ii-pix/convert.py

255 lines
10 KiB
Python
Raw Normal View History

2021-01-25 23:16:46 +00:00
"""Image converter to Apple II Double Hi-Res format."""
import argparse
import array
2021-01-08 22:44:28 +00:00
import os.path
2021-01-12 10:00:56 +00:00
import time
import collections
import random
2021-07-15 13:25:32 +00:00
import colour
from PIL import Image
import numpy as np
from pyclustering.cluster.kmedians import kmedians
from pyclustering.cluster.kmeans import kmeans
from pyclustering.utils.metric import distance_metric, type_metric
from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer
2021-01-15 22:18:25 +00:00
2021-01-15 22:20:28 +00:00
import dither as dither_pyx
2021-01-15 22:18:25 +00:00
import dither_pattern
import image as image_py
import palette as palette_py
import screen as screen_py
# TODO:
2021-01-15 22:34:03 +00:00
# - support LR/DLR
# - support HGR
2021-11-09 16:14:37 +00:00
def cluster_palette(image: Image):
# line_to_palette = {}
# shuffle_lines = liprint(st(range(200))
# random.shuffle(shuffle_lines)
# for idx, line in enumerate(shuffle_lines):
# line_to_palette[line] = idx % 16
# for line in range(200):
# if line % 3 == 0:
# line_to_palette[line] = int(line / (200 / 16))
# elif line % 3 == 1:
# line_to_palette[line] = np.clip(int(line / (200 / 16)) + 1, 0, 15)
# else:
# line_to_palette[line] = np.clip(int(line / (200 / 16)) + 2, 0, 15)
# for line in range(200):
# if line % 3 == 0:
# line_to_palette[line] = int(line / (200 / 16))
# elif line % 3 == 1:
# line_to_palette[line] = np.clip(int(line / (200 / 16)) + 1, 0, 15)
# else:
# line_to_palette[line] = np.clip(int(line / (200 / 16)) + 2, 0, 15)
colours_rgb = np.asarray(image).reshape((-1, 3))
with colour.utilities.suppress_warnings(colour_usage_warnings=True):
2021-11-09 16:14:37 +00:00
colours_cam = colour.convert(colours_rgb, "RGB",
"CAM16UCS").astype(np.float32)
2021-11-13 17:29:13 +00:00
palettes_rgb = np.empty((16, 16, 3), dtype=np.float32)
palettes_cam = np.empty((16, 16, 3), dtype=np.float32)
for palette_idx in range(16):
print("Fitting palette %d" % palette_idx)
p_lower = max(palette_idx - 2, 0)
p_upper = min(palette_idx + 2, 16)
palette_pixels = colours_cam[
int(p_lower * (200 / 16)) * 320:int(p_upper * (
200 / 16)) * 320, :]
# kmeans = KMeans(n_clusters=16, max_iter=10000)
# kmeans.fit_predict(palette_pixels)
# palettes_cam[palette_idx] = kmeans.cluster_centers_
# fixed_centroids = None
# print(np.array(line_colours), fixed_centroids)
# palettes_cam[palette_idx] = dither_pyx.k_means_with_fixed_centroids(
# 16, palette_pixels, fixed_centroids=fixed_centroids,
# tolerance=1e-6)
best_wce = 1e9
best_medians = None
for i in range(500):
# print(i)
initial_centers = kmeans_plusplus_initializer(
palette_pixels, 16).initialize()
kmedians_instance = kmedians(
palette_pixels, initial_centers, tolerance=0.1, itermax=100,
metric=distance_metric(type_metric.MANHATTAN))
kmedians_instance.process()
if kmedians_instance.get_total_wce() < best_wce:
best_wce = kmedians_instance.get_total_wce()
