dlowres_mode7: add initial checkin

This commit is contained in:
Vince Weaver 2017-12-05 16:16:38 -05:00
parent af84003bcc
commit 0f6b0e0ef4
9 changed files with 2734 additions and 0 deletions

27
dlowres_mode7/Makefile Normal file
View File

@ -0,0 +1,27 @@
include ../Makefile.inc
DOS33 = ../dos33fs-utils/dos33
PNG2GR = ../gr-utils/png2gr
PNG2RLE = ../gr-utils/png2rle
all: dlowres_mode7.dsk
$(DOS33):
cd ../dos33fs-utils && make
dlowres_mode7.dsk: $(DOS33) DLOWRES_MODE7
$(DOS33) -y dlowres_mode7.dsk BSAVE -a 0x1000 DLOWRES_MODE7
###
DLOWRES_MODE7: dlowres_mode7.o
ld65 -o DLOWRES_MODE7 dlowres_mode7.o -C ./apple2_1000.inc
dlowres_mode7.o: dlowres_mode7.s \
dlowres_flying.s fast_multiply.s \
dlowres_utils.s dlowres_zp.inc
ca65 -o dlowres_mode7.o dlowres_mode7.s -l dlowres_mode7.lst
clean:
rm -f *~ *.o *.lst

View File

@ -0,0 +1,12 @@
MEMORY {
ZP: start = $00, size = $1A, type = rw;
RAM: start = $1000, size = $8E00, file = %O;
}
SEGMENTS {
CODE: load = RAM, type = ro;
RODATA: load = RAM, type = ro;
DATA: load = RAM, type = rw;
BSS: load = RAM, type = bss, define = yes;
ZEROPAGE: load = ZP, type = zp;
}

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -0,0 +1,83 @@
.include "dlowres_zp.inc"
;================================
; Clear screen and setup graphics
;================================
jsr HOME
jsr set_gr_page0
;================================
; Set up Double Low-res
;================================
; lda SET_GR ; graphics C050
; lda LORES ; lores C056
; lda TEXTGR ; mixset C053
; sta EIGHTYSTORE_OFF ; 80store C001
; sta EIGHTYCOL ; 80col C00d
; lda AN3 ; AN3 C05E
lda #0
sta DISP_PAGE ; Forgot to set initially
; real hardware and AppleWin default
; to different values
;===================================
; zero out the zero page that we use
;===================================
; memset()
;===================================
; Clear top/bottom of page 0 and 1
;===================================
jsr clear_screens
;=====================
; Flying
;=====================
jsr flying_start
;=====================
; All finished
;=====================
exit:
lda #$4
sta BASH
lda #$0
sta BASL ; restore to 0x400 (page 0)
; copy to 0x400 (page 0)
; call home
jsr HOME
; Return to BASIC?
rts
;===============================================
; External modules
;===============================================
.include "dlowres_utils.s"
.include "dlowres_flying.s"
.include "dlowres_sprites.inc"
;===============================================
; Variables
;===============================================
; waste memory with a lookup table
; maybe faster than using GBASCALC?
gr_offsets:
.word $400,$480,$500,$580,$600,$680,$700,$780
.word $428,$4a8,$528,$5a8,$628,$6a8,$728,$7a8
.word $450,$4d0,$550,$5d0,$650,$6d0,$750,$7d0

View File

@ -0,0 +1,60 @@
;================
; Ship Sprites
;================
splash_forward:
.byte $7,$2
.byte $00,$ee,$00,$00,$00,$ee,$00
.byte $ee,$00,$00,$00,$00,$00,$ee
splash_right:
.byte $7,$2
.byte $00,$00,$00,$00,$00,$ee,$00
.byte $00,$00,$00,$00,$00,$00,$ee
splash_left:
.byte $7,$2
.byte $00,$ee,$00,$00,$00,$00,$00
.byte $ee,$00,$00,$00,$00,$00,$00
shadow_forward:
.byte $3,$2
.byte $00,$aa,$00
.byte $a0,$aa,$a0
shadow_right:
.byte $3,$2
.byte $a0,$00,$aa
.byte $00,$0a,$a0
shadow_left:
.byte $3,$2
.byte $aa,$00,$a0
.byte $a0,$0a,$00
ship_forward:
.byte $9,$5
.byte $00,$00,$00,$00,$ff,$00,$00,$00,$00
.byte $00,$00,$00,$66,$ff,$66,$00,$00,$00
.byte $00,$00,$70,$2f,$12,$2f,$70,$00,$00
.byte $f0,$f7,$f7,$f2,$d9,$f2,$f7,$f7,$f0
.byte $00,$00,$00,$00,$0d,$00,$00,$00,$00
ship_right:
.byte $9,$5
.byte $00,$00,$00,$00,$00,$60,$60,$f0,$00
