dos33fsprogs/tfv/tfv_flying.s

652 lines
10 KiB
ArmAsm

SHIPY EQU $E4
; FIXME, sort out available ZP page space
TURNING EQU $60
SCREEN_X EQU $61
SCREEN_Y EQU $62
ANGLE EQU $63
HORIZ_SCALE_I EQU $64
HORIZ_SCALE_F EQU $65
FACTOR_I EQU $66
FACTOR_F EQU $67
DX_I EQU $68
DX_F EQU $69
SPACEX_I EQU $6A
SPACEX_F EQU $6B
CX_I EQU $6C
CX_F EQU $6D
DY_I EQU $6E
DY_F EQU $6F
SPACEY_I EQU $70
SPACEY_F EQU $71
CY_I EQU $72
CY_F EQU $73
TEMP_I EQU $74
TEMP_F EQU $75
DISTANCE_I EQU $76
DISTANCE_F EQU $77
SPACEZ_I EQU $78
SPACEZ_F EQU $79
;===========
; CONSTANTS
;===========
SHIPX EQU 15
TILE_W EQU 64
TILE_H EQU 64
MAP_MASK EQU (TILE_W - 1)
LOWRES_W EQU 40
LOWRES_H EQU 40
flying_start:
; Clear screen/pages
jsr set_gr_page0
; Init Variables
lda #20
sta SHIPY
lda #0
sta TURNING
sta SPACEX_I
sta SPACEY_I
lda #4
sta SPACEZ_I
lda #$80
sta SPACEZ_F
flying_loop:
jsr wait_until_keypressed
lda LASTKEY
cmp #('Q')
bne skipskip
rts
skipskip:
cmp #('I')
bne check_down
lda SHIPY
cmp #16
bcc check_down ; bgt
dec SHIPY
dec SHIPY
check_down:
cmp #('M')
bne check_left
lda SHIPY
cmp #28
bcs check_left ; ble
inc SHIPY
inc SHIPY
check_left:
cmp #('J')
bne check_right
inc TURNING
check_right:
cmp #('K')
bne check_done
dec TURNING
check_done:
;====================
; Draw the background
;====================
jsr draw_background_mode7
;==============
; Draw the ship
;==============
clv
lda TURNING
bmi draw_ship_right
bne draw_ship_left
draw_ship_forward:
lda #>ship_forward
sta INH
lda #<ship_forward
sta INL
bvc draw_ship
draw_ship_right:
lda #>ship_right
sta INH
lda #<ship_right
sta INL
bvc draw_ship
draw_ship_left:
lda #>ship_left
sta INH
lda #<ship_left
sta INL
draw_ship:
lda #SHIPX
sta XPOS
lda SHIPY
sta YPOS
jsr put_sprite
;==================
; flip pages
;==================
jsr page_flip
;==================
; loop forever
;==================
jmp flying_loop
;===========================
; Draw the Mode7 Background
;===========================
draw_background_mode7:
; Draw Sky
lda #COLOR_BOTH_MEDIUMBLUE ; MEDIUMBLUE color
sta COLOR
lda #0
sky_loop: ; draw line across screen
ldy #40 ; from y=0 to y=6
sty V2
ldy #0
pha
jsr hlin_double ; hlin y,V2 at A
pla
clc
adc #2
cmp #6
bne sky_loop
; Draw Horizon
lda #COLOR_BOTH_GREY ; Horizon is Grey
sta COLOR
lda #6 ; draw single line at 6/7
ldy #40
sty V2 ; hlin Y,V2 at A
ldy #0
jsr hlin_double ; hlin 0,40 at 6
; fixed_mul(&space_z,&BETA,&factor);
lda SPACEZ_I
sta NUM1+1
