dos33fsprogs/gr-sim/tfv_flying.c
2017-09-19 00:43:17 -04:00

712 lines
14 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include "gr-sim.h"
#include "tfv_utils.h"
#include "tfv_zp.h"
#include "tfv_sprites.h"
/* Mode7 code based on code from: */
/* http://www.helixsoft.nl/articles/circle/sincos.htm */
static unsigned char flying_map[64]= {
2,15,15,15, 15,15,15, 2,
13,12,12, 8, 4, 4, 0,13,
13,12,12,12, 8, 4, 4,13,
13,12,12, 8, 4, 4, 4,13,
13,12, 9, 9, 8, 4, 4,13,
13,12, 9, 8, 4, 4, 4,13,
13,12, 9, 9, 1, 4, 4,13,
2,13,13,13, 13,13,13, 2};
static unsigned char water_map[32]={
2,2,2,2, 2,2,2,2,
14,2,2,2, 2,2,2,2,
2, 2,2,2, 2,2,2,2,
2,2,2,2, 14,2,2,2,
};
#define TILE_W 64
#define TILE_H 64
#define MASK_X (TILE_W - 1)
#define MASK_Y (TILE_H - 1)
#define LOWRES_W 40
#define LOWRES_H 40
static int displayed=0;
static int lookup_map(int xx, int yy) {
int color,offset;
color=2;
xx=xx&MASK_X;
yy=yy&MASK_Y;
if (!displayed) {
printf("XX,YY! %x,%x\n",xx,yy);
}
// if ( ((y&0x3)==1) && ((x&7)==0) ) color=14;
// if ( ((y&0x3)==3) && ((x&7)==4) ) color=14;
offset=yy<<3;
offset+=xx;
// color=water_map[((yy*8)+xx)&0x1f];
color=water_map[offset&0x1f];
/* 2 2 2 2 2 2 2 2 */
/* e 2 2 2 2 2 2 2 */
/* 2 2 2 2 2 2 2 2 */
/* 2 2 2 2 e 2 2 2 */
if ((yy<8) && (xx<8)) {
color=flying_map[offset];
}
if (!displayed) {
printf("COLOR! %x\n",color);
}
return color;
}
static int over_water;
// current screen position
static int screen_x, screen_y;
static char angle=1;
// Speed
#define SPEED_STOPPED 0
static unsigned char speed=SPEED_STOPPED; // 0..4, with 0=stopped
// 1 = use reduced fixed point
// 0 = use fancy hi-res floating point
#define FIXEDPT 1
#if FIXEDPT
// map coordinates
static struct fixed_type cx = {0,0};
static struct fixed_type cy = {0,0};
static struct fixed_type dx;
static struct fixed_type dy;
// the distance and horizontal scale of the line we are drawing
static struct fixed_type distance;
static struct fixed_type horizontal_scale;
// current space position
static struct fixed_type space_x;
static struct fixed_type space_y;
// height of the camera above the plane
static struct fixed_type space_z= {0x04,0x80}; // 4.5;
static struct fixed_type BETA = {0xff,0x80}; // -0.5;
static struct fixed_type factor;
static struct fixed_type fixed_temp;
static struct fixed_type scale={0x14,0x00}; // 20.0
#define ANGLE_STEPS 16
// FIXME: take advantage of symmetry?
static struct fixed_type fixed_sin[ANGLE_STEPS]={
{0x00,0x00}, // 0.000000=00.00
{0x00,0x61}, // 0.382683=00.61
{0x00,0xb5}, // 0.707107=00.b5
{0x00,0xec}, // 0.923880=00.ec
{0x01,0x00}, // 1.000000=01.00
{0x00,0xec}, // 0.923880=00.ec
{0x00,0xb5}, // 0.707107=00.b5
{0x00,0x61}, // 0.382683=00.61
{0x00,0x00}, // 0.000000=00.00
{0xff,0x9f}, // -0.382683=ff.9f
{0xff,0x4b}, // -0.707107=ff.4b
{0xff,0x14}, // -0.923880=ff.14
{0xff,0x00}, // -1.000000=ff.00
{0xff,0x14}, // -0.923880=ff.14
{0xff,0x4b}, // -0.707107=ff.4b
{0xff,0x9f}, // -0.382683=ff.9f
};
// div by 8
static struct fixed_type fixed_sin_scale[ANGLE_STEPS]={
{0x00,0x00},
{0x00,0x0c},
{0x00,0x16},
{0x00,0x1d},
{0x00,0x20},
{0x00,0x1d},
{0x00,0x16},
{0x00,0x0c},
{0x00,0x00},
{0xff,0xf4},
{0xff,0xea},
{0xff,0xe3},
{0xff,0xe0},
{0xff,0xe3},
{0xff,0xea},
{0xff,0xf4},
};
static unsigned char horizontal_lookup[7][16] = {
{0x0C,0x0A,0x09,0x08,0x07,0x06,0x05,0x05,0x04,0x04,0x04,0x04,0x03,0x03,0x03,0x03,},
