mirror of
https://github.com/KrisKennaway/ii-pix.git
synced 2024-11-18 01:06:41 +00:00
269 lines
10 KiB
Cython
269 lines
10 KiB
Cython
# cython: infer_types=True
|
|
# cython: profile=True
|
|
|
|
cimport cython
|
|
import functools
|
|
import numpy as np
|
|
# cimport numpy as np
|
|
from cython.view cimport array as cvarray
|
|
from libc.stdlib cimport malloc, free
|
|
|
|
|
|
# TODO: use a cdef class
|
|
cdef struct Dither:
|
|
float* pattern # Flattened dither pattern
|
|
int x_shape
|
|
int y_shape
|
|
int x_origin
|
|
int y_origin
|
|
|
|
cdef struct Image:
|
|
float* flat # Flattened image array
|
|
int shape0
|
|
int shape1
|
|
int shape2
|
|
|
|
|
|
cdef float clip(float a, float min_value, float max_value) nogil:
|
|
return min(max(a, min_value), max_value)
|
|
|
|
|
|
|
|
cdef int dither_bounds_xl(Dither *dither, int x) nogil:
|
|
cdef int el = max(dither.x_origin - x, 0)
|
|
cdef int xl = x - dither.x_origin + el
|
|
return xl
|
|
|
|
|
|
cdef int dither_bounds_xr(Dither *dither, int x_res, int x) nogil:
|
|
cdef int er = min(dither.x_shape, x_res - x)
|
|
cdef int xr = x - dither.x_origin + er
|
|
return xr
|
|
|
|
|
|
cdef int dither_bounds_yt(Dither *dither, int y) nogil:
|
|
cdef int et = max(dither.y_origin - y, 0)
|
|
cdef int yt = y - dither.y_origin + et
|
|
|
|
return yt
|
|
|
|
cdef int dither_bounds_yb(Dither *dither, int y_res, int y) nogil:
|
|
cdef int eb = min(dither.y_shape, y_res - y)
|
|
cdef int yb = y - dither.y_origin + eb
|
|
return yb
|
|
|
|
|
|
@cython.boundscheck(False)
|
|
@cython.wraparound(False)
|
|
@functools.lru_cache(None)
|
|
def lookahead_options(screen, lookahead, last_pixel_4bit, x):
|
|
options_4bit = np.empty((2 ** lookahead, lookahead), dtype=np.uint8)
|
|
options_rgb = np.empty((2 ** lookahead, lookahead, 3), dtype=np.float32)
|
|
for i in range(2 ** lookahead):
|
|
output_pixel_nbit = last_pixel_nbit
|
|
for j in range(lookahead):
|
|
xx = x + j
|
|
palette_choices_4bit, palette_choices_rgb = \
|
|
screen.pixel_palette_options(output_pixel_4bit, xx)
|
|
output_pixel_4bit = palette_choices_4bit[(i & (1 << j)) >> j]
|
|
output_pixel_rgb = np.array(
|
|
palette_choices_rgb[(i & (1 << j)) >> j])
|
|
options_4bit[i, j] = output_pixel_4bit
|
|
options_rgb[i, j, :] = output_pixel_rgb
|
|
|
|
return options_nbit, options_rgb
|
|
|
|
|
|
@cython.boundscheck(False)
|
|
@cython.wraparound(False)
|
|
cdef int dither_lookahead(Dither* dither,
|
|
Image* image_rgb, int x, int y, unsigned char[:, ::1] options_4bit,
|
|
float[:, :, ::1] options_rgb, int lookahead, unsigned char[:, ::1] distances, int x_res):
|
|
cdef int xl = dither_bounds_xl(dither, x)
|
|
cdef int xr = dither_bounds_xr(dither, x_res, x)
|
|
|
|
# X coord value of larger of dither bounding box or lookahead horizon
|
|
cdef int xxr = min(max(x + lookahead, xr), x_res)
|
|
cdef int i, j, k, l
|
|
|
|
cdef int lah_shape0 = 2 ** lookahead
|
|
cdef int lah_shape1 = lookahead + xr - xl
|
|
cdef int lah_shape2 = 3
|
|
cdef float *lah_image_rgb = <float *> malloc(lah_shape0 * lah_shape1 * lah_shape2 * sizeof(float))
|
|
for i in range(2**lookahead):
|
|
# Copies of input pixels so we can dither in bulk
|
|
for j in range(xxr - x):
|
|
for k in range(3):
|
|
lah_image_rgb[i * lah_shape1 * lah_shape2 + j * lah_shape2 + k] = image_rgb.flat[
|
|
y * image_rgb.shape1 * image_rgb.shape2 + (x+j) * image_rgb.shape2 + k]