.byte $00,$f0,$70,$70,$f6,$f6,$6f,$66,$00
.byte $00,$07,$ff,$2f,$12,$27,$f6,$00,$00
.byte $00,$00,$00,$dd,$d9,$f2,$77,$00,$00
.byte $00,$00,$00,$00,$00,$0f,$ff,$70,$00
ship_left:
.byte $9,$5
.byte $00,$f0,$60,$60,$00,$00,$00,$00,$00
.byte $00,$66,$6f,$f6,$f6,$70,$70,$f0,$00
.byte $00,$00,$f6,$27,$12,$2f,$ff,$07,$00
.byte $00,$00,$77,$f2,$d9,$dd,$00,$00,$00
.byte $00,$70,$ff,$0f,$00,$00,$00,$00,$00

View File

@ -0,0 +1,753 @@
;=====================================================================
;= ROUTINES
;=====================================================================
clear_screens:
;===================================
; Clear top/bottom of page 0
;===================================
lda #$0
sta DRAW_PAGE
jsr clear_top
jsr clear_bottom
;===================================
; Clear top/bottom of page 1
;===================================
lda #$4
sta DRAW_PAGE
jsr clear_top
jsr clear_bottom
rts
;==========
; page_flip
;==========
page_flip:
lda DISP_PAGE ; 3
beq page_flip_show_1 ; 2nt/3
page_flip_show_0:
bit PAGE0 ; 4
lda #4 ; 2
sta DRAW_PAGE ; DRAW_PAGE=1 ; 3
lda #0 ; 2
sta DISP_PAGE ; DISP_PAGE=0 ; 3
rts ; 6
page_flip_show_1:
bit PAGE1 ; 4
sta DRAW_PAGE ; DRAW_PAGE=0 ; 3
lda #1 ; 2
sta DISP_PAGE ; DISP_PAGE=1 ; 3
rts ; 6
;====================
; DISP_PAGE=0 26
; DISP_PAGE=1 24
;======================
; memset
;======================
; a=value
; x=length
; MEMPTRL/MEMPTRH is address
memset:
ldy #0
memset_loop:
sta MEMPTRL,Y
iny
dex
bne memset_loop
rts
;=================
; load RLE image
;=================
; Output is BASH/BASL
; Input is in GBASH/GBASL
load_rle_gr:
lda #$0
tax
tay ; init X and Y to 0
sta CV ; ycoord=0
lda (GBASL),y ; load xsize
sta CH
iny ; (we should check if we had
; bad luck and overflows page)
iny ; skip ysize
rle_loop:
lda (GBASL),y ; load run value
cmp #$ff ; if 0xff
beq rle_done ; we are done
sta RUN
iny ; point to next value
bne rle_yskip1 ; if overflow, increment address
inc GBASH
rle_yskip1:
lda (GBASL),y ; load value to write
iny
bne rle_yskip2
inc GBASH
rle_yskip2:
sty TEMP2 ; save y for later
pha
lda #$0
tay
pla ; convoluted way to set y to 0
rle_run_loop:
sta (BASL),y ; write out the value
inc BASL ; increment the pointer
bne rle_skip3 ; if wrapped
inc BASH ; then increment the high value
rle_skip3:
inx ; increment the X value
cpx CH ; compare against the image width
bcc rle_not_eol ; if less then keep going
pha ; save out value on stack
lda BASL ; cheat to avoid a 16-bit add
cmp #$a7 ; we are adding 0x58 to get
bcc rle_add_skip ; to the next line
inc BASH
rle_add_skip:
clc
adc #$58 ; actually do the 0x58 add
sta BASL ; and store it back
inc CV ; add 2 to ypos
inc CV ; each "line" is two high
lda CV ; load value
cmp #15 ; if it's greater than 14 it wraps
bcc rle_no_wrap ; Thanks Woz
lda #$0 ; we wrapped, so set to zero
sta CV
; when wrapping have to sub 0x3d8
sec ; this is a 16-bit subtract routine
lda BASL
sbc #$d8 ; LSB
sta BASL
lda BASH ; MSB
sbc #$3 ;
sta BASH
rle_no_wrap:
lda #$0 ; set X value back to zero
tax
pla ; restore value to write from stack
rle_not_eol:
dec RUN ; decrement run value
bne rle_run_loop ; if not zero, keep looping
ldy TEMP2 ; restore the input pointer
sec
bcs rle_loop ; and branch always
rle_done:
lda #$15 ; move the cursor somewhere sane
sta CV
rts
;==========================================================
; set_text_page0
;==========================================================
;
set_text_page0:
bit PAGE0 ; set page0
bit TEXT ; set text mode
rts
;==========================================================
; set_gr_page0
;==========================================================
;
set_gr_page0:
