ii-pix/convert.py

257 lines
11 KiB
Python
Raw Normal View History

2021-01-25 23:16:46 +00:00
"""Image converter to Apple II Double Hi-Res format."""
import argparse
import array
2021-01-08 22:44:28 +00:00
import os.path
2021-01-12 10:00:56 +00:00
import time
import collections
import random
import pygame
2021-07-15 13:25:32 +00:00
import colour
from PIL import Image
import numpy as np
from pyclustering.cluster.kmedians import kmedians
from pyclustering.cluster.kmeans import kmeans
from pyclustering.utils.metric import distance_metric, type_metric
from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer
from sklearn import cluster
2021-01-15 22:18:25 +00:00
2021-01-15 22:20:28 +00:00
import dither as dither_pyx
2021-01-15 22:18:25 +00:00
import dither_pattern
import image as image_py
import palette as palette_py
import screen as screen_py
# TODO:
2021-01-15 22:34:03 +00:00
# - support LR/DLR
# - support HGR
class ClusterPalette:
def __init__(self, image: Image):
self._colours_cam = self._image_colours_cam(image)
self._best_palette_distances = {i: (1e9, None) for i in range(16)}
self._iterations = 0
self._palettes_cam = np.empty((16, 16, 3), dtype=np.float32)
self._palettes_rgb = np.empty((16, 16, 3), dtype=np.float32)
self._global_palette = self._fit_global_palette()
def _image_colours_cam(self, image: Image):
colours_rgb = np.asarray(image).reshape((-1, 3))
with colour.utilities.suppress_warnings(colour_usage_warnings=True):
colours_cam = colour.convert(colours_rgb, "RGB",
"CAM16UCS").astype(np.float32)
return colours_cam
def _fit_global_palette(self):
"""Compute a 16-colour palette for the entire image to use as
starting point for the sub-palettes. This should help when the image
has large blocks of colour since the sub-palettes will tend to pick the same coloursx."""
clusters = cluster.MiniBatchKMeans(n_clusters=16, max_iter=10000)
# tol=0.0000000001, algorithm="elkan")
clusters.fit_predict(self._colours_cam)
return clusters.cluster_centers_
def iterate(self):
self._iterations += 1
print("Iteration %d" % self._iterations)
for palette_idx in range(16):
# i=5: 3 * (200/16) : 7 * (200/16)
# print("Fitting palette %d" % palette_idx)
p_lower2 = max(palette_idx - 1.5, 0)
p_lower1 = max(palette_idx - 1, 0)
p_lower0 = palette_idx
p_upper0 = max(palette_idx + 1, 16)
p_upper1 = max(palette_idx + 2, 16)
p_upper2 = min(palette_idx + 2.5, 16)
# TODO: weight +/-1 and 0 bands higher
# TODO: dynamically tune palette cuts
palette_pixels = np.concatenate(
[
self._colours_cam[
int(p_lower2 * (200 / 16)) * 320:int(p_upper2 * (
200 / 16)) * 320, :],
# self._colours_cam[
# int(p_lower1 * (200 / 16)) * 320:int(p_upper1 * (
# 200 / 16)) * 320, :],
# self._colours_cam[
# int(p_lower0 * (200 / 16)) * 320:int(p_upper0 * (
# 200 / 16)) * 320, :],
], axis=0)
best_wce, best_medians = self._best_palette_distances[palette_idx]
# if palette_idx == 0:
# initial_centers = kmeans_plusplus_initializer(
# palette_pixels, 16).initialize()
# else:
# initial_centers = kmedians_instance.get_medians()
# kmedians_instance = kmeans(
# palette_pixels, initial_centers, tolerance=0.0000000001,
# itermax=100,
# metric=distance_metric(type_metric.EUCLIDEAN_SQUARE))
# kmedians_instance.process()
# TODO: tolerance
clusters = cluster.MiniBatchKMeans(
n_clusters=16, max_iter=10000, init=self._global_palette,
n_init=1)
# tol=0.0000000001, algorithm="elkan")
clusters.fit_predict(palette_pixels)
# if kmedians_instance.get_total_wce() < best_wce:
# best_wce = kmedians_instance.get_total_wce()
# best_medians = kmedians_instance
if clusters.inertia_ < (best_wce * 0.99):
best_wce = clusters.inertia_
print("Improved palette %d: %f" % (palette_idx, best_wce))
# self._palettes_cam[palette_idx, :, :] = np.array(
# best_medians.get_centers()).astype(np.float32)
self._palettes_cam[palette_idx, :, :] = np.array(
clusters.cluster_centers_).astype(np.float32)
self._best_palette_distances[palette_idx] = (
best_wce, best_medians)
with colour.utilities.suppress_warnings(
colour_usage_warnings=True):
palette_rgb = colour.convert(
self._palettes_cam[palette_idx], "CAM16UCS", "RGB")
# SHR colour palette only uses 4-bit values
palette_rgb = np.round(palette_rgb * 15) / 15
self._palettes_rgb[palette_idx, :, :] = palette_rgb.astype(
np.float32)
return self._palettes_cam, self._palettes_rgb
def main():
parser = argparse.ArgumentParser()
2021-01-15 22:28:44 +00:00
parser.add_argument("input", type=str, help="Input image file to process.")
parser.add_argument("output", type=str, help="Output file for converted "
"Apple II image.")