{0x26,0x20,0x1B,0x18,0x15,0x13,0x11,0x10,0x0E,0x0D,0x0C,0x0C,0x0B,0x0A,0x0A,0x09,},
{0x40,0x35,0x2D,0x28,0x23,0x20,0x1D,0x1A,0x18,0x16,0x15,0x14,0x12,0x11,0x10,0x10,},
{0x59,0x4A,0x40,0x38,0x31,0x2C,0x28,0x25,0x22,0x20,0x1D,0x1C,0x1A,0x18,0x17,0x16,},
{0x73,0x60,0x52,0x48,0x40,0x39,0x34,0x30,0x2C,0x29,0x26,0x24,0x21,0x20,0x1E,0x1C,},
{0x8C,0x75,0x64,0x58,0x4E,0x46,0x40,0x3A,0x36,0x32,0x2E,0x2C,0x29,0x27,0x25,0x23,},
{0xA6,0x8A,0x76,0x68,0x5C,0x53,0x4B,0x45,0x40,0x3B,0x37,0x34,0x30,0x2E,0x2B,0x29,},
};
double fixed_to_double(struct fixed_type *f) {
double out;
out=f->i;
out+=((double)(f->f))/256.0;
return out;
}
static void fixed_add(struct fixed_type *x, struct fixed_type *y, struct fixed_type *z) {
int carry;
short sum;
sum=(short)(x->f)+(short)(y->f);
if (sum>=256) carry=1;
else carry=0;
z->f=sum&0xff;
z->i=x->i+y->i+carry;
}
//static void double_to_fixed(double d, struct fixed_type *f) {
//
// int temp;
//
// temp=d*256;
//
// f->i=(temp>>8)&0xff;
//
// f->f=temp&0xff;
//}
//
// Non-detailed version
//
//
void draw_background_mode7(void) {
int map_color;
over_water=0;
/* Draw Sky */
/* Originally wanted to be fancy and have sun too, but no */
color_equals(COLOR_MEDIUMBLUE);
for(screen_y=0;screen_y<6;screen_y+=2) {
hlin_double(ram[DRAW_PAGE], 0, 40, screen_y);
}
/* Draw hazy horizon */
color_equals(COLOR_GREY);
hlin_double(ram[DRAW_PAGE], 0, 40, 6);
// fixed_to_double(&space_z,&double_space_z);
// double_factor=double_space_z*double_BETA;
fixed_mul(&space_z,&BETA,&factor,0);
if (!displayed) {
printf("SPACEZ/BETA/FACTOR %x %x * %x %x = %x %x\n",
space_z.i,space_z.f,BETA.i,BETA.f,factor.i,factor.f);
}
// printf("spacez=%lf beta=%lf factor=%lf\n",
// fixed_to_double(&space_z),
// fixed_to_double(&BETA),
// fixed_to_double(&factor));
for (screen_y = 8; screen_y < LOWRES_H; screen_y+=2) {
// then calculate the horizontal scale, or the distance between
// space points on this horizontal line
// double_horizontal_scale = double_space_z / (screen_y + horizon);
// double_to_fixed(double_horizontal_scale,&horizontal_scale);
horizontal_scale.i=0;
horizontal_scale.f=
horizontal_lookup[space_z.i&0xf][(screen_y-8)/2];
if (!displayed) {
printf("HORIZ_SCALE %x %x\n",
horizontal_scale.i,horizontal_scale.f);
}
// calculate the distance of the line we are drawing
fixed_mul(&horizontal_scale,&scale,&distance,0);
//fixed_to_double(&distance,&double_distance);
// printf("Distance=%lf, horizontal-scale=%lf\n",
// distance,horizontal_scale);
if (!displayed) {
printf("DISTANCE %x:%x\n",
distance.i,distance.f);
}
// calculate the dx and dy of points in space when we step
// through all points on this line
dx.i=fixed_sin[(angle+8)&0xf].i; // -sin()
dx.f=fixed_sin[(angle+8)&0xf].f; // -sin()
fixed_mul(&dx,&horizontal_scale,&dx,0);
if (!displayed) {
printf("DX %x:%x\n",
dx.i,dx.f);
}
dy.i=fixed_sin[(angle+4)&0xf].i; // cos()
dy.f=fixed_sin[(angle+4)&0xf].f; // cos()
fixed_mul(&dy,&horizontal_scale,&dy,0);
if (!displayed) {
printf("DY %x:%x\n",
dy.i,dy.f);
}
// calculate the starting position
//double_space_x =(double_distance+double_factor);
fixed_add(&distance,&factor,&space_x);
// double_to_fixed(double_space_x,&space_x);
fixed_temp.i=fixed_sin[(angle+4)&0xf].i; // cos
fixed_temp.f=fixed_sin[(angle+4)&0xf].f; // cos
fixed_mul(&space_x,&fixed_temp,&space_x,0);
fixed_add(&space_x,&cx,&space_x);