lda SPACEZ_F
sta NUM1
lda #$ff ; BETA_I
sta NUM2+1
lda #$80 ; BETA_F
sta NUM2
jsr multiply
lda RESULT+1
sta FACTOR_I
lda RESULT+2
sta FACTOR_F
brk ;; SPACEZ=78 * ff80 = FACTOR=66
;; 4 80 * ff 80 = 83 81
;; 4 80 * 00 00 = fc 83 81 40
;; 4 80 * ffffffff 80 = fffffffd c0
;; spacez*beta=factor
;; C
;; GOOD 4 80 * ffffffff 80 = fffffffd c0
;; BAD 4 80 * ffffffff 80 = 42 40
lda #8
sta SCREEN_Y
screeny_loop:
ldy #0
jsr hlin_setup
lda #0 ; horizontal_scale.i = 0
sta HORIZ_SCALE_I
;horizontal_scale.f=
; horizontal_lookup[space_z.i&0xf][(screen_y-8)/2];
lda SPACEZ_I
and #$f
asl
asl
asl
asl
sta TEMP_I
clc
lda SCREEN_Y
adc #-8
lsr
clc
adc TEMP_I
tay
lda horizontal_lookup,Y
sta HORIZ_SCALE_F
; calculate the distance of the line we are drawing
; fixed_mul(&horizontal_scale,&scale,&distance);
lda HORIZ_SCALE_I
sta NUM1
lda HORIZ_SCALE_F
sta NUM1+1
lda #$14 ; SCALE_I
sta NUM2
lda #$00 ; SCALE_F
sta NUM2+1
jsr multiply
lda RESULT+1
sta DISTANCE_I
lda RESULT+2
sta DISTANCE_F
; calculate the dx and dy of points in space when we step
; through all points on this line
lda ANGLE ; dx.i=fixed_sin[(angle+8)&0xf].i; // -sin()
clc
adc #8
and #$f
tay
lda fixed_sin,Y
sta DX_I
iny ; dx.f=fixed_sin[(angle+8)&0xf].f; // -sin()
lda fixed_sin,Y
sta DX_F
; fixed_mul(&dx,&horizontal_scale,&dx);
lda HORIZ_SCALE_I
sta NUM1
lda HORIZ_SCALE_F
sta NUM1+1
lda DX_I
sta NUM2
lda DX_F
sta NUM2+1
jsr multiply
lda RESULT+1
sta DX_I
lda RESULT+2
sta DX_F
lda ANGLE ; dy.i=fixed_sin[(angle+4)&0xf].i; // cos()
clc
adc #4
and #$f
tay
lda fixed_sin,Y
sta DY_I
iny ; dy.f=fixed_sin[(angle+4)&0xf].f; // cos()
lda fixed_sin,Y
sta DY_F
; fixed_mul(&dy,&horizontal_scale,&dy);
lda HORIZ_SCALE_I
sta NUM1
lda HORIZ_SCALE_F
sta NUM1+1
lda DY_I
sta NUM2
lda DY_F
sta NUM2+1
jsr multiply
lda RESULT+1
sta DY_I
lda RESULT+2
sta DY_F
; calculate the starting position
; fixed_add(&distance,&factor,&space_x);
clc ; fixed_add(&distance,&factor,&space_y);
lda DISTANCE_F
adc FACTOR_F
sta SPACEY_F
sta SPACEX_F
lda DISTANCE_I
adc FACTOR_I
sta SPACEY_F
sta SPACEX_F
lda ANGLE ; fixed_temp.i=fixed_sin[(angle+4)&0xf].i; // cos
clc
adc #4
and #$f
tay
lda fixed_sin,Y
sta TEMP_I
iny ; fixed_temp.f=fixed_sin[(angle+4)&0xf].f; // cos
lda fixed_sin,Y
sta TEMP_F
; fixed_mul(&space_x,&fixed_temp,&space_x);
lda SPACEX_I
sta NUM1
lda SPACEX_F
sta NUM1+1
lda TEMP_I
sta NUM2
lda TEMP_F
sta NUM2+1
jsr multiply
lda RESULT+1
sta SPACEX_I
lda RESULT+2
sta SPACEY_F
