mirror of
https://github.com/KrisKennaway/ii-pix.git
synced 2024-11-18 01:06:41 +00:00
458 lines
19 KiB
Python
458 lines
19 KiB
Python
from collections import defaultdict
|
|
import os.path
|
|
import random
|
|
from typing import Tuple
|
|
|
|
from PIL import Image
|
|
import colour
|
|
import numpy as np
|
|
from sklearn import cluster
|
|
|
|
from os import environ
|
|
|
|
environ['PYGAME_HIDE_SUPPORT_PROMPT'] = '1'
|
|
import pygame
|
|
|
|
import dither_shr as dither_shr_pyx
|
|
import image as image_py
|
|
|
|
|
|
class ClusterPalette:
|
|
def __init__(
|
|
self, image: np.ndarray, rgb12_iigs_to_cam16ucs, rgb24_to_cam16ucs,
|
|
fixed_colours=0):
|
|
|
|
# Conversion matrix from 12-bit //gs RGB colour space to CAM16UCS
|
|
# colour space
|
|
self._rgb12_iigs_to_cam16ucs = rgb12_iigs_to_cam16ucs
|
|
|
|
# Conversion matrix from 24-bit linear RGB colour space to CAM16UCS
|
|
# colour space
|
|
self._rgb24_to_cam16ucs = rgb24_to_cam16ucs
|
|
|
|
# Preprocessed source image in 24-bit linear RGB colour space. We
|
|
# first dither the source image using the full 12-bit //gs RGB colour
|
|
# palette, ignoring SHR palette limitations (i.e. 4096 independent
|
|
# colours for each pixel). This gives much better results for e.g.
|
|
# solid blocks of colour, which would be dithered inconsistently if
|
|
# targeting the source image directly.
|
|
self._image_rgb = self._perfect_dither(image)
|
|
|
|
# Preprocessed source image in CAM16UCS colour space
|
|
self._colours_cam = self._image_colours_cam(self._image_rgb)
|
|
|
|
# We fit a 16-colour palette against the entire image which is used
|
|
# as starting values for fitting the reserved colours in the 16 SHR
|
|
# palettes.
|
|
self._global_palette = np.empty((16, 3), dtype=np.uint8)
|
|
|
|
# How many image colours to fix identically across all 16 SHR
|
|
# palettes. These are taken to be the most prevalent colours from
|
|
# _global_palette.
|
|
self._fixed_colours = fixed_colours
|
|
|
|
# 16 SHR palettes each of 16 colours, in CAM16UCS colour space
|
|
self._palettes_cam = np.empty((16, 16, 3), dtype=np.float32)
|
|
|
|
# 16 SHR palettes each of 16 colours, in //gs 4-bit RGB colour space
|
|
self._palettes_rgb = np.empty((16, 16, 3), dtype=np.uint8)
|
|
|
|
# defaultdict(list) mapping palette index to the lines that use this
|
|
# palette
|
|
self._palette_lines = self._init_palette_lines()
|
|
|
|
@staticmethod
|
|
def _image_colours_cam(image: Image):
|
|
colours_rgb = np.asarray(image) # .reshape((-1, 3))
|
|
with colour.utilities.suppress_warnings(colour_usage_warnings=True):
|
|
colours_cam = colour.convert(colours_rgb, "RGB",
|
|
"CAM16UCS").astype(np.float32)
|
|
return colours_cam
|
|
|
|
def _init_palette_lines(self, init_random=False):
|
|
palette_lines = defaultdict(list)
|
|
|
|
if init_random:
|
|
lines = list(range(200))
|
|
random.shuffle(lines)
|
|
idx = 0
|
|
while lines:
|
|
palette_lines[idx].append(lines.pop())
|
|
idx += 1
|
|
else:
|
|
palette_splits = self._equal_palette_splits()
|
|
for i, lh in enumerate(palette_splits):
|
|
l, h = lh
|
|
palette_lines[i].extend(list(range(l, h)))
|
|
return palette_lines
|
|
|
|
@staticmethod
|
|
def _equal_palette_splits(palette_height=35):
