_STEPS;
}
}
if ((ch=='d') || (ch==APPLE_RIGHT)) {
if (turning<0) {
turning=0;
}
else {
turning=20;
angle+=1;
if (angle>=ANGLE_STEPS) angle-=ANGLE_STEPS;
}
}
/* Used to be able to go backwards */
if (ch=='z') {
if (speed<3) speed++;
}
if (ch=='x') {
if (speed>0) speed--;
}
if (ch==' ') {
speed=SPEED_STOPPED;
}
if (ch=='h') {
print_help();
}
/* Ending */
if (ch==13) {
int landing_color,tx,ty;
tx=cx; ty=cy;
landing_color=lookup_map(tx,ty);
printf("Trying to land at %d %d\n",tx,ty);
printf("Color=%d\n",landing_color);
if (landing_color==12) {
int loop;
zint=space_z;
/* Land the ship */
for(loop=zint;loop>0;loop--) {
draw_background_mode7();
grsim_put_sprite(shadow_forward,SHIPX+3,31+zint);
grsim_put_sprite(ship_forward,SHIPX,shipy);
page_flip();
usleep(200000);
space_z--;
}
return 0;
}
else {
htab(11);
vtab(22);
move_cursor();
print_both_pages("NEED TO LAND ON GRASS!");
}
}
if (speed!=SPEED_STOPPED) {
dx = (double)speed * 0.25 * our_cos (angle);
dy = (double)speed * 0.25 * our_sin (angle);
cx += dx;
cy += dy;
}
draw_background_mode7();
zint=space_z;
draw_splash=0;
if (speed>0) {
if ((shipy>25) && (turning!=0)) {
splash_count=1;
}
if ((over_water) && (splash_count)) {
draw_splash=1;
}
}
// printf("VMW: %d %d\n",draw_splash,splash_count);
if (turning==0) {
if (draw_splash) {
grsim_put_sprite(splash_forward,
SHIPX+1,shipy+9);
}
grsim_put_sprite(shadow_forward,SHIPX+3,31+zint);
grsim_put_sprite(ship_forward,SHIPX,shipy);
}
if (turning<0) {
if (draw_splash) {
grsim_put_sprite(splash_left,
SHIPX+1,36);
}
grsim_put_sprite(shadow_left,SHIPX+3,31+zint);
grsim_put_sprite(ship_left,SHIPX,shipy);
turning++;
}
if (turning>0) {
if (draw_splash) {
grsim_put_sprite(splash_right,
SHIPX+1,36);
}
grsim_put_sprite(shadow_right,SHIPX+3,31+zint);
grsim_put_sprite(ship_right,SHIPX,shipy);
turning--;
}
page_flip();
usleep(20000);
}
return 0;
}