WIP - use colourspacious to perform image dithering in CAM02_UCS

colour space, which is supposed to be perceptually uniform.  i.e. we
can use Euclidean distance instead of CIEDE2000
This commit is contained in:
kris 2021-07-15 13:58:22 +01:00
parent 9bbb9fda7c
commit 4fcda908bd
3 changed files with 50 additions and 29 deletions

View File

@ -4,6 +4,7 @@ import argparse
import os.path
import time
import colorspacious
from PIL import Image
import numpy as np
@ -89,9 +90,14 @@ def main():
resized = np.array(image_py.resize(image, screen.X_RES,
screen.Y_RES)).astype(np.float32)
# convert from sRGB1-linear to CAM02UCS perceptually uniform colour space
cam02ucs = colorspacious.cspace_convert(
resized/255, "sRGB1-linear", colorspacious.CAM02UCS).astype(np.float32)
# print(cam02ucs)
dither = dither_pattern.PATTERNS[args.dither]()
output_nbit, _ = dither_pyx.dither_image(
screen, resized, dither, lookahead, args.verbose)
screen, cam02ucs, dither, lookahead, args.verbose)
bitmap = screen.pack(output_nbit)
# Show output image by rendering in target palette

View File

@ -107,13 +107,13 @@ def lookahead_options(object screen, int lookahead, unsigned char last_pixel_nbi
@cython.wraparound(False)
cdef int dither_lookahead(Dither* dither, float[:, ::1] palette_rgb,
float[:, :, ::1] image_rgb, int x, int y, unsigned char[:, ::1] options_nbit, int lookahead,
unsigned char[:, ::1] distances, int x_res):
int x_res):
cdef int i, j, k, l
cdef float[3] quant_error
cdef unsigned char bit4
cdef int best
cdef int best_error = 2**31-1
cdef int total_error
cdef float best_error = 2**31-1
cdef float total_error
cdef long flat, dist
cdef long r, g, b
@ -147,14 +147,13 @@ cdef int dither_lookahead(Dither* dither, float[:, ::1] palette_rgb,
quant_error[k] = lah_image_rgb[j * lah_shape2 + k] - palette_rgb[options_nbit[i,j], k]
apply_one_line(dither, xl, xr, j, lah_image_rgb, lah_shape2, quant_error)
r = <long>lah_image_rgb[j * lah_shape2 + 0]
g = <long>lah_image_rgb[j * lah_shape2 + 1]
b = <long>lah_image_rgb[j * lah_shape2 + 2]
#r = <long>lah_image_rgb[j * lah_shape2 + 0]
#g = <long>lah_image_rgb[j * lah_shape2 + 1]
#b = <long>lah_image_rgb[j * lah_shape2 + 2]
#flat = (r << 16) + (g << 8) + b
# bit4 = options_nbit[i, j]
flat = (r << 16) + (g << 8) + b
bit4 = options_nbit[i, j]
dist = distances[flat, bit4]
total_error += dist * dist
total_error += colour_distance_squared(lah_image_rgb[j*lah_shape2], lah_image_rgb[j*lah_shape2+1], lah_image_rgb[j*lah_shape2+2], palette_rgb[options_nbit[i,j]])
if total_error >= best_error:
break
@ -165,6 +164,15 @@ cdef int dither_lookahead(Dither* dither, float[:, ::1] palette_rgb,
return best
@cython.boundscheck(False)
@cython.wraparound(False)
cdef inline float colour_distance_squared(float colour1_0, float colour1_1, float colour1_2, float[::1] colour2):
# print("color1=%f,%f,%f color2=%f,%f,%f" % (colour1_0, colour1_1, colour1_2, colour2[0], colour2[1], colour2[2]))
return (colour1_0 - colour2[0])**2 + (colour1_1 - colour2[1])**2 + (colour1_2 - colour2[2])**2
# print(" --> %f" % dist)
# return dist
# Perform error diffusion to a single image row.
#
# Args:
@ -185,7 +193,7 @@ cdef void apply_one_line(Dither* dither, int xl, int xr, int x, float[] image, i
for i in range(xl, xr):
error_fraction = dither.pattern[i - x + dither.x_origin]
for j in range(3):
image[i * image_shape1 + j] = clip(image[i * image_shape1 + j] + error_fraction * quant_error[j], 0, 255)
image[i * image_shape1 + j] = clip(image[i * image_shape1 + j] + error_fraction * quant_error[j], -100, 100)
# Perform error diffusion across multiple image rows.
@ -219,8 +227,7 @@ cdef void apply(Dither* dither, int x_res, int y_res, int x, int y, float[:,:,::
for j in range(xl, xr):
error_fraction = dither.pattern[(i - y) * dither.x_shape + j - x + dither.x_origin]
for k in range(3):
image[i,j,k] = clip(image[i,j,k] + error_fraction * quant_error[k], 0, 255)
image[i,j,k] = clip(image[i,j,k] + error_fraction * quant_error[k], -100, 100)
# Compute closest colour from array of candidate n-bit colour palette values.
#
@ -282,12 +289,13 @@ def dither_image(screen, float[:, :, ::1] image_rgb, dither, int lookahead, unsi
cdef int yres = screen.Y_RES
cdef int xres = screen.X_RES
cdef float[:, ::1] palette_rgb = np.zeros((len(screen.palette.RGB), 3), dtype=np.float32)
for i in screen.palette.RGB.keys():
# XXX not rgb any more
cdef float[:, ::1] palette_rgb = np.zeros((len(screen.palette.CAM02UCS), 3), dtype=np.float32)
for i in screen.palette.CAM02UCS.keys():
for j in range(3):
palette_rgb[i, j] = screen.palette.RGB[i][j]
palette_rgb[i, j] = screen.palette.CAM02UCS[i][j]
cdef (unsigned char)[:, ::1] distances = screen.palette.distances
# cdef (unsigned char)[:, ::1] distances = screen.palette.distances
cdef Dither cdither
cdither.y_shape = dither.PATTERN.shape[0]
@ -317,13 +325,13 @@ def dither_image(screen, float[:, :, ::1] image_rgb, dither, int lookahead, unsi
# Apply error diffusion for each of these 2**N choices, and compute which produces the closest match
# to the source image over the succeeding N pixels
best_idx = dither_lookahead(
&cdither, palette_rgb, image_rgb, x, y, lookahead_palette_choices_nbit, lookahead, distances,
&cdither, palette_rgb, image_rgb, x, y, lookahead_palette_choices_nbit, lookahead,
xres)
output_pixel_nbit = lookahead_palette_choices_nbit[best_idx, 0]
else:
# Choose the closest colour among the available n-bit palette options
palette_choices_nbit = screen.pixel_palette_options(output_pixel_nbit, x)
output_pixel_nbit = find_nearest_colour(input_pixel_rgb, palette_choices_nbit, distances)
#else:
# # Choose the closest colour among the available n-bit palette options
# palette_choices_nbit = screen.pixel_palette_options(output_pixel_nbit, x)
# output_pixel_nbit = find_nearest_colour(input_pixel_rgb, palette_choices_nbit, distances)
# Apply error diffusion from chosen output pixel value
output_pixel_rgb = palette_rgb[output_pixel_nbit]