;lda #4
;sta GR_PAGE
bit PAGE0 ; set page 0
bit LORES ; Lo-res graphics
bit TEXTGR ; mixed gr/text mode
bit SET_GR ; set graphics
rts
;=========================================================
; gr_copy_to_current
;=========================================================
; copy 0xc00 to DRAW_PAGE
; 2 + 8*38 + 4*80*23 + 4*120*26 + 13 = 20,159 = 20ms = 50Hz
;
gr_copy_to_current:
ldx #0 ; set y to zero ; 2
gr_copy_loop:
stx TEMP ; save y ; 3
txa ; move to A ; 2
asl ; mult by 2 ; 2
tay ; put into Y ; 2
lda gr_offsets,Y ; lookup low byte for line addr ; 5
sta OUTL ; out and in are the same ; 3
sta INL ; 3
lda gr_offsets+1,Y ; lookup high byte for line addr ; 5
adc DRAW_PAGE
sta OUTH ; 3
lda gr_offsets+1,Y ; lookup high byte for line addr ; 5
adc #$8 ; for now, fixed 0xc ; 2
sta INH ; 3
ldx TEMP ; restore y ; 3
ldy #0 ; set X counter to 0 ; 2
gr_copy_line:
lda (INL),Y ; load a byte ; 5
sta (OUTL),Y ; store a byte ; 6
iny ; increment pointer ; 2
cpx #$4 ; don't want to copy bottom 4*40 ; 2
bcs gr_copy_above4 ; 3
gr_copy_below4:
cpy #120 ; for early ones, copy 120 bytes ; 2
bne gr_copy_line ; 3
beq gr_copy_line_done ; 3
gr_copy_above4: ; for last four, just copy 80 bytes
cpy #80 ; 2
bne gr_copy_line ; 3
gr_copy_line_done:
inx ; increment y value ; 2
cpx #8 ; there are 8 of them ; 2
bne gr_copy_loop ; if not, loop ; 3
rts ; 6
;==========================================================
; Wait until keypressed
;==========================================================
;
wait_until_keypressed:
lda KEYPRESS ; check if keypressed
bpl wait_until_keypressed ; if not, loop
jmp figure_out_key
;==========================================================
; Get Key
;==========================================================
;
get_key:
check_paddle_button:
; check for paddle button
bit PADDLE_BUTTON0 ; 4
bpl no_button ; 2nt/3
lda #' '+128 ; 2
jmp save_key ; 3
no_button:
lda KEYPRESS ; 3
bpl no_key ; 2nt/3
figure_out_key:
cmp #' '+128 ; the mask destroys space ; 2
beq save_key ; so handle it specially ; 2nt/3
and #$5f ; mask, to make upper-case ; 2
check_right_arrow:
cmp #$15 ; 2
bne check_left_arrow ; 2nt/3
lda #'D' ; 2
check_left_arrow:
cmp #$08 ; 2
bne check_up_arrow ; 2nt/3
lda #'A' ; 2
check_up_arrow:
cmp #$0B ; 2
bne check_down_arrow ; 2nt/3
lda #'W' ; 2
check_down_arrow:
cmp #$0A ; 2
bne check_escape ; 2nt/3
lda #'S' ; 2
check_escape:
cmp #$1B ; 2
bne save_key ; 2nt/3
lda #'Q' ; 2
jmp save_key ; 3
no_key:
bit PADDLE_STATUS ; 3
bpl no_key_store ; 2nt/3
; check for paddle action
; code from http://web.pdx.edu/~heiss/technotes/aiie/tn.aiie.06.html
inc PADDLE_STATUS ; 5
lda PADDLE_STATUS ; 3
and #$03 ; 2
beq check_paddles ; 2nt/3
jmp no_key_store ; 3
check_paddles:
lda PADDLE_STATUS ; 3
and #$80 ; 2
sta PADDLE_STATUS ; 3
ldx #$0 ; 2
LDA PTRIG ;TRIGGER PADDLES ; 4
LDY #0 ;INIT COUNTER ; 2
NOP ;COMPENSATE FOR 1ST COUNT ; 2
NOP ; 2
PREAD2: LDA PADDL0,X ;COUNT EVERY 11 uSEC. ; 4
BPL RTS2D ;BRANCH WHEN TIMED OUT ; 2nt/3
INY ;INCREMENT COUNTER ; 2
BNE PREAD2 ;CONTINUE COUNTING ; 2nt/3
DEY ;COUNTER OVERFLOWED ; 2
RTS2D: ;RETURN W/VALUE 0-255
cpy #96 ; 2
bmi paddle_left ; 2nt/3
cpy #160 ; 2
bmi no_key_store ; 2nt/3
lda #'D' ; 2
jmp save_key ; 3
paddle_left:
lda #'A' ; 2
jmp save_key ; 3
no_key_store:
lda #0 ; no key, so save a zero ; 2
save_key:
sta LASTKEY ; save the key to our buffer ; 2
bit KEYRESET ; clear the keyboard buffer ; 4
rts ; 6
;============
; 33=nokey
; 48=worstkey
;=============================================
; put_sprite
;=============================================
; Sprite to display in INH,INL
; Location is XPOS,YPOS
; Note, only works if YPOS is multiple of two?
