mirror of
https://github.com/deater/dos33fsprogs.git
synced 2024-11-01 01:06:33 +00:00
284 lines
5.0 KiB
ArmAsm
284 lines
5.0 KiB
ArmAsm
; code to use the FAC (floating point accumulator)
|
|
|
|
chkcom = $DEBE ; check for comma
|
|
ptrget = $DFE3
|
|
frmnum = $DD67 ; evaluate expression, make sure is number
|
|
FACEXP = $9D
|
|
movmf = $EB2B ; move fac to mem: round FAC and store at Y:X
|
|
movfm = $EAF9 ; move mem to fac: unpack (Y:A) to FAC
|
|
conupk = $E9E3
|
|
fadd = $E7BE ; FAC = (Y:A)+FAC
|
|
faddt = $E7C1 ; FAC = ARG + FAC
|
|
fadd_half = $E7A0 ; add 0.5 to FAC
|
|
fsub = $E7A7 ; FAC = (Y:A)-FAC
|
|
fsubt = $E7AA ; FAC = ARG - FAC
|
|
fzero = $E84E ; FAC = 0 (sets fac.sign and fac.exp)
|
|
fcomplement = $E89E ; twos complement of FAC
|
|
fmult = $E97F ; FAC = (Y:A) * FAC
|
|
fmultt = $E982 ; FAC = ARG*FAC (!!! Z must be properly set)
|
|
load_arg= $E9E3 ; unpack (Y:A) into ARG
|
|
mul10 = $EA39 ; FAC=FAC*10
|
|
div10 = $EA55 ; FAC=FAC/10
|
|
div = $EA5E ; FAC=ARG/(Y:A)
|
|
fdiv = $EA66 ; FAC=(Y:A)/FAC
|
|
fdivt = $EA69 ; FAC=ARG/FAC (!!! Z must be properly set)
|
|
; various round and store fac
|
|
fac2arg = $EB63 ; ARG = FAC
|
|
sign = $EB82 ; SGN(FAC) 1/0/-1
|
|
float = $EB93 ; signed value in A to FAC
|
|
fcomp = $EBB2 ; compare
|
|
qint = $EBF2 ; convert FAC to 32-bit int?
|
|
int = $EC23 ; INT(FAC) (clear fractional part)
|
|
addafac = $ECD5 ; add A to FAC (signed?)
|
|
printfac= $ED2E
|
|
sqr = $EE8D ; FAC=sqrt(FAC) [actually does FAC^0.5
|
|
fpwrt = $EE97 ; FAC=ARG^FAC
|
|
negop = $EED0 ; FAC=-FAC
|
|
exp = $EF09 ; FAC = e^FAC
|
|
; polynomial?
|
|
rnd = $EFAE ; RAC = RND() random number
|
|
cos = $EFEA
|
|
sin = $EFF1
|
|
tan = $F03A
|
|
atn = $F09E
|
|
|
|
; constants
|
|
const_one = $E926 ; one
|
|
; poly coefficients?
|
|
; sqrt(.5)
|
|
; sqrt(2)
|
|
; 0.5
|
|
; -0.5
|
|
; log(2)
|
|
const_10= $EA50 ; 10
|
|
; billion
|
|
; 999,999,999
|
|
; 99,999,999.9
|
|
; log(e) to base(2)
|
|
; polynomials for log
|
|
; one again
|
|
; table of 32-bit powers of 10 +/- for some reason
|
|
; pi/2
|
|
pi_doub = $F06E ; 2*pi
|
|
; 0.25 (quarter)
|
|
|
|
|
|
ARG = $A5
|
|
FAC = $9D
|
|
|
|
; code uses: 5E/5F "index" in load arg from Y:A
|
|
; uses ARG (A5-AA) for argument
|
|
; uses FAC (9D-A2)
|
|
|
|
|
|
; in memory, 5 bytes "packed"
|
|
; exponent, mantissa MSB, mantissa, mantissa, mantissa l.s.b
|
|
; top bit of exponent is sign (0 negative)
|
|
; so $84/$20/$00/$00/$00
|
|
; $84 = positive $4, subtract 1, so 2^3 = 8
|
|
; mantissa = 1.XX XX XX XX, in this case 1. (Sign)010 0000 = 1.25
|
|
; 1.25*8 = 10
|
|
|
|
; FAC also has sign byte at $A2
|
|
|
|
|
|
; to make constants
|
|
; NEW
|
|
; A=10
|
|
; 804L, should be 41 00 - 84 20 00 00 00
|
|
; A - 5-bytes for 10
|
|
|
|
OURX = $FF
|
|
|
|
sin1 = $2000
|
|
sin2 = $2100
|
|
sin3 = $2200
|
|
save = $2300
|
|
|
|
HGR = $F3E2
|
|
FULLGR = $C052
|
|
|
|
add_debut:
|
|
jsr HGR
|
|
bit FULLGR
|
|
|
|
; sin1[i]=round(47.0+
|
|
; 32.0*sin(i*(PI*2.0/256.0))+
|
|
; 16.0*sin(2.0*i*(PI*2.0/256.0)));
|
|
|
|
; already set up for this one
|
|
|
|
jsr make_sin_table
|
|
|
|
