ii-pix/convert.py
kris 0009ce8913 - allow reserving a number of colours which are to be shared across
all palettes.  This will be useful for Total Replay which does an
  animation effect when displaying the image (first set palettes, then
  transition in pixels)

- this requires us to go back to computing k-means ourself instead of
  using sklearn, since it can't keep some centroids fixed

- try to be more careful about //gs RGB values, which are in the
  Rec.601 colour space.  This isn't quite right yet - the issue seems
  to be that since we dither in linear RGB space but quantize in the
  nonlinear space, small differences may lead to a +/- 1 in the 4-bit
  //gs RGB value, which is quite noticeable.  Instead we need to be
  clustering and/or dithering with awareness of the quantized palette
  space.
2021-11-17 17:09:42 +00:00

346 lines
15 KiB
Python

"""Image converter to Apple II Double Hi-Res format."""
import argparse
import os.path
from typing import Tuple, List
from PIL import Image
import colour
import numpy as np
from sklearn import cluster
from os import environ
environ['PYGAME_HIDE_SUPPORT_PROMPT'] = '1'
import pygame
import dither as dither_pyx
import dither_pattern
import image as image_py
import palette as palette_py
import screen as screen_py
# TODO:
# - support LR/DLR
# - support HGR
class ClusterPalette:
def __init__(
self, image: Image, reserved_colours=0):
self._colours_cam = self._image_colours_cam(image)
self._reserved_colours = reserved_colours
self._errors = [1e9] * 16
self._palettes_cam = np.empty((16, 16, 3), dtype=np.float32)
self._palettes_rgb = np.empty((16, 16, 3), dtype=np.float32)
self._global_palette = np.empty((16, 16, 3), dtype=np.float32)
def _image_colours_cam(self, image: Image):
colours_rgb = np.asarray(image).reshape((-1, 3))
with colour.utilities.suppress_warnings(colour_usage_warnings=True):
colours_cam = colour.convert(colours_rgb, "RGB",
"CAM16UCS").astype(np.float32)
return colours_cam
def _fit_global_palette(self):
"""Compute a 16-colour palette for the entire image to use as
starting point for the sub-palettes. This should help when the image
has large blocks of colour since the sub-palettes will tend to pick the
same colours."""
clusters = cluster.MiniBatchKMeans(n_clusters=16, max_iter=10000)
clusters.fit_predict(self._colours_cam)
labels = clusters.labels_
frequency_order = [
k for k, v in sorted(
# List of (palette idx, frequency count)
list(zip(*np.unique(labels, return_counts=True))),
key=lambda kv: kv[1], reverse=True)]
return clusters.cluster_centers_[frequency_order]
def propose_palettes(self) -> Tuple[np.ndarray, np.ndarray, List[float]]:
"""Attempt to find new palettes that locally improve image quality.
Re-fit a set of 16 palettes from (overlapping) line ranges of the
source image, using k-means clustering in CAM16-UCS colour space.
We maintain the total image error for the pixels on which the 16
palettes are clustered. A new palette that increases this local
image error is rejected.
New palettes that reduce local error cannot be applied immediately
though, because they may cause an increase in *global* image error
when dithering. i.e. they would reduce the overall image quality.
The current (locally) best palettes are returned and can be applied
using accept_palettes().
"""
new_errors = list(self._errors)
new_palettes_cam = np.copy(self._palettes_cam)
new_palettes_rgb = np.copy(self._palettes_rgb)
# Compute a new 16-colour global palette for the entire image,
# used as the starting center positions for k-means clustering of the
# individual palettes
self._global_palette = self._fit_global_palette()
dynamic_colours = 16 - self._reserved_colours
# The 16 palettes are striped across consecutive (overlapping) line
# ranges. The basic unit is 200/16 = 12.5 lines, but we extend the
# line range to cover a multiple of this so that the palette ranges
# overlap. Since nearby lines tend to have similar colours, this has
# the effect of smoothing out the colour transitions across palettes.
palette_band_width = 3
for palette_idx in range(16):
p_lower = max(palette_idx + 0.5 - (palette_band_width / 2), 0)
p_upper = min(palette_idx + 0.5 + (palette_band_width / 2), 16)
# TODO: dynamically tune palette cuts
palette_pixels = self._colours_cam[
int(p_lower * (200 / 16)) * 320:int(p_upper * (
200 / 16)) * 320, :]