put_sprite:
ldy #0 ; byte 0 is xsize ; 2
lda (INL),Y ; 5
sta CH ; xsize is in CH ; 3
iny ; 2
lda (INL),Y ; byte 1 is ysize ; 5
sta CV ; ysize is in CV ; 3
iny ; 2
lda YPOS ; make a copy of ypos ; 3
sta TEMPY ; as we modify it ; 3
;===========
; 28
put_sprite_loop:
sty TEMP ; save sprite pointer ; 3
ldy TEMPY ; 3
lda gr_offsets,Y ; lookup low-res memory address ; 5
clc ; 2
adc XPOS ; add in xpos ; 3
sta OUTL ; store out low byte of addy ; 3
lda gr_offsets+1,Y ; look up high byte ; 5
adc DRAW_PAGE ; ; 3
sta OUTH ; and store it out ; 3
ldy TEMP ; restore sprite pointer ; 3
; OUTH:OUTL now points at right place
ldx CH ; load xsize into x ; 3
;===========
; 36
put_sprite_pixel:
lda (INL),Y ; get sprite colors ; 5
iny ; increment sprite pointer ; 2
sty TEMP ; save sprite pointer ; 3
ldy #$0 ; 2
; check if completely transparent
; if so, skip
cmp #$0 ; if all zero, transparent ; 2
beq put_sprite_done_draw ; don't draw it ; 2nt/3
; FIXME: use BIT? ;==============
; 17
sta COLOR ; save color for later ; 3
; check if top pixel transparent
and #$f0 ; check if top nibble zero ; 2
bne put_sprite_bottom ; if not skip ahead ; 2nt/3
lda #$f0 ; setup mask ; 2
sta MASK ; 3
bmi put_sprite_mask ; 2nt/3
put_sprite_bottom:
lda COLOR ; re-load color ; 3
and #$0f ; check if bottom nibble zero ; 2
bne put_sprite_all ; if not, skip ahead ; 2nt/3
lda #$0f ; 2
sta MASK ; setup mask ; 3
put_sprite_mask:
lda (OUTL),Y ; get color at output ; 5
and MASK ; mask off unneeded part ; 3
ora COLOR ; or the color in ; 3
sta (OUTL),Y ; store it back ; 5
jmp put_sprite_done_draw ; we are done ; 3
put_sprite_all:
lda COLOR ; load color ; 3
sta (OUTL),Y ; and write it out ; 5
put_sprite_done_draw:
ldy TEMP ; restore sprite pointer ; 3
inc OUTL ; increment output pointer ; 5
dex ; decrement x counter ; 2
bne put_sprite_pixel ; if not done, keep looping ; 2nt/3
inc TEMPY ; each line has two y vars ; 5
inc TEMPY ; 5
dec CV ; decemenet total y count ; 5
bne put_sprite_loop ; loop if not done ; 2nt/3
rts ; return ; 6
;================================
; htab_vtab
;================================
; move to CH/CV
htab_vtab:
lda CV
asl
tay
lda gr_offsets,Y ; lookup low-res memory address
clc
adc CH ; add in xpos
sta BASL ; store out low byte of addy
lda gr_offsets+1,Y ; look up high byte
adc DRAW_PAGE ;
sta BASH ; and store it out
; BASH:BASL now points at right place
rts
;================================
; move_and_print
;================================
; move to CH/CV
move_and_print:
jsr htab_vtab
;================================
; print_string
;================================
print_string:
ldy #0
print_string_loop:
lda (OUTL),Y
beq done_print_string
ora #$80
sta (BASL),Y
iny
bne print_string_loop
done_print_string:
rts
;====================
; point_to_end_string
;====================
point_to_end_string:
iny
tya
clc
adc OUTL
sta OUTL
lda #0
adc OUTH
sta OUTH
rts
;================================
; print_both_pages
;================================
print_both_pages:
lda DRAW_PAGE
pha
lda #0
sta DRAW_PAGE
jsr move_and_print
lda #4
sta DRAW_PAGE
jsr move_and_print
pla
sta DRAW_PAGE
rts ; oops forgot this initially
; explains the weird vertical stripes on the screen
;=========================================
; vlin
;=========================================
; X, V2 at Y
vlin:
sty TEMPY ; save Y (x location)
vlin_loop:
txa ; a=x (get first y)
and #$fe ; Clear bottom bit
tay ;
lda gr_offsets,Y ; lookup low-res memory address low
sta GBASL ; put it into our indirect pointer
iny
lda gr_offsets,Y ; lookup low-res memory address high
clc