fixed_temp.i=0xec; // -20 (LOWRES_W/2)
fixed_temp.f=0;
fixed_mul(&fixed_temp,&dx,&fixed_temp,0);
fixed_add(&space_x,&fixed_temp,&space_x);
if (!displayed) {
printf("SPACEX! %x:%x\n",
space_x.i,space_x.f);
}
fixed_add(&distance,&factor,&space_y);
// double_space_y =(double_distance+double_factor);
// double_to_fixed(double_space_y,&space_y);
fixed_temp.i=fixed_sin[angle&0xf].i;
fixed_temp.f=fixed_sin[angle&0xf].f;
fixed_mul(&space_y,&fixed_temp,&space_y,0);
fixed_add(&space_y,&cy,&space_y);
fixed_temp.i=0xec; // -20 (LOWRES_W/2)
fixed_temp.f=0;
fixed_mul(&fixed_temp,&dy,&fixed_temp,0);
fixed_add(&space_y,&fixed_temp,&space_y);
if (!displayed) {
printf("SPACEY! %x:%x\n",
space_y.i,space_y.f);
}
// go through all points in this screen line
for (screen_x = 0; screen_x < LOWRES_W-1; screen_x++) {
// get a pixel from the tile and put it on the screen
map_color=lookup_map(space_x.i,space_y.i);
ram[COLOR]=map_color;
ram[COLOR]|=map_color<<4;
if (screen_x==20) {
if (map_color==COLOR_DARKBLUE) over_water=1;
else over_water=0;
}
hlin_double(ram[DRAW_PAGE], screen_x, screen_x+1,
screen_y);
// advance to the next position in space
fixed_add(&space_x,&dx,&space_x);
fixed_add(&space_y,&dy,&space_y);
}
}
displayed=1;
}
#else
// map coordinates
double dx,dy;
double cx=0.0,cy=0.0;
static double space_z=4.5; // height of the camera above the plane
static int horizon=-2; // number of pixels line 0 is below the horizon
static double scale_x=20, scale_y=20;
double factor;
double BETA=-0.5;
#define ANGLE_STEPS 32
double our_sin(unsigned char angle) {
double r;
r=3.14159265358979*2.0*(double)angle/(double)ANGLE_STEPS;
return sin(r);
}
double our_cos(unsigned char angle) {
double r;
r=3.14159265358979*2.0*(double)angle/(double)ANGLE_STEPS;
return cos(r);
}
//
// Detailed version
//
//
void draw_background_mode7(void) {
// the distance and horizontal scale of the line we are drawing
double distance, horizontal_scale;
// step for points in space between two pixels on a horizontal line
double line_dx, line_dy;
// current space position
double space_x, space_y;
int map_color;
over_water=0;
/* Draw Sky */
/* Originally wanted to be fancy and have sun too, but no */
color_equals(COLOR_MEDIUMBLUE);
for(screen_y=0;screen_y<6;screen_y+=2) {
hlin_double(ram[DRAW_PAGE], 0, 40, screen_y);
}
/* Draw hazy horizon */
color_equals(COLOR_GREY);
hlin_double(ram[DRAW_PAGE], 0, 40, 6);
// Move camera back a bit
factor=space_z*BETA;
printf("space_z=%lf BETA=%lf factor=%lf\n",space_z,BETA,factor);
for (screen_y = 8; screen_y < LOWRES_H; screen_y++) {
// first calculate the distance of the line we are drawing
distance = (space_z * scale_y) / (screen_y + horizon);
// then calculate the horizontal scale, or the distance between
// space points on this horizontal line
horizontal_scale = (distance / scale_x);
// calculate the dx and dy of points in space when we step
// through all points on this line
line_dx = -our_sin(angle) * horizontal_scale;
line_dy = our_cos(angle) * horizontal_scale;
// calculate the starting position
space_x = cx + ((distance+factor) * our_cos(angle)) - LOWRES_W/2 * line_dx;
space_y = cy + ((distance+factor) * our_sin(angle)) - LOWRES_W/2 * line_dy;
// go through all points in this screen line
for (screen_x = 0; screen_x < LOWRES_W-1; screen_x++) {
// get a pixel from the tile and put it on the screen
map_color=lookup_map((int)space_x,(int)space_y);