# TODO: clustering should be aware of the fact that we will
# quantize to a 4-bit RGB value afterwards. i.e. we should
# not pick multiple centroids that will quantize to the same RGB
# value since we'll "waste" a palette entry. This doesn't seem to
# be a major issue in practise though, and fixing it would require
# implementing our own (optimized) k-means.
# TODO: tune tolerance
# clusters = cluster.MiniBatchKMeans(
# n_clusters=16, max_iter=10000,
# init=self._global_palette,
# n_init=1)
# clusters.fit_predict(palette_pixels)
#
# palette_error = clusters.inertia_
clusters, palette_error = dither_pyx.k_means_with_fixed_centroids(
n_clusters=16, n_fixed=self._reserved_colours,
samples=palette_pixels, initial_centroids=self._global_palette,
max_iterations=1000, tolerance=1e-4
)
if (palette_error >= self._errors[palette_idx] and not
self._reserved_colours):
# Not a local improvement to the existing palette, so ignore it.
# We can't take this shortcut when we're reserving colours
# because it would break the invariant that all palettes must
# share colours.
continue
new_palettes_cam[palette_idx, :, :] = np.array(
# clusters.cluster_centers_).astype(np.float32)
clusters).astype(np.float32)
# Suppress divide by zero warning,
# https://github.com/colour-science/colour/issues/900
with colour.utilities.suppress_warnings(python_warnings=True):
palette_rgb = colour.convert(
new_palettes_cam[palette_idx, :, :], "CAM16UCS", "RGB")
palette_rgb_rec601 = np.clip(image_py.srgb_to_linear(
colour.YCbCr_to_RGB(
colour.RGB_to_YCbCr(
image_py.linear_to_srgb(palette_rgb * 255) / 255,
K=colour.WEIGHTS_YCBCR['ITU-R BT.709']),
K=colour.WEIGHTS_YCBCR['ITU-R BT.601']) * 255) / 255, 0, 1)
# palette_rgb = np.clip(
# image_py.srgb_to_linear(
# colour.YCbCr_to_RGB(
# colour.RGB_to_YCbCr(
# image_py.linear_to_srgb(
# palette_rgb[:, :] * 255) / 255,
# K=colour.WEIGHTS_YCBCR['ITU-R BT.709']),
# K=colour.WEIGHTS_YCBCR[
# 'ITU-R BT.601']) * 255) / 255,
# 0, 1)
new_palettes_rgb[palette_idx, :, :] = palette_rgb # palette_rgb_rec601
new_errors[palette_idx] = palette_error
return new_palettes_cam, new_palettes_rgb, new_errors
def accept_palettes(
self, new_palettes_cam: np.ndarray,
new_palettes_rgb: np.ndarray, new_errors: List[float]):
self._palettes_cam = np.copy(new_palettes_cam)
self._palettes_rgb = np.copy(new_palettes_rgb)
self._errors = list(new_errors)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("input", type=str, help="Input image file to process.")
parser.add_argument("output", type=str, help="Output file for converted "
"Apple II image.")
parser.add_argument(
"--lookahead", type=int, default=8,
help=("How many pixels to look ahead to compensate for NTSC colour "
"artifacts (default: 8)"))
parser.add_argument(
'--dither', type=str, choices=list(dither_pattern.PATTERNS.keys()),
default=dither_pattern.DEFAULT_PATTERN,
help="Error distribution pattern to apply when dithering (default: "
+ dither_pattern.DEFAULT_PATTERN + ")")
parser.add_argument(
'--show-input', action=argparse.BooleanOptionalAction, default=False,
help="Whether to show the input image before conversion.")
parser.add_argument(
'--show-output', action=argparse.BooleanOptionalAction, default=True,
help="Whether to show the output image after conversion.")
parser.add_argument(
'--palette', type=str, choices=list(set(palette_py.PALETTES.keys())),
default=palette_py.DEFAULT_PALETTE,
help='RGB colour palette to dither to. "ntsc" blends colours over 8 '
'pixels and gives better image quality on targets that '
'use/emulate NTSC, but can be substantially slower. Other '
'palettes determine colours based on 4 pixel sequences '
'(default: ' + palette_py.DEFAULT_PALETTE + ")")
parser.add_argument(
'--show-palette', type=str, choices=list(palette_py.PALETTES.keys()),
help="RGB colour palette to use when --show_output (default: "
"value of --palette)")
parser.add_argument(
'--verbose', action=argparse.BooleanOptionalAction,
default=False, help="Show progress during conversion")
parser.add_argument(
'--gamma_correct', type=float, default=2.4,
help='Gamma-correct image by this value (default: 2.4)'
)
args = parser.parse_args()
if args.lookahead < 1:
parser.error('--lookahead must be at least 1')
# palette = palette_py.PALETTES[args.palette]()
screen = screen_py.SHR320Screen()
# Conversion matrix from RGB to CAM16UCS colour values. Indexed by
# 24-bit RGB value
rgb_to_cam16 = np.load("data/rgb_to_cam16ucs.npy")
# Open and resize source image
image = image_py.open(args.input)
if args.show_input:
image_py.resize(image, screen.X_RES, screen.Y_RES,
srgb_output=False).show()
rgb = np.array(
image_py.resize(image, screen.X_RES, screen.Y_RES,
gamma=args.gamma_correct)).astype(np.float32) / 255
# TODO: flags
penalty = 1e9
iterations = 10 # 50
pygame.init()
# TODO: for some reason I need to execute this twice - the first time
# the window is created and immediately destroyed
_ = pygame.display.set_mode((640, 400))
canvas = pygame.display.set_mode((640, 400))
canvas.fill((0, 0, 0))
pygame.display.flip()
total_image_error = 1e9
iterations_since_improvement = 0
palettes_iigs = np.empty((16, 16, 3), dtype=np.uint8)
cluster_palette = ClusterPalette(rgb, reserved_colours=1)
while iterations_since_improvement < iterations:
new_palettes_cam, new_palettes_rgb, new_palette_errors = (
cluster_palette.propose_palettes())