adc DRAW_PAGE ; add in draw page offset
sta GBASH ; put into top of indirect
ldy TEMPY ; load back in y (x offset)
txa ; load back in x (current y)
lsr ; check the low bit
bcc vlin_low ; if not set, skip to low
vlin_high:
lda #$F0 ; setup masks
sta MASK
lda #$0f
bcs vlin_too_slow
vlin_low: ; setup masks
lda #$0f
sta MASK
lda #$f0
vlin_too_slow:
and (GBASL),Y ; mask current byte
sta (GBASL),Y ; and store back
lda MASK ; mask the color
and COLOR
ora (GBASL),Y ; or into the right place
sta (GBASL),Y ; store it
inx ; increment X (current y)
cpx V2 ; compare to the limit
bcc vlin_loop ; if <= then loop
rts ; return
;================================
; hlin_setup
;================================
; put address in GBASL/GBASH
; Ycoord in A, Xcoord in Y
hlin_setup:
sty TEMPY ; 3
tay ; y=A ; 2
lda gr_offsets,Y ; lookup low-res memory address ; 4
clc ; 2
adc TEMPY ; 3
sta GBASL ; 3
iny ; 2
lda gr_offsets,Y ; 4
adc DRAW_PAGE ; add in draw page offset ; 3
sta GBASH ; 3
rts ; 6
;===========
; 35
;================================
; hlin_double:
;================================
; HLIN Y, V2 AT A
; Y, X, A trashed
; start at Y, draw up to and including X
hlin_double:
;int hlin_double(int page, int x1, int x2, int at) {
jsr hlin_setup ; 41
sec ; 2
lda V2 ; 3
sbc TEMPY ; 3
tax ; 2
inx ; 2
;===========
; 53
; fallthrough
;=================================
; hlin_double_continue: width
;=================================
; width in X
hlin_double_continue:
ldy #0 ; 2
lda COLOR ; 3
hlin_double_loop:
sta (GBASL),Y ; 6
inc GBASL ; 5
dex ; 2
bne hlin_double_loop ; 2nt/3
rts ; 6
;=============
; 53+5+X*16+5
;================================
; hlin_single:
;================================
; HLIN Y, V2 AT A
; Y, X, A trashed
hlin_single:
jsr hlin_setup
sec
lda V2
sbc TEMPY
tax
; fallthrough
;=================================
; hlin_single_continue: width
;=================================
; width in X
hlin_single_continue:
hlin_single_top:
lda COLOR
and #$f0
sta COLOR
hlin_single_top_loop:
ldy #0
lda (GBASL),Y
and #$0f
ora COLOR
sta (GBASL),Y
inc GBASL
dex
bne hlin_single_top_loop
rts
hlin_single_bottom:
lda COLOR
and #$0f
sta COLOR
hlin_single_bottom_loop:
ldy #0
lda (GBASL),Y
and #$f0
sta (GBASL),Y
inc GBASL
dex
bne hlin_single_bottom_loop
rts
;=============================
; clear_top
;=============================
clear_top:
lda #$00
;=============================
; clear_top_a
;=============================
clear_top_a:
sta COLOR
; VLIN Y, V2 AT A
lda #40
sta V2
lda #0
clear_top_loop:
ldy #0
pha
jsr hlin_double
pla
clc
adc #$2
cmp #40
bne clear_top_loop
rts
clear_bottom:
lda #$a0 ; NORMAL space
sta COLOR
lda #40
sta V2
clear_bottom_loop:
ldy #0
pha
jsr hlin_double
pla
clc
adc #$2
cmp #48
bne clear_bottom_loop
rts

View File

@ -0,0 +1,194 @@
.define EQU =
;; Zero page monitor routines addresses
WNDLFT EQU $20
WNDWDTH EQU $21
WNDTOP EQU $22
WNDBTM EQU $23
CH EQU $24
CV EQU $25
GBASL EQU $26
GBASH EQU $27
BASL EQU $28
BASH EQU $29
H2 EQU $2C
V2 EQU $2D
MASK EQU $2E
COLOR EQU $30
INVFLG EQU $32
; More zero-page addresses
; we try not to conflict with anything DOS, MONITOR or BASIC related
COLOR1 EQU $E0
COLOR2 EQU $E1
MATCH EQU $E2
XX EQU $E3
YY EQU $E4
YADD EQU $E5
LOOP EQU $E6
MEMPTRL EQU $E7
MEMPTRH EQU $E8
NAMEL EQU $E9
NAMEH EQU $EA
NAMEX EQU $EB
CHAR EQU $EC
DISP_PAGE EQU $ED
DRAW_PAGE EQU $EE
FIRST EQU $F0
LASTKEY EQU $F1
PADDLE_STATUS EQU $F2
XPOS EQU $F3
YPOS EQU $F4
TEMP EQU $FA
RUN EQU $FA
TEMP2 EQU $FB
TEMPY EQU $FB
INL EQU $FC
INH EQU $FD
OUTL EQU $FE
OUTH EQU $FF
;; Flying Routine Only
TURNING EQU $60
;SCREEN_X EQU $61 ; not used?