color_equals(map_color);
if (screen_x==20) {
if (map_color==COLOR_DARKBLUE) over_water=1;
else over_water=0;
}
plot(screen_x,screen_y);
// advance to the next position in space
space_x += line_dx;
space_y += line_dy;
}
}
}
#endif
#define SHIPX 15
int flying(void) {
unsigned char ch;
int shipy;
int turning=0;
int draw_splash=0;
int zint;
/************************************************/
/* Flying */
/************************************************/
gr();
clear_bottom(PAGE0);
clear_bottom(PAGE1);
shipy=20;
while(1) {
if (draw_splash>0) draw_splash--;
ch=grsim_input();
if ((ch=='q') || (ch==27)) break;
#if 0
if (ch=='g') {
BETA+=0.1;
printf("Horizon=%lf\n",BETA);
}
if (ch=='h') {
BETA-=0.1;
printf("Horizon=%lf\n",BETA);
}
if (ch=='s') {
scale_x++;
scale_y++;
printf("Scale=%lf\n",scale_x);
}
#endif
if ((ch=='w') || (ch==APPLE_UP)) {
if (shipy>16) {
shipy-=2;
#if FIXEDPT
space_z.i++;
#else
space_z+=1;
#endif
}
// printf("Z=%lf\n",space_z);
}
if ((ch=='s') || (ch==APPLE_DOWN)) {
if (shipy<28) {
shipy+=2;
#if FIXEDPT
space_z.i--;
#else
space_z-=1;
#endif
}
else {
draw_splash=10;
}
// printf("Z=%lf\n",space_z);
}
if ((ch=='a') || (ch==APPLE_LEFT)) {
if (turning>0) {
turning=0;
}
else {
turning=-20;
angle-=1;
if (angle<0) angle+=ANGLE_STEPS;
}
}
if ((ch=='d') || (ch==APPLE_RIGHT)) {
if (turning<0) {
turning=0;
}
else {
turning=20;
angle+=1;
if (angle>=ANGLE_STEPS) angle-=ANGLE_STEPS;
}
}
/* Used to be able to go backwards */
if (ch=='z') {
if (speed<3) speed++;
}
if (ch=='x') {
if (speed>0) speed--;
}
if (ch==' ') {
speed=SPEED_STOPPED;
}
if (ch=='h') {
print_help();
}
if (ch==13) {
int landing_color,tx,ty;
#if FIXEDPT
tx=cx.i; ty=cy.i;
#else
tx=cx; ty=cy;
#endif
landing_color=lookup_map(tx,ty);
printf("Trying to land at %d %d\n",tx,ty);
printf("Color=%d\n",landing_color);
if (landing_color==12) return 0;
else {
int draw_save;
draw_save=ram[DRAW_PAGE];
ram[DRAW_PAGE]=PAGE0;
htab(11);
vtab(22);
move_cursor();
print("NEED TO LAND ON GRASS!");
ram[DRAW_PAGE]=PAGE1;
htab(11);
vtab(22);
move_cursor();
print("NEED TO LAND ON GRASS!");
ram[DRAW_PAGE]=draw_save;
}
}
if (speed!=SPEED_STOPPED) {
#if FIXEDPT
int ii;
dx.i = fixed_sin_scale[(angle+4)&0xf].i; // cos
dx.f = fixed_sin_scale[(angle+4)&0xf].f; // cos
dy.i = fixed_sin_scale[angle&0xf].i;
dy.f = fixed_sin_scale[angle&0xf].f;
for(ii=0;ii<speed;ii++) {
fixed_add(&cx,&dx,&cx);
fixed_add(&cy,&dy,&cy);
}
#else
dx = (double)speed * 0.25 * our_cos (angle);
dy = (double)speed * 0.25 * our_sin (angle);
cx += dx;
cy += dy;
#endif
}
draw_background_mode7();
#if FIXEDPT
zint=space_z.i;
#else
zint=space_z;
#endif
if (turning==0) {
if ((speed>0) && (over_water)&&(draw_splash)) {
grsim_put_sprite(splash_forward,
SHIPX+1,shipy+9);
}
grsim_put_sprite(shadow_forward,SHIPX+3,31+zint);
grsim_put_sprite(ship_forward,SHIPX,shipy);
}
if (turning<0) {
if ((shipy>25) && (speed>0.0)) draw_splash=1;
if (over_water&&draw_splash) {
grsim_put_sprite(splash_left,
SHIPX+1,36);
}
grsim_put_sprite(shadow_left,SHIPX+3,31+zint);
grsim_put_sprite(ship_left,SHIPX,shipy);
turning++;
}
if (turning>0) {
if ((shipy>25) && (speed>0.0)) draw_splash=1;
if (over_water&&draw_splash) {
grsim_put_sprite(splash_right,
SHIPX+1,36);
}
grsim_put_sprite(shadow_right,SHIPX+3,31+zint);
grsim_put_sprite(ship_right,SHIPX,shipy);
turning--;
}
page_flip();
usleep(20000);
}
return 0;
}