2021-01-08 22:44:28 +00:00
parser.add_argument(
"--lookahead", type=int, default=8,
2021-01-08 22:44:28 +00:00
help=("How many pixels to look ahead to compensate for NTSC colour "
"artifacts (default: 8)"))
2021-01-15 22:28:44 +00:00
parser.add_argument(
'--dither', type=str, choices=list(dither_pattern.PATTERNS.keys()),
default=dither_pattern.DEFAULT_PATTERN,
2021-03-15 10:45:33 +00:00
help="Error distribution pattern to apply when dithering (default: "
+ dither_pattern.DEFAULT_PATTERN + ")")
2021-01-15 22:34:03 +00:00
parser.add_argument(
'--show-input', action=argparse.BooleanOptionalAction, default=False,
2021-03-15 10:45:33 +00:00
help="Whether to show the input image before conversion.")
2021-01-15 22:34:03 +00:00
parser.add_argument(
'--show-output', action=argparse.BooleanOptionalAction, default=True,
2021-03-15 10:45:33 +00:00
help="Whether to show the output image after conversion.")
2021-01-25 22:28:00 +00:00
parser.add_argument(
2021-03-15 10:45:33 +00:00
'--palette', type=str, choices=list(set(palette_py.PALETTES.keys())),
2021-01-25 22:28:00 +00:00
default=palette_py.DEFAULT_PALETTE,
2021-03-15 10:45:33 +00:00
help='RGB colour palette to dither to. "ntsc" blends colours over 8 '
'pixels and gives better image quality on targets that '
'use/emulate NTSC, but can be substantially slower. Other '
'palettes determine colours based on 4 pixel sequences '
'(default: ' + palette_py.DEFAULT_PALETTE + ")")
parser.add_argument(
'--show-palette', type=str, choices=list(palette_py.PALETTES.keys()),
2021-03-15 10:45:33 +00:00
help="RGB colour palette to use when --show_output (default: "
"value of --palette)")
parser.add_argument(
'--verbose', action=argparse.BooleanOptionalAction,
default=False, help="Show progress during conversion")
parser.add_argument(
'--gamma_correct', type=float, default=2.4,
help='Gamma-correct image by this value (default: 2.4)'
)
2021-01-08 22:44:28 +00:00
args = parser.parse_args()
2021-11-02 15:26:43 +00:00
if args.lookahead < 1:
parser.error('--lookahead must be at least 1')
2021-01-08 22:44:28 +00:00
# palette = palette_py.PALETTES[args.palette]()
screen = screen_py.SHR320Screen()
# Conversion matrix from RGB to CAM16UCS colour values. Indexed by
# 24-bit RGB value
rgb_to_cam16 = np.load("data/rgb_to_cam16ucs.npy")
2021-01-25 23:16:46 +00:00
# Open and resize source image
image = image_py.open(args.input)
2021-01-15 22:34:03 +00:00
if args.show_input:
image_py.resize(image, screen.X_RES, screen.Y_RES,
srgb_output=False).show()
rgb = np.array(
image_py.resize(image, screen.X_RES, screen.Y_RES,
gamma=args.gamma_correct, srgb_output=True)).astype(
np.float32) / 255
penalty = 10 # 1e9
iterations = 50
pygame.init()
canvas = pygame.display.set_mode((640, 400))
canvas = pygame.display.set_mode((640, 400))
canvas.fill((0, 0, 0))
pygame.display.flip()
# print("Foo")
cluster_palette = ClusterPalette(rgb)
for iteration in range(iterations):
palettes_cam, palettes_rgb = cluster_palette.iterate()
# print((palettes_rgb*255).astype(np.uint8))
for i in range(16):
screen.set_palette(i, (np.round(palettes_rgb[i, :, :] * 15)).astype(
np.uint8))
output_4bit, line_to_palette = dither_pyx.dither_shr(
rgb, palettes_cam, palettes_rgb, rgb_to_cam16, float(penalty))
screen.set_pixels(output_4bit)
output_rgb = np.zeros((200, 320, 3), dtype=np.uint8)
for i in range(200):
screen.line_palette[i] = line_to_palette[i]
output_rgb[i, :, :] = (
palettes_rgb[line_to_palette[i]][
output_4bit[i, :]] * 255).astype(np.uint8)
output_srgb = image_py.linear_to_srgb(output_rgb).astype(np.uint8)
# dither = dither_pattern.PATTERNS[args.dither]()
# bitmap = dither_pyx.dither_image(
# screen, rgb, dither, args.lookahead, args.verbose, rgb_to_cam16)
# Show output image by rendering in target palette
# output_palette_name = args.show_palette or args.palette
# output_palette = palette_py.PALETTES[output_palette_name]()
# output_screen = screen_py.DHGRScreen(output_palette)
# if output_palette_name == "ntsc":
# output_srgb = output_screen.bitmap_to_image_ntsc(bitmap)
# else:
# output_srgb = image_py.linear_to_srgb(
# output_screen.bitmap_to_image_rgb(bitmap)).astype(np.uint8)
out_image = image_py.resize(
Image.fromarray(output_srgb), screen.X_RES * 2, screen.Y_RES * 2,
srgb_output=False) # XXX true
if args.show_output:
surface = pygame.surfarray.make_surface(np.asarray(
out_image).transpose((1, 0, 2)))
canvas.blit(surface, (0, 0))
pygame.display.flip()
# Save Double hi-res image
outfile = os.path.join(os.path.splitext(args.output)[0] +
"-%d-preview.png" % cluster_palette._iterations)
out_image.save(outfile, "PNG")
screen.pack()
# with open(args.output, "wb") as f:
# f.write(bytes(screen.aux))
# f.write(bytes(screen.main))
with open("%s-%s" % (args.output, cluster_palette._iterations),
"wb") as f:
f.write(bytes(screen.memory))
if __name__ == "__main__":
2021-01-09 18:05:36 +00:00
main()