View File

@ -1,5 +1,6 @@
"""RGB colour palettes to target for Apple II image conversions."""
import colorspacious
import numpy as np
import image
@ -7,6 +8,7 @@ import image
class Palette:
RGB = {}
SRGB = None
CAM02UCS = {}
DOTS = {}
DOTS_TO_INDEX = {}
DISTANCES_PATH = None
@ -16,18 +18,23 @@ class Palette:
PALETTE_DEPTH = None
def __init__(self, load_distances=True):
if load_distances:
# CIE2000 colour distance matrix from 24-bit RGB tuple to 4-bit
# palette colour.
self.distances = np.memmap(self.DISTANCES_PATH, mode="r+",
dtype=np.uint8, shape=(16777216,
len(self.SRGB)))
# if load_distances:
# # CIE2000 colour distance matrix from 24-bit RGB tuple to 4-bit
# # palette colour.
# self.distances = np.memmap(self.DISTANCES_PATH, mode="r+",
# dtype=np.uint8, shape=(16777216,
# len(self.SRGB)))
self.RGB = {}
for k, v in self.SRGB.items():
self.RGB[k] = (np.clip(image.srgb_to_linear_array(v / 255), 0.0,
1.0) * 255).astype(np.uint8)
self.CAM02UCS[k] = colorspacious.cspace_convert(
v, "sRGB255", colorspacious.CAM02UCS)
# print(self.CAM02UCS)
# Maps palette values to screen dots. Note that these are the same as
# the binary index values in reverse order.
for i in range(1 << self.PALETTE_DEPTH):