SCREEN_Y EQU $62
ANGLE EQU $63
HORIZ_SCALE_I EQU $64
HORIZ_SCALE_F EQU $65
FACTOR_I EQU $66
FACTOR_F EQU $67
DX_I EQU $68
DX_F EQU $69
SPACEX_I EQU $6A
SPACEX_F EQU $6B
CX_I EQU $6C
CX_F EQU $6D
DY_I EQU $6E
DY_F EQU $6F
SPACEY_I EQU $70
SPACEY_F EQU $71
CY_I EQU $72
CY_F EQU $73
TEMP_I EQU $74
TEMP_F EQU $75
DISTANCE_I EQU $76
DISTANCE_F EQU $77
SPACEZ_I EQU $78
SPACEZ_F EQU $79
DRAW_SPLASH EQU $7A
SPEED EQU $7B
SPLASH_COUNT EQU $7C
OVER_LAND EQU $7D
NUM1L EQU $7E
NUM1H EQU $7F
NUM2L EQU $80
NUM2H EQU $81
RESULT EQU $82 ; 83,84,85
NEGATE EQU $86 ; UNUSED?
LAST_SPACEX_I EQU $87
LAST_SPACEY_I EQU $88
LAST_MAP_COLOR EQU $89
DRAW_SKY EQU $8A
COLOR_MASK EQU $8B
SHIPY EQU $E4
;; World Map Only
ODD EQU $7B
DIRECTION EQU $7C
REFRESH EQU $7D
ON_BIRD EQU $7E
MOVED EQU $7F
STEPS EQU $80
TFV_X EQU $81
TFV_Y EQU $82
NEWX EQU $83
NEWY EQU $84
MAP_X EQU $85
GROUND_COLOR EQU $86
KEYPRESS EQU $C000
KEYRESET EQU $C010
;; SOFT SWITCHES
EIGHTYSTORE_ON EQU $C000
EIGHTYSTORE_OFF EQU $C001
EIGHTYCOL EQU $C00D
SET_GR EQU $C050
SET_TEXT EQU $C051
FULLGR EQU $C052
TEXTGR EQU $C053
PAGE0 EQU $C054
PAGE1 EQU $C055
LORES EQU $C056
HIRES EQU $C057
AN3 EQU $C05E
PADDLE_BUTTON0 EQU $C061
PADDL0 EQU $C064
PTRIG EQU $C070
;; BASIC ROUTINES
NORMAL EQU $F273
;; MONITOR ROUTINES
HLINE EQU $F819 ;; HLINE Y,$2C at A
VLINE EQU $F828 ;; VLINE A,$2D at Y
CLRSCR EQU $F832 ;; Clear low-res screen
CLRTOP EQU $F836 ;; clear only top of low-res screen
SETCOL EQU $F864 ;; COLOR=A
TEXT EQU $FB36
TABV EQU $FB5B ;; VTAB to A
BASCALC EQU $FBC1 ;;
VTAB EQU $FC22 ;; VTAB to CV
HOME EQU $FC58 ;; Clear the text screen
WAIT EQU $FCA8 ;; delay 1/2(26+27A+5A^2) us
SETINV EQU $FE80 ;; INVERSE
SETNORM EQU $FE84 ;; NORMAL
COUT EQU $FDED ;; output A to screen
COUT1 EQU $FDF0 ;; output A to screen
COLOR_BLACK EQU 0
COLOR_RED EQU 1
COLOR_DARKBLUE EQU 2
COLOR_PURPLE EQU 3
COLOR_DARKGREEN EQU 4
COLOR_GREY EQU 5
COLOR_MEDIUMBLUE EQU 6
COLOR_LIGHTBLUE EQU 7
COLOR_BROWN EQU 8
COLOR_ORANGE EQU 9
COLOR_GREY2 EQU 10
COLOR_PINK EQU 11
COLOR_LIGHTGREEN EQU 12
COLOR_YELLOW EQU 13
COLOR_AQUA EQU 14
COLOR_WHITE EQU 15
COLOR_BOTH_RED EQU $11
COLOR_BOTH_DARKBLUE EQU $22
COLOR_BOTH_DARKGREEN EQU $44
COLOR_BOTH_GREY EQU $55
COLOR_BOTH_MEDIUMBLUE EQU $66
COLOR_BOTH_LIGHTBLUE EQU $77
COLOR_BOTH_BROWN EQU $88
COLOR_BOTH_ORANGE EQU $99
COLOR_BOTH_LIGHTGREEN EQU $CC
COLOR_BOTH_YELLOW EQU $DD
COLOR_BOTH_WHITE EQU $FF

View File

@ -0,0 +1,349 @@
; Fast mutiply
; Note for our purposes we only care about 8.8 x 8.8 fixed point
; with 8.8 result, which means we only care about the middle two bytes
; of the 32 bit result. So we disable generation of the high and low byte
; to save some cycles.