|
|
# The 16 palettes are striped across consecutive (overlapping) line
|
|
# ranges. Since nearby lines tend to have similar colours, this has
|
|
# the effect of smoothing out the colour transitions across palettes.
|
|
|
|
# If we want to overlap 16 palettes in 200 lines, where each palette
|
|
# has height H and overlaps the previous one by L lines, then the
|
|
# boundaries are at lines:
|
|
# (0, H), (H-L, 2H-L), (2H-2L, 3H-2L), ..., (15H-15L, 16H - 15L)
|
|
# i.e. 16H - 15L = 200, so for a given palette height H we need to
|
|
# overlap by:
|
|
# L = (16H - 200)/15
|
|
|
|
palette_overlap = (16 * palette_height - 200) / 15
|
|
|
|
palette_ranges = []
|
|
for palette_idx in range(16):
|
|
palette_lower = palette_idx * (palette_height - palette_overlap)
|
|
palette_upper = palette_lower + palette_height
|
|
palette_ranges.append((int(np.round(palette_lower)),
|
|
int(np.round(palette_upper))))
|
|
return palette_ranges
|
|
|
|
def _perfect_dither(self, source_image: np.ndarray):
|
|
"""Dither a "perfect" image using the full 12-bit //gs RGB colour
|
|
palette, ignoring restrictions."""
|
|
|
|
# Suppress divide by zero warning,
|
|
# https://github.com/colour-science/colour/issues/900
|
|
with colour.utilities.suppress_warnings(python_warnings=True):
|
|
full_palette_linear_rgb = colour.convert(
|
|
self._rgb12_iigs_to_cam16ucs, "CAM16UCS", "RGB").astype(
|
|
np.float32)
|
|
|
|
total_image_error, image_rgb = dither_shr_pyx.dither_shr_perfect(
|
|
source_image, self._rgb12_iigs_to_cam16ucs, full_palette_linear_rgb,
|
|
self._rgb24_to_cam16ucs)
|
|
# print("Perfect image error:", total_image_error)
|
|
return image_rgb
|
|
|
|
def _dither_image(self, palettes_cam):
|
|
# Suppress divide by zero warning,
|
|
# https://github.com/colour-science/colour/issues/900
|
|
with colour.utilities.suppress_warnings(python_warnings=True):
|
|
palettes_linear_rgb = colour.convert(
|
|
palettes_cam, "CAM16UCS", "RGB").astype(np.float32)
|
|
|
|
output_4bit, line_to_palette, total_image_error, palette_line_errors = \
|
|
dither_shr_pyx.dither_shr(
|
|
self._image_rgb, palettes_cam, palettes_linear_rgb,
|
|
self._rgb24_to_cam16ucs)
|
|
|
|
# Update map of palettes to image lines for which the palette was the
|
|
# best match
|
|
palette_lines = defaultdict(list)
|
|
for line, palette in enumerate(line_to_palette):
|
|
palette_lines[palette].append(line)
|
|
self._palette_lines = palette_lines
|
|
|
|
self._palette_line_errors = palette_line_errors
|
|
|
|
return (output_4bit, line_to_palette, palettes_linear_rgb,
|
|
total_image_error)
|
|
|
|
def iterate(self, max_inner_iterations: int,
|
|
max_outer_iterations: int):
|
|
total_image_error = 1e9
|
|
|
|
outer_iterations_since_improvement = 0
|
|
while outer_iterations_since_improvement < max_outer_iterations:
|
|
inner_iterations_since_improvement = 0
|
|
self._palette_lines = self._init_palette_lines()
|
|
|
|
while inner_iterations_since_improvement < max_inner_iterations:
|
|
# print("Iterations %d" % inner_iterations_since_improvement)
|
|
new_palettes_cam, new_palettes_rgb12_iigs = (
|
|
self._fit_shr_palettes())
|
|
|
|
# Recompute image with proposed palettes and check whether it
|
|
# has lower total image error than our previous best.
|
|
(output_4bit, line_to_palette, palettes_linear_rgb,
|
|
new_total_image_error) = self._dither_image(new_palettes_cam)
|
|
|
|
self._reassign_unused_palettes(
|
|
line_to_palette, new_palettes_rgb12_iigs)
|
|
|
|
if new_total_image_error >= total_image_error:
|
|
inner_iterations_since_improvement += 1
|
|
continue
|
|
|
|
# We found a globally better set of palettes, so restart the
|
|
# clocks
|
|
inner_iterations_since_improvement = 0
|
|
outer_iterations_since_improvement = -1
|
|
total_image_error = new_total_image_error
|
|
|
|
self._palettes_cam = new_palettes_cam
|
|
self._palettes_rgb = new_palettes_rgb12_iigs
|
|
|
|
yield (new_total_image_error, output_4bit, line_to_palette,
|
|
new_palettes_rgb12_iigs, palettes_linear_rgb)
|
|
outer_iterations_since_improvement += 1
|
|
|
|
def _fit_shr_palettes(self) -> Tuple[np.ndarray, np.ndarray]:
|
|
"""Attempt to find new palettes that locally improve image quality.