print(i, best_wce)
best_medians = kmedians_instance
print("Best %f" % best_wce)
2021-11-13 17:29:13 +00:00
palettes_cam[palette_idx, :, :] = np.array(
best_medians.get_medians()).astype(np.float32)
# palette_colours = collections.defaultdict(list)
# for line in range(200):
# palette = line_to_palette[line]
# palette_colours[palette].extend(
# colours_cam[line * 320:(line + 1) * 320])
# For each line grouping, find big palette entries with minimal total
# distance
# palette_cam = None
# for palette_idx in range(16):
# line_colours = palette_colours[palette_idx]
# #if palette_idx < 15:
# # line_colours += palette_colours[palette_idx + 1]
# # if palette_idx < 14:
# # line_colours += palette_colours[palette_idx + 2]
# # if palette_idx > 0:
# # fixed_centroids = palette_cam[:8, :]
# # else:
# fixed_centroids = None
# # print(np.array(line_colours), fixed_centroids)
# palette_cam = dither_pyx.k_means_with_fixed_centroids(16, np.array(
# line_colours), fixed_centroids=fixed_centroids, tolerance=1e-6)
# kmeans = KMeans(n_clusters=16, max_iter=10000)
# kmeans.fit_predict(line_colours)
# palette_cam = kmeans.cluster_centers_
with colour.utilities.suppress_warnings(colour_usage_warnings=True):
palette_rgb = colour.convert(palettes_cam[palette_idx], "CAM16UCS",
"RGB")
# SHR colour palette only uses 4-bit values
palette_rgb = np.round(palette_rgb * 15) / 15
2021-11-13 17:29:13 +00:00
palettes_rgb[palette_idx, :, :] = palette_rgb.astype(np.float32)
# print(palettes_rgb)
# For each line, pick the palette with lowest total distance
# best_palette = 15
# for line in range(200):
# line_pixels = colours_cam[line*320:(line+1)*320]
# best_palette = dither_pyx.best_palette_for_line(
# line_pixels, palettes_cam, best_palette)
# line_to_palette[line] = best_palette
# print(line, line_to_palette[line])
return palettes_cam, palettes_rgb
def main():
parser = argparse.ArgumentParser()
2021-01-15 22:28:44 +00:00
parser.add_argument("input", type=str, help="Input image file to process.")
parser.add_argument("output", type=str, help="Output file for converted "
"Apple II image.")
2021-01-08 22:44:28 +00:00
parser.add_argument(
"--lookahead", type=int, default=8,
2021-01-08 22:44:28 +00:00
help=("How many pixels to look ahead to compensate for NTSC colour "
"artifacts (default: 8)"))
2021-01-15 22:28:44 +00:00
parser.add_argument(
'--dither', type=str, choices=list(dither_pattern.PATTERNS.keys()),
default=dither_pattern.DEFAULT_PATTERN,
2021-03-15 10:45:33 +00:00
help="Error distribution pattern to apply when dithering (default: "
+ dither_pattern.DEFAULT_PATTERN + ")")
2021-01-15 22:34:03 +00:00
parser.add_argument(
'--show-input', action=argparse.BooleanOptionalAction, default=False,
2021-03-15 10:45:33 +00:00
help="Whether to show the input image before conversion.")
2021-01-15 22:34:03 +00:00
parser.add_argument(
'--show-output', action=argparse.BooleanOptionalAction, default=True,
2021-03-15 10:45:33 +00:00
help="Whether to show the output image after conversion.")