;
; The old routine took around 700 cycles for a 16bitx16bit=32bit mutiply
; This routine, at an expense of 2kB of looku tables, takes around 250
; If you reuse a term the next time this drops closer to 200
; This routine was described by Stephen Judd and found
; in The Fridge and in the C=Hacking magazine
; http://codebase64.org/doku.php?id=base:seriously_fast_multiplication
; The key thing to note is that
; (a+b)^2 (a-b)^2
; a*b = ------- - --------
; 4 4
; So if you have tables of the squares of 0..511 you can lookup and subtract
; instead of multiplying.
; Table generation: I:0..511
; square1_lo = <((I*I)/4)
; square1_hi = >((I*I)/4)
; square2_lo = <(((I-255)*(I-255))/4)
; square2_hi = >(((I-255)*(I-255))/4)
; Note: DOS3.3 starts at $9600
square1_lo EQU $8E00
square1_hi EQU $9000
square2_lo EQU $9200
square2_hi EQU $9400
; for(i=0;i<512;i++) {
; square1_lo[i]=((i*i)/4)&0xff;
; square1_hi[i]=(((i*i)/4)>>8)&0xff;
; square2_lo[i]=( ((i-255)*(i-255))/4)&0xff;
; square2_hi[i]=(( ((i-255)*(i-255))/4)>>8)&0xff;
; }
init_multiply_tables:
; Build the add tables
ldx #$00
txa
.byte $c9 ; CMP #immediate - skip TYA and clear carry flag
lb1: tya
adc #$00 ; 0
ml1: sta square1_hi,x ; square1_hi[0]=0
tay ; y=0
cmp #$40 ; subtract 64 and update flags (c=0)
txa ; a=0
ror ; rotate
ml9: adc #$00 ; add 0
sta ml9+1 ; update add value
inx ; x=1
ml0: sta square1_lo,x ; square1_lo[0]=1
bne lb1 ; if not zero, loop
inc ml0+2 ; increment values
inc ml1+2 ; increment values
clc ; c=0
iny ; y=1
bne lb1 ; loop
; Build the subtract tables based on the existing one
ldx #$00
ldy #$ff
second_table:
lda square1_hi+1,x
sta square2_hi+$100,x
lda square1_hi,x
sta square2_hi,y
lda square1_lo+1,x
sta square2_lo+$100,x
lda square1_lo,x
sta square2_lo,y
dey
inx
bne second_table
rts
; Fast 16x16 bit unsigned multiplication, 32-bit result
; Input: NUM1H:NUM1L * NUM2H:NUM2L
; Result: RESULT3:RESULT2:RESULT1:RESULT0
;
; Does self-modifying code to hard-code NUM1H:NUM1L into the code
; carry=0: re-use previous NUM1H:NUM1L
; carry=1: reload NUM1H:NUM1L (58 cycles slower)
;
; clobbered: RESULT, X, A, C
; Allocation setup: T1,T2 and RESULT preferably on Zero-page.
