"""Image converter to Apple II Double Hi-Res format.""" import argparse import array import os.path import time import colour from PIL import Image import numpy as np from sklearn.cluster import KMeans import dither as dither_pyx import dither_pattern import image as image_py import palette as palette_py import screen as screen_py # TODO: # - support LR/DLR # - support HGR def _to_pixel(float_array): return tuple(np.clip(float_array.astype(np.uint8), 0, 255)) def cluster_palette(image: Image, rgb_to_cam16): # TODO: only 4-bit RGB colour channels colours_rgb = np.asarray(image).reshape((-1, 3)) with colour.utilities.suppress_warnings(colour_usage_warnings=True): colours_cam = colour.convert(colours_rgb / 255, "RGB", "CAM16UCS").astype(np.float32) kmeans = KMeans(n_clusters=16) kmeans.fit_predict(colours_cam) palette_cam = kmeans.cluster_centers_ with colour.utilities.suppress_warnings(colour_usage_warnings=True): palette_rgb = colour.convert(palette_cam, "CAM16UCS", "RGB").astype( np.float32) return dither_pyx.dither_shr( np.asarray(image).astype(np.float32) / 255, palette_rgb, rgb_to_cam16) return working_image def main(): parser = argparse.ArgumentParser() parser.add_argument("input", type=str, help="Input image file to process.") parser.add_argument("output", type=str, help="Output file for converted " "Apple II image.") parser.add_argument( "--lookahead", type=int, default=8, help=("How many pixels to look ahead to compensate for NTSC colour " "artifacts (default: 8)")) parser.add_argument( '--dither', type=str, choices=list(dither_pattern.PATTERNS.keys()), default=dither_pattern.DEFAULT_PATTERN, help="Error distribution pattern to apply when dithering (default: " + dither_pattern.DEFAULT_PATTERN + ")") parser.add_argument( '--show-input', action=argparse.BooleanOptionalAction, default=False, help="Whether to show the input image before conversion.") parser.add_argument( '--show-output', action=argparse.BooleanOptionalAction, default=True, help="Whether to show the output image after conversion.") parser.add_argument( '--palette', type=str, choices=list(set(palette_py.PALETTES.keys())), default=palette_py.DEFAULT_PALETTE, help='RGB colour palette to dither to. "ntsc" blends colours over 8 ' 'pixels and gives better image quality on targets that ' 'use/emulate NTSC, but can be substantially slower. Other ' 'palettes determine colours based on 4 pixel sequences ' '(default: ' + palette_py.DEFAULT_PALETTE + ")") parser.add_argument( '--show-palette', type=str, choices=list(palette_py.PALETTES.keys()), help="RGB colour palette to use when --show_output (default: " "value of --palette)") parser.add_argument( '--verbose', action=argparse.BooleanOptionalAction, default=False, help="Show progress during conversion") parser.add_argument( '--gamma_correct', type=float, default=2.4, help='Gamma-correct image by this value (default: 2.4)' ) args = parser.parse_args() if args.lookahead < 1: parser.error('--lookahead must be at least 1') # palette = palette_py.PALETTES[args.palette]() screen = screen_py.SHR320Screen() # Conversion matrix from RGB to CAM16UCS colour values. Indexed by # 24-bit RGB value rgb_to_cam16 = np.load("data/rgb_to_cam16ucs.npy") # Open and resize source image image = image_py.open(args.input) if args.show_input: image_py.resize(image, screen.X_RES, screen.Y_RES, srgb_output=True).show() rgb = np.array( image_py.resize(image, screen.X_RES, screen.Y_RES, gamma=args.gamma_correct)).astype(np.float32) / 255 output_rgb = cluster_palette(Image.fromarray((rgb * 255).astype( np.uint8)), rgb_to_cam16) output_srgb = image_py.linear_to_srgb(output_rgb).astype(np.uint8) # dither = dither_pattern.PATTERNS[args.dither]() # bitmap = dither_pyx.dither_image( # screen, rgb, dither, args.lookahead, args.verbose, rgb_to_cam16) # Show output image by rendering in target palette # output_palette_name = args.show_palette or args.palette # output_palette = palette_py.PALETTES[output_palette_name]() # output_screen = screen_py.DHGRScreen(output_palette) # if output_palette_name == "ntsc": # output_srgb = output_screen.bitmap_to_image_ntsc(bitmap) # else: # output_srgb = image_py.linear_to_srgb( # output_screen.bitmap_to_image_rgb(bitmap)).astype(np.uint8) out_image = image_py.resize( Image.fromarray(output_srgb), screen.X_RES, screen.Y_RES, srgb_output=True) if args.show_output: out_image.show() # Save Double hi-res image # outfile = os.path.join(os.path.splitext(args.output)[0] + "-preview.png") # out_image.save(outfile, "PNG") # screen.pack(bitmap) # with open(args.output, "wb") as f: # f.write(bytes(screen.aux)) # f.write(bytes(screen.main)) if __name__ == "__main__": main()