|
|
# Leave enough space at right of image so we can dither the last of our lookahead pixels.
|
|
for j in range(xxr - x, lookahead + xr - xl):
|
|
for k in range(3):
|
|
lah_image_rgb[i * lah_shape1 * lah_shape2 + j * lah_shape2 + k] = 0
|
|
|
|
cdef float[3] quant_error
|
|
for i in range(2 ** lookahead):
|
|
for j in range(xxr - x):
|
|
xl = dither_bounds_xl(dither, j)
|
|
xr = dither_bounds_xr(dither, x_res - x, j)
|
|
# Don't update the input at position x (since we've already chosen
|
|
# fixed outputs), but do propagate quantization errors to positions >x
|
|
# so we can compensate for how good/bad these choices were
|
|
|
|
# options_rgb choices are fixed, but we can still distribute
|
|
# quantization error from having made these choices, in order to compute
|
|
# the total error
|
|
for k in range(3):
|
|
quant_error[k] = lah_image_rgb[i * lah_shape1 * lah_shape2 + j * lah_shape2 + k] - options_rgb[i, j, k]
|
|
apply_one_line(dither, xl, xr, j, &lah_image_rgb[i * lah_shape1 * lah_shape2], lah_shape2, quant_error)
|
|
|
|
cdef unsigned char bit4
|
|
cdef int best
|
|
cdef int best_error = 2**31-1
|
|
cdef int total_error
|
|
cdef long flat, dist
|
|
|
|
cdef long r, g, b
|
|
for i in range(2**lookahead):
|
|
total_error = 0
|
|
for j in range(lookahead):
|
|
# Clip lah_image_rgb into 0..255 range to prepare for computing colour distance
|
|
r = <long>lah_image_rgb[i * lah_shape1 * lah_shape2 + j * lah_shape2 + 0]
|
|
g = <long>lah_image_rgb[i * lah_shape1 * lah_shape2 + j * lah_shape2 + 1]
|
|
b = <long>lah_image_rgb[i * lah_shape1 * lah_shape2 + j * lah_shape2 + 2]
|
|
|
|
flat = (r << 16) + (g << 8) + b
|
|
bit4 = options_nbit[i, j]
|
|
dist = distances[flat, bit4]
|
|
total_error += dist ** 2
|
|
if total_error >= best_error:
|
|
break
|
|
if total_error < best_error:
|
|
best_error = total_error
|
|
best = i
|
|
free(lah_image_rgb)
|
|
return best
|
|
|
|
|
|
cdef void apply_one_line(Dither* dither, int xl, int xr, int x, float[] image, int image_shape1, float[] quant_error) nogil:
|
|
cdef int i, j
|
|
cdef float error
|
|
|
|
for i in range(xl, xr):
|
|
for j in range(3):
|
|
error = dither.pattern[i - x + dither.x_origin] * quant_error[j]
|
|
image[i * image_shape1 + j] = clip(image[i * image_shape1 + j] + error, 0, 255)
|
|
|
|
|
|
cdef void apply(Dither* dither, int x_res, int y_res, int x, int y, Image* image, float[] quant_error):
|
|
cdef int i, j, k
|
|
|
|
cdef int yt = dither_bounds_yt(dither, y)
|
|
cdef int yb = dither_bounds_yb(dither, y_res, y)
|
|
cdef int xl = dither_bounds_xl(dither, x)
|
|
cdef int xr = dither_bounds_xr(dither, x_res, x)