clc ; fixed_add(&space_x,&cx,&space_x);
lda SPACEX_F
adc CX_F
sta SPACEX_F
lda SPACEX_I
adc CX_I
sta SPACEX_I
lda #$ec ; fixed_temp.i=0xec; // -20 (LOWRES_W/2)
sta TEMP_I
lda #0 ; fixed_temp.f=0;
sta TEMP_F
; fixed_mul(&fixed_temp,&dx,&fixed_temp);
lda TEMP_I
sta NUM1
lda TEMP_F
sta NUM1+1
lda DX_I
sta NUM2
lda DX_F
sta NUM2+1
jsr multiply
lda RESULT+1
sta TEMP_I
lda RESULT+2
sta TEMP_F
clc ; fixed_add(&space_x,&fixed_temp,&space_x);
lda SPACEX_F
adc TEMP_F
sta SPACEX_F
lda SPACEY_I
adc TEMP_I
sta SPACEX_I
lda ANGLE ; fixed_temp.i=fixed_sin[angle&0xf].i;
and #$f
tay
lda fixed_sin,Y
sta TEMP_I
iny ; fixed_temp.f=fixed_sin[angle&0xf].f;
lda fixed_sin,Y
sta TEMP_F
; fixed_mul(&space_y,&fixed_temp,&space_y);
lda SPACEY_I
sta NUM1
lda SPACEY_F
sta NUM1+1
lda TEMP_I
sta NUM2
lda TEMP_F
sta NUM2+1
jsr multiply
lda RESULT+1
sta SPACEY_I
lda RESULT+2
sta SPACEY_F
clc ; fixed_add(&space_y,&cy,&space_y);
lda SPACEY_F
adc CY_F
sta SPACEY_F
lda SPACEY_I
adc CY_I
sta SPACEY_I
lda #$ec ; fixed_temp.i=0xec; // -20 (LOWRES_W/2)
sta TEMP_I
lda #0 ; fixed_temp.f=0;
sta TEMP_F
; fixed_mul(&fixed_temp,&dy,&fixed_temp);
lda TEMP_I
sta NUM1
lda TEMP_F
sta NUM1+1
lda DX_I
sta NUM2
lda DY_F
sta NUM2+1
jsr multiply
lda RESULT+1
sta TEMP_I
lda RESULT+2
sta TEMP_F
clc ; fixed_add(&space_y,&fixed_temp,&space_y);
lda SPACEY_F
adc TEMP_F
sta SPACEY_F
lda SPACEY_I
adc TEMP_I
sta SPACEY_I
lda #0
sta SCREEN_X
screenx_loop:
jsr lookup_map ; get color in A
ldy #0
sta (GBASL),Y ; plot double height
inc GBASL ; point to next pixel
; advance to the next position in space
clc ; fixed_add(&space_x,&dx,&space_x);
lda SPACEX_F
adc DX_F
sta SPACEX_F
lda SPACEX_I
adc DX_I
sta SPACEX_I
clc ; fixed_add(&space_y,&dy,&space_y);
lda SPACEY_F
adc DY_F
sta SPACEY_F
lda SPACEY_I
adc DY_I
sta SPACEY_I
inc SCREEN_X
lda SCREEN_X
cmp #40 ; LOWRES width
bne screenx_loop
lda SCREEN_Y
clc
adc #2
sta SCREEN_Y
cmp #40 ; LOWRES height
beq done_screeny
jmp screeny_loop
done_screeny:
rts
;====================
; lookup_map
;====================
; finds value in space_x.i,space_y.i
; returns color in A
lookup_map:
lda SPACEX_I
and #MAP_MASK
sta TEMPY
lda SPACEY_I
and #MAP_MASK
lsr
lsr
lsr ; multiply by 8
clc
adc TEMPY ; add in X value
ldy SPACEX_I
cpy #$8
bcc ocean_color ; bgt
ldy SPACEY_I
cpy #$8
bcc ocean_color ; bgt
tay
lda flying_map,Y ; load from array
rts
ocean_color:
and #$1f
tay
lda water_map,Y ; the color of the sea
rts
flying_map:
.byte $22,$ff,$ff,$ff, $ff,$ff,$ff,$22
.byte $dd,$cc,$cc,$88, $44,$44,$00,$dd
.byte $dd,$cc,$cc,$cc, $88,$44,$44,$dd
.byte $dd,$cc,$cc,$88, $44,$44,$44,$dd
.byte $dd,$cc,$99,$99, $88,$44,$44,$dd
.byte $dd,$cc,$99,$88, $44,$44,$44,$dd
.byte $dd,$cc,$99,$99, $11,$44,$44,$dd
.byte $22,$dd,$dd,$dd, $dd,$dd,$dd,$22
water_map:
.byte $22,$22,$22,$22, $22,$22,$22,$22
.byte $ee,$22,$22,$22, $22,$22,$22,$22
.byte $22,$22,$22,$22, $22,$22,$22,$22
.byte $22,$22,$22,$22, $ee,$22,$22,$22
; http://www.llx.com/~nparker/a2/mult.html
; MULTIPLY NUM1H:NUM1L * NUM2H:NUM2L
; NUM2 is zero in end
NUM1: .byte 0,0
NUM2: .byte 0,0
RESULT: .byte 0,0,0,0
; If we have 2k to spare we should check out
; http://codebase64.org/doku.php?id=base:seriously_fast_multiplication
multiply:
lda #0 ; Initialize RESULT to 0
sta RESULT+2
ldx #16 ; There are 16 bits in NUM2
L1:
lsr NUM2+1 ; Get low bit of NUM2
ror NUM2
bcc L2 ; 0 or 1?
tay ; If 1, add NUM1 (hi byte of RESULT is in A)
clc
lda NUM1
adc RESULT+2
sta RESULT+2
tya
adc NUM1+1
L2:
ror A ; "Stairstep" shift
ror RESULT+2
ror RESULT+1
ror RESULT
dex
bne L1
sta RESULT+3
rts
; 8.8 fixed point
; should we store as two arrays, one I one F?
fixed_sin:
.byte $00,$00 ; 0.000000=00.00
.byte $00,$61 ; 0.382683=00.61
.byte $00,$b5 ; 0.707107=00.b5
.byte $00,$ec ; 0.923880=00.ec
.byte $01,$00 ; 1.000000=01.00
.byte $00,$ec ; 0.923880=00.ec
.byte $00,$b5 ; 0.707107=00.b5
.byte $00,$61 ; 0.382683=00.61
.byte $00,$00 ; 0.000000=00.00
.byte $ff,$9f ; -0.382683=ff.9f
.byte $ff,$4b ; -0.707107=ff.4b
.byte $ff,$14 ; -0.923880=ff.14
.byte $ff,$00 ; -1.000000=ff.00
.byte $ff,$14 ; -0.923880=ff.14
.byte $ff,$4b ; -0.707107=ff.4b
.byte $ff,$9f ; -0.382683=ff.9f
fixed_sin_scale:
.byte $00,$00
.byte $00,$0c
.byte $00,$16
.byte $00,$1d
.byte $00,$20
.byte $00,$1d
.byte $00,$16
.byte $00,$0c
.byte $00,$00
.byte $ff,$f4
.byte $ff,$ea
.byte $ff,$e3
.byte $ff,$e0
.byte $ff,$e3
.byte $ff,$ea
.byte $ff,$f4
horizontal_lookup:
.byte $0C,$0A,$09,$08,$07,$06,$05,$05,$04,$04,$04,$04,$03,$03,$03,$03
.byte $26,$20,$1B,$18,$15,$13,$11,$10,$0E,$0D,$0C,$0C,$0B,$0A,$0A,$09
.byte $40,$35,$2D,$28,$23,$20,$1D,$1A,$18,$16,$15,$14,$12,$11,$10,$10
.byte $59,$4A,$40,$38,$31,$2C,$28,$25,$22,$20,$1D,$1C,$1A,$18,$17,$16
.byte $73,$60,$52,$48,$40,$39,$34,$30,$2C,$29,$26,$24,$21,$20,$1E,$1C
.byte $8C,$75,$64,$58,$4E,$46,$40,$3A,$36,$32,$2E,$2C,$29,$27,$25,$23
.byte $A6,$8A,$76,$68,$5C,$53,$4B,$45,$40,$3B,$37,$34,$30,$2E,$2B,$29