2021-01-25 22:28:00 +00:00
parser.add_argument(
2021-03-15 10:45:33 +00:00
'--palette', type=str, choices=list(set(palette_py.PALETTES.keys())),
2021-01-25 22:28:00 +00:00
default=palette_py.DEFAULT_PALETTE,
2021-03-15 10:45:33 +00:00
help='RGB colour palette to dither to. "ntsc" blends colours over 8 '
'pixels and gives better image quality on targets that '
'use/emulate NTSC, but can be substantially slower. Other '
'palettes determine colours based on 4 pixel sequences '
'(default: ' + palette_py.DEFAULT_PALETTE + ")")
parser.add_argument(
'--show-palette', type=str, choices=list(palette_py.PALETTES.keys()),
2021-03-15 10:45:33 +00:00
help="RGB colour palette to use when --show_output (default: "
"value of --palette)")
parser.add_argument(
'--verbose', action=argparse.BooleanOptionalAction,
default=False, help="Show progress during conversion")
parser.add_argument(
'--gamma_correct', type=float, default=2.4,
help='Gamma-correct image by this value (default: 2.4)'
)
2021-01-08 22:44:28 +00:00
args = parser.parse_args()
2021-11-02 15:26:43 +00:00
if args.lookahead < 1:
parser.error('--lookahead must be at least 1')
2021-01-08 22:44:28 +00:00
# palette = palette_py.PALETTES[args.palette]()
screen = screen_py.SHR320Screen()
# Conversion matrix from RGB to CAM16UCS colour values. Indexed by
# 24-bit RGB value
rgb_to_cam16 = np.load("data/rgb_to_cam16ucs.npy")
2021-01-25 23:16:46 +00:00
# Open and resize source image
image = image_py.open(args.input)
2021-01-15 22:34:03 +00:00
if args.show_input:
image_py.resize(image, screen.X_RES, screen.Y_RES,
srgb_output=False).show()
rgb = np.array(
image_py.resize(image, screen.X_RES, screen.Y_RES,
gamma=args.gamma_correct, srgb_output=True)).astype(
np.float32) / 255
palettes_cam, palettes_rgb = cluster_palette(rgb)
# print(palette_rgb)
# screen.set_palette(0, (image_py.linear_to_srgb_array(palette_rgb) *
# 15).astype(np.uint8))
2021-11-13 17:29:13 +00:00
for i in range(16):
screen.set_palette(i, (np.round(palettes_rgb[i, :, :] * 15)).astype(
np.uint8))
for penalty in [1,2,3,4,5,6,7,8,9,10,1e9]:
output_4bit, line_to_palette = dither_pyx.dither_shr(
rgb, palettes_cam, palettes_rgb, rgb_to_cam16, float(penalty))
screen.set_pixels(output_4bit)
output_rgb = np.zeros((200, 320, 3), dtype=np.uint8)
for i in range(200):
screen.line_palette[i] = line_to_palette[i]
output_rgb[i, :, :] = (
palettes_rgb[line_to_palette[i]][
output_4bit[i, :]] * 255).astype(np.uint8)
output_srgb = image_py.linear_to_srgb(output_rgb).astype(np.uint8)
# dither = dither_pattern.PATTERNS[args.dither]()
# bitmap = dither_pyx.dither_image(
# screen, rgb, dither, args.lookahead, args.verbose, rgb_to_cam16)
# Show output image by rendering in target palette
# output_palette_name = args.show_palette or args.palette
# output_palette = palette_py.PALETTES[output_palette_name]()
# output_screen = screen_py.DHGRScreen(output_palette)
# if output_palette_name == "ntsc":
# output_srgb = output_screen.bitmap_to_image_ntsc(bitmap)
# else:
# output_srgb = image_py.linear_to_srgb(
# output_screen.bitmap_to_image_rgb(bitmap)).astype(np.uint8)
out_image = image_py.resize(
Image.fromarray(output_srgb), screen.X_RES, screen.Y_RES,
srgb_output=False) # XXX true
if args.show_output:
out_image.show()
2021-01-25 23:16:46 +00:00
# Save Double hi-res image
outfile = os.path.join(os.path.splitext(args.output)[0] + "-preview.png")
out_image.save(outfile, "PNG")
screen.pack()
# with open(args.output, "wb") as f:
# f.write(bytes(screen.aux))
# f.write(bytes(screen.main))
with open(args.output, "wb") as f:
f.write(bytes(screen.memory))
if __name__ == "__main__":
2021-01-09 18:05:36 +00:00
main()