|
|
|
|
cdef float error
|
|
# We could avoid clipping here, i.e. allow RGB values to extend beyond
|
|
# 0..255 to capture a larger range of residual error. This is faster
|
|
# but seems to reduce image quality.
|
|
# TODO: is this still true?
|
|
for i in range(yt, yb):
|
|
for j in range(xl, xr):
|
|
for k in range(3):
|
|
error = dither.pattern[(i - y) * dither.x_shape + j - x + dither.x_origin] * quant_error[k]
|
|
image.flat[i * image.shape1 * image.shape2 + j * image.shape2 + k] = clip(
|
|
image.flat[i * image.shape1 * image.shape2 + j * image.shape2 + k] + error, 0, 255)
|
|
|
|
|
|
@cython.boundscheck(False)
|
|
@cython.wraparound(False)
|
|
def find_nearest_colour(float[::1] pixel_rgb, unsigned char[::1] options_4bit, unsigned char[:, ::1] options_rgb, unsigned char[:, ::1] distances):
|
|
cdef int best, dist
|
|
cdef unsigned char bit4
|
|
cdef int best_dist = 2**8
|
|
cdef long flat
|
|
|
|
for i in range(options_4bit.shape[0]):
|
|
flat = (<long>pixel_rgb[0] << 16) + (<long>pixel_rgb[1] << 8) + <long>pixel_rgb[2]
|
|
bit4 = options_nbit[i]
|
|
dist = distances[flat, bit4]
|
|
if dist < best_dist:
|
|
best_dist = dist
|
|
best = i
|
|
|
|
return options_nbit[best], options_rgb[best, :]
|
|
|
|
|
|
@cython.boundscheck(False)
|
|
@cython.wraparound(False)
|
|
def dither_image(screen, float[:, :, ::1] image_rgb, dither, int lookahead, unsigned char verbose):
|
|
cdef (unsigned char)[:, ::1] image_nbit = np.empty(
|
|
(image_rgb.shape[0], image_rgb.shape[1]), dtype=np.uint8)
|
|
|
|
cdef int yres = screen.Y_RES
|
|
cdef int xres = screen.X_RES
|
|
|
|
cdef int y, x, i
|
|
cdef float[3] quant_error
|
|
cdef (unsigned char)[:, ::1] options_nbit
|
|
cdef float[:, :, ::1] options_rgb
|
|
cdef unsigned char output_pixel_nbit
|
|
cdef float[3] input_pixel_rgb
|
|
|
|
# Flatten python image array for more efficient access
|
|
cdef Image cimage_rgb
|
|
cimage_rgb.flat = <float *> malloc(image_rgb.shape[0] * image_rgb.shape[1] * image_rgb.shape[2] * sizeof(float))
|
|
cimage_rgb.shape0 = image_rgb.shape[0]
|
|
cimage_rgb.shape1 = image_rgb.shape[1]
|
|
cimage_rgb.shape2 = image_rgb.shape[2]
|
|
for y in range(cimage_rgb.shape0):
|
|
for x in range(cimage_rgb.shape1):
|
|
for i in range(cimage_rgb.shape2):
|
|
cimage_rgb.flat[y * cimage_rgb.shape1 * cimage_rgb.shape2 + x * cimage_rgb.shape2 + i] = (
|
|
image_rgb[y, x, i])
|
|
|
|
# Flatten python dither pattern array for more efficient access
|
|
cdef Dither cdither
|
|
cdither.y_shape = dither.PATTERN.shape[0]
|
|
cdither.x_shape = dither.PATTERN.shape[1]
|
|
cdither.y_origin = dither.ORIGIN[0]
|
|
cdither.x_origin = dither.ORIGIN[1]
|
|
# Convert dither.PATTERN to a malloced array which is faster to access
|
|
cdither.pattern = <float *> malloc(cdither.x_shape * cdither.y_shape * sizeof(float))
|
|
for i in range(cdither.y_shape):
|
|
for j in range(cdither.x_shape):
|
|
cdither.pattern[i * cdither.x_shape + j] = dither.PATTERN[i, j, 0]
|
|
|
|
cdef (unsigned char)[:, ::1] distances = screen.palette.distances
|
|
|
|
for y in range(yres):
|
|
if verbose:
|
|
print("%d/%d" % (y, yres))
|
|
output_pixel_nbit = 0
|
|
for x in range(xres):
|
|
for i in range(3):
|
|
input_pixel_rgb[i] = cimage_rgb.flat[
|
|
y * cimage_rgb.shape1 * cimage_rgb.shape2 + x * cimage_rgb.shape2 + i]
|
|
if lookahead:
|
|
palette_choices_4bit, palette_choices_rgb = lookahead_options(
|
|
screen, lookahead, output_pixel_4bit, x % 4)
|
|
best_idx = dither_lookahead(
|
|
&cdither, &cimage_rgb, x, y, palette_choices_4bit, palette_choices_rgb, lookahead, distances, xres)
|
|
output_pixel_4bit = palette_choices_4bit[best_idx, 0]
|
|
output_pixel_rgb = palette_choices_rgb[best_idx, 0, :]
|
|
else:
|
|
palette_choices_4bit, palette_choices_rgb = screen.pixel_palette_options(output_pixel_4bit, x)
|
|
output_pixel_4bit, output_pixel_rgb = \
|
|
find_nearest_colour(input_pixel_rgb, palette_choices_4bit, palette_choices_rgb, distances)
|
|
for i in range(3):
|
|
quant_error[i] = input_pixel_rgb[i] - output_pixel_rgb[i]
|
|
image_4bit[y, x] = output_pixel_4bit
|
|
apply(&cdither, xres, yres, x, y, &cimage_rgb, quant_error)
|
|
for i in range(3):
|
|
image_rgb[y, x, i] = output_pixel_rgb[i]
|
|
|
|
free(cdither.pattern)
|
|
free(cimage_rgb.flat)
|
|
return image_nbit, np.array(image_rgb)
|