; sin2[i]=round(47.0+
|
|
; 32.0*sin(4.0*i*(PI*2.0/256.0))+
|
|
; 16.0*sin(3.0*i*(PI*2.0/256.0)));
|
|
|
|
lda #<sin2
|
|
sta sin_table_dest_smc+1
|
|
lda #>sin2
|
|
sta sin_table_dest_smc+2
|
|
|
|
; 47 is same
|
|
; 32 is same
|
|
; 16 is same
|
|
|
|
lda #<four_input
|
|
sta sin_table_input1_smc+1
|
|
lda #>four_input
|
|
sta sin_table_input2_smc+1
|
|
|
|
lda #<three_input
|
|
sta sin_table_input3_smc+1
|
|
lda #>three_input
|
|
sta sin_table_input4_smc+1
|
|
|
|
jsr make_sin_table
|
|
|
|
; sin3[i]=round(38.0+
|
|
; 24.0*sin(3.0*i*(PI*2.0/256.0))+
|
|
; 16.0*sin(8.0*i*(PI*2.0/256.0)));
|
|
|
|
lda #<sin3
|
|
sta sin_table_dest_smc+1
|
|
lda #>sin3
|
|
sta sin_table_dest_smc+2
|
|
|
|
lda #<thirty_eight
|
|
sta sin_table_add_smc1+1
|
|
lda #>thirty_eight
|
|
sta sin_table_add_smc2+1
|
|
|
|
lda #<twenty_four
|
|
sta sin_table_scale1_smc+1
|
|
lda #>twenty_four
|
|
sta sin_table_scale2_smc+1
|
|
|
|
lda #<three_input
|
|
sta sin_table_input1_smc+1
|
|
lda #>three_input
|
|
sta sin_table_input2_smc+1
|
|
|
|
lda #<eight_input
|
|
sta sin_table_input3_smc+1
|
|
lda #>eight_input
|
|
sta sin_table_input4_smc+1
|
|
|
|
|
|
|
|
jsr make_sin_table
|
|
|
|
end:
|
|
jmp end
|
|
|
|
|
|
;===============================
|
|
;===============================
|
|
;===============================
|
|
;===============================
|
|
;===============================
|
|
|
|
make_sin_table:
|
|
|
|
lda #0
|
|
sta OURX
|
|
|
|
sin_loop:
|
|
|
|
lda OURX
|
|
jsr float ; FAC = X
|
|
|
|
sin_table_input1_smc:
|
|
lda #<one_input
|
|
sin_table_input2_smc:
|
|
ldy #>one_input
|
|
jsr fmult
|
|
jsr sin
|
|
sin_table_scale1_smc:
|
|
lda #<thirty_two
|
|
sin_table_scale2_smc:
|
|
ldy #>thirty_two
|
|
jsr fmult
|
|
|
|
ldx #<save
|
|
ldy #>save
|
|
jsr movmf ; save FAC to mem
|
|
|
|
lda OURX
|
|
jsr float ; FAC = X
|
|
sin_table_input3_smc:
|
|
lda #<two_input
|
|
sin_table_input4_smc:
|
|
ldy #>two_input
|
|
jsr fmult
|
|
jsr sin
|
|
|
|
lda #<sixteen
|
|
ldy #>sixteen
|
|
jsr fmult
|
|
|
|
; add first sine
|
|
lda #<save
|
|
ldy #>save
|
|
jsr fadd
|
|
|
|
; add 38
|
|
sin_table_add_smc1:
|
|
lda #<forty_seven
|
|
sin_table_add_smc2:
|
|
ldy #>forty_seven
|
|
jsr fadd
|
|
|
|
jsr qint
|
|
|
|
lda FAC+4
|
|
|
|
ldx OURX
|
|
|
|
sin_table_dest_smc:
|
|
sta sin1,X
|
|
|
|
inc OURX
|
|
bne sin_loop
|
|
|
|
rts
|
|
|
|
|
|
sixteen:
|
|
.byte $85,$00,$00,$00,$00
|
|
|
|
twenty_four:
|
|
.byte $85,$40,$00,$00,$00
|
|
|
|
thirty_two:
|
|
.byte $86,$00,$00,$00,$00
|
|
|
|
thirty_eight:
|
|
.byte $86,$18,$00,$00,$00
|
|
; 2^5 = 32, 1.0011 0000 = 1/8+1/16
|
|
|
|
forty_seven:
|
|
.byte $86,$3C,$00,$00,$00
|
|
; 32 * 1.0111 10000 = 1/4+1/8+1/16+1/32
|
|
|
|
one_input:
|
|
; 1*2*pi/256 = .0736310778
|
|
.byte $7b,$49,$0F,$da,$a2
|
|
|
|
two_input:
|
|
; 2*2*pi/256 = .0736310778
|
|
.byte $7c,$49,$0F,$da,$a2
|
|
|
|
three_input:
|
|
; 3*2*pi/256 = .0736310778
|
|
.byte $7d,$16,$cb,$e3,$f9
|
|
|
|
four_input:
|
|
; 4*2*pi/256 = .0736310778
|
|
.byte $7d,$49,$0F,$da,$a2
|
|
|
|
eight_input:
|
|
; 8*2*pi/256 = .196349541
|
|
.byte $7E,$49,$0F,$da,$a2
|
|
|