;
; NUM1H (x_i), NUM1L (x_f)
; NUM2H (y_i), NUM2L (y_f)
; NUM1L * NUM2L = AAaa
; NUM1L * NUM2H = BBbb
; NUM1H * NUM2L = CCcc
; NUM1H * NUM2H = DDdd
;
; AAaa
; BBbb
; CCcc
; + DDdd
; ----------
; RESULT
;fixed_16x16_mul_unsigned:
multiply:
bcc num1_same_as_last_time ; 2nt/3
;============================
; Set up self-modifying code
; this changes the code to be hard-coded to multiply by NUM1H:NUM1L
;============================
lda NUM1L ; load the low byte ; 3
sta sm1a+1 ; 3
sta sm3a+1 ; 3
sta sm5a+1 ; 3
sta sm7a+1 ; 3
eor #$ff ; invert the bits for subtracting ; 2
sta sm2a+1 ; 3
sta sm4a+1 ; 3
sta sm6a+1 ; 3
sta sm8a+1 ; 3
lda NUM1H ; load the high byte ; 3
sta sm1b+1 ; 3
sta sm3b+1 ; 3
sta sm5b+1 ; 3
; sta sm7b+1 ;
eor #$ff ; invert the bits for subtractin ; 2
sta sm2b+1 ; 3
sta sm4b+1 ; 3
sta sm6b+1 ; 3
; sta sm8b+1 ;
;===========
; 52
num1_same_as_last_time:
;==========================
; Perform NUM1L * NUM2L = AAaa
;==========================
ldx NUM2L ; (low le) ; 3
sec ; 2
sm1a:
lda square1_lo,x ; 4
sm2a:
sbc square2_lo,x ; 4
; a is _aa
; sta RESULT+0 ;
sm3a:
lda square1_hi,x ; 4
sm4a:
sbc square2_hi,x ; 4
; a is _AA
sta _AA+1 ; 3
;===========
; 24
; Perform NUM1H * NUM2L = CCcc
sec ; 2
sm1b:
lda square1_lo,x ; 4
sm2b:
sbc square2_lo,x ; 4
; a is _cc
sta _cc+1 ; 3
sm3b:
lda square1_hi,x ; 4
sm4b:
sbc square2_hi,x ; 4
; a is _CC
sta _CC+1 ; 3
;===========
; 24
;==========================
; Perform NUM1L * NUM2H = BBbb
;==========================
ldx NUM2H ; 3
sec ; 2
sm5a:
lda square1_lo,x ; 4
sm6a:
sbc square2_lo,x ; 4
; a is _bb
sta _bb+1 ; 3
sm7a:
lda square1_hi,x ; 4
sm8a:
sbc square2_hi,x ; 4
; a is _BB
sta _BB+1 ; 3
;===========
; 27
;==========================
; Perform NUM1H * NUM2H = DDdd
;==========================
sec ; 2
sm5b:
lda square1_lo,x ; 4
sm6b:
sbc square2_lo,x ; 4
; a is _dd
sta _dd+1 ; 3
;sm7b:
; lda square1_hi,x ;
;sm8b:
; sbc square2_hi,x ;
; a = _DD
; sta RESULT+3 ;
;===========
; 13
;===========================================
; Add the separate multiplications together
;===========================================
clc ; 2
_AA:
lda #0 ; loading _AA ; 2
_bb:
adc #0 ; adding in _bb ; 2
sta RESULT+1 ; 3
;==========
; 9
; product[2]=_BB+_CC+c
_BB:
lda #0 ; loading _BB ; 2
_CC:
adc #0 ; adding in _CC ; 2
sta RESULT+2 ; 3
;===========
; 7
; product[3]=_DD+c
; bcc dd_no_carry1 ;
; inc RESULT+3 ;
clc ; 2
;=============
; 2
dd_no_carry1:
; product[1]=_AA+_bb+_cc
_cc:
lda #0 ; load _cc ; 2
adc RESULT+1 ; 3
sta RESULT+1 ; 3
; product[2]=_BB+_CC+_dd+c
_dd:
lda #0 ; load _dd ; 2
adc RESULT+2 ; 3
sta RESULT+2 ; 3
;===========
; 16
; product[3]=_DD+c
; bcc dd_no_carry2 ;
; inc RESULT+3 ;
;=============
; 0
dd_no_carry2:
; *z_i=product[1];
; *z_f=product[0];
; rts ; 6
;=================
; Signed multiply
;=================
;multiply:
; jsr fixed_16x16_mul_unsigned ; 6
lda NUM1H ; x_i ; 3
;===========
; 12
bpl x_positive ;^3/2nt
sec ; 2
lda RESULT+2 ; 3
sbc NUM2L ; 3
sta RESULT+2 ; 3
; lda RESULT+3 ;
; sbc NUM2H ;
; sta RESULT+3 ;
;============
; 10
x_positive:
lda NUM2H ; y_i ; 3
;============
; ; 6
bpl y_positive ;^3/2nt
sec ; 2
lda RESULT+2 ; 3
sbc NUM1L ; 3
sta RESULT+2 ; 3
; lda RESULT+3 ;
; sbc NUM1H ;
; sta RESULT+3 ;
;===========
; 10
y_positive:
ldx RESULT+2 ; *z_i=product[2]; ; 3
lda RESULT+1 ; *z_f=product[1]; ; 3
rts ; 6
;==========
; 12