# Recompute image with proposed palettes and check whether it has
# lower total image error than our previous best.
new_output_4bit, new_line_to_palette, new_total_image_error = \
dither_pyx.dither_shr(
rgb, new_palettes_cam, new_palettes_rgb, rgb_to_cam16,
float(penalty))
if new_total_image_error >= total_image_error:
iterations_since_improvement += 1
continue
# We found a globally better set of palettes
iterations_since_improvement = 0
cluster_palette.accept_palettes(
new_palettes_cam, new_palettes_rgb, new_palette_errors)
if total_image_error < 1e9:
print("Improved quality +%f%% (%f)" % (
(1 - new_total_image_error / total_image_error) * 100,
new_total_image_error))
output_4bit = new_output_4bit
line_to_palette = new_line_to_palette
total_image_error = new_total_image_error
palettes_rgb = new_palettes_rgb
# Recompute 4-bit //gs RGB palettes
palette_rgb_rec601 = np.clip(
colour.YCbCr_to_RGB(
colour.RGB_to_YCbCr(
image_py.linear_to_srgb(palettes_rgb * 255) / 255,
K=colour.WEIGHTS_YCBCR['ITU-R BT.709']),
K=colour.WEIGHTS_YCBCR['ITU-R BT.601']), 0, 1)
palettes_iigs = np.round(palette_rgb_rec601 * 15).astype(np.uint8)
for i in range(16):
screen.set_palette(i, palettes_iigs[i, :, :])
# Recompute current screen RGB image
screen.set_pixels(output_4bit)
output_rgb = np.empty((200, 320, 3), dtype=np.uint8)
for i in range(200):
screen.line_palette[i] = line_to_palette[i]
output_rgb[i, :, :] = (
palettes_rgb[line_to_palette[i]][output_4bit[i, :]] * 255
).astype(
# np.round(palettes_rgb[line_to_palette[i]][
# output_4bit[i, :]] * 15) / 15 * 255).astype(
np.uint8)
output_srgb_rec709 = np.clip(colour.YCbCr_to_RGB(
colour.RGB_to_YCbCr(
image_py.linear_to_srgb(output_rgb) / 255,
K=colour.WEIGHTS_YCBCR['ITU-R BT.601']),
K=colour.WEIGHTS_YCBCR['ITU-R BT.709']), 0, 1) * 255
output_srgb = (image_py.linear_to_srgb(output_rgb)).astype(np.uint8)
# dither = dither_pattern.PATTERNS[args.dither]()
# bitmap = dither_pyx.dither_image(
# screen, rgb, dither, args.lookahead, args.verbose, rgb_to_cam16)
# Show output image by rendering in target palette
# output_palette_name = args.show_palette or args.palette
# output_palette = palette_py.PALETTES[output_palette_name]()
# output_screen = screen_py.DHGRScreen(output_palette)
# if output_palette_name == "ntsc":
# output_srgb = output_screen.bitmap_to_image_ntsc(bitmap)
# else:
# output_srgb = image_py.linear_to_srgb(
# output_screen.bitmap_to_image_rgb(bitmap)).astype(np.uint8)
out_image = image_py.resize(
Image.fromarray(output_srgb), screen.X_RES * 2, screen.Y_RES * 2,
srgb_output=True)
if args.show_output:
surface = pygame.surfarray.make_surface(
np.asarray(out_image).transpose((1, 0, 2))) # flip y/x axes
canvas.blit(surface, (0, 0))
pygame.display.flip()
print((palettes_rgb * 255).astype(np.uint8))
unique_colours = np.unique(palettes_iigs.reshape(-1, 3), axis=0).shape[0]
print("%d unique colours" % unique_colours)
# Save Double hi-res image
outfile = os.path.join(os.path.splitext(args.output)[0] + "-preview.png")
out_image.save(outfile, "PNG")
screen.pack()
# with open(args.output, "wb") as f:
# f.write(bytes(screen.aux))
# f.write(bytes(screen.main))
with open(args.output, "wb") as f:
f.write(bytes(screen.memory))
if __name__ == "__main__":
main()