|
|
|
|
Re-fit a set of 16 palettes from (overlapping) line ranges of the
|
|
source image, using k-means clustering in CAM16-UCS colour space.
|
|
|
|
We maintain the total image error for the pixels on which the 16
|
|
palettes are clustered. A new palette that increases this local
|
|
image error is rejected.
|
|
|
|
New palettes that reduce local error cannot be applied immediately
|
|
though, because they may cause an increase in *global* image error
|
|
when dithering. i.e. they would reduce the overall image quality.
|
|
|
|
The current (locally) best palettes are returned and can be applied
|
|
using accept_palettes()
|
|
|
|
XXX update
|
|
"""
|
|
new_palettes_cam = np.empty_like(self._palettes_cam)
|
|
new_palettes_rgb12_iigs = np.empty_like(self._palettes_rgb)
|
|
|
|
# Compute a new 16-colour global palette for the entire image,
|
|
# used as the starting center positions for k-means clustering of the
|
|
# individual palettes
|
|
self._fit_global_palette()
|
|
|
|
for palette_idx in range(16):
|
|
palette_pixels = (
|
|
self._colours_cam[self._palette_lines[
|
|
palette_idx], :, :].reshape(-1, 3))
|
|
|
|
# Fix reserved colours from the global palette.
|
|
initial_centroids = np.copy(self._global_palette)
|
|
pixels_rgb_iigs = dither_shr_pyx.convert_cam16ucs_to_rgb12_iigs(
|
|
palette_pixels)
|
|
seen_colours = set()
|
|
for i in range(self._fixed_colours):
|
|
seen_colours.add(tuple(initial_centroids[i, :]))
|
|
|
|
# Pick unique random colours from the sample points for the
|
|
# remaining initial centroids.
|
|
for i in range(self._fixed_colours, 16):
|
|
choice = np.random.randint(0, pixels_rgb_iigs.shape[0])
|
|
new_colour = pixels_rgb_iigs[choice, :]
|
|
if tuple(new_colour) in seen_colours:
|
|
continue
|
|
seen_colours.add(tuple(new_colour))
|
|
initial_centroids[i, :] = new_colour
|
|
|
|
# If there are any single colours in our source //gs RGB pixels that
|
|
# represent more than fixed_colour_fraction_threshold of the total,
|
|
# then fix these colours for the palette instead of clustering
|
|
# them. This reduces artifacting on blocks of colour.
|
|
fixed_colour_fraction_threshold = 0.1
|
|
most_frequent_colours = sorted(list(zip(
|
|
*np.unique(pixels_rgb_iigs, return_counts=True, axis=0))),
|
|
key=lambda kv: kv[1], reverse=True)
|
|
fixed_colours = self._fixed_colours
|
|
for palette_colour, freq in most_frequent_colours:
|
|
if (freq < (palette_pixels.shape[0] *
|
|
fixed_colour_fraction_threshold)) or (
|
|
fixed_colours == 16):
|
|
break
|
|
if tuple(palette_colour) not in seen_colours:
|
|
seen_colours.add(tuple(palette_colour))
|
|
initial_centroids[fixed_colours, :] = palette_colour
|
|
fixed_colours += 1
|
|
|
|
palette_rgb12_iigs = dither_shr_pyx.k_means_with_fixed_centroids(
|
|
n_clusters=16, n_fixed=fixed_colours,
|
|
samples=palette_pixels,
|
|
initial_centroids=initial_centroids,
|
|
max_iterations=1000,
|
|
rgb12_iigs_to_cam16ucs=self._rgb12_iigs_to_cam16ucs)
|
|
# If the k-means clustering returned fewer than 16 unique colours,
|
|
# fill out the remainder with the most common pixels colours that
|
|
# have not yet been used.
|
|
#
|
|
# TODO: this seems like an opportunity to do something better -
|
|
# e.g. forcibly split clusters and iterate the clustering
|
|
palette_rgb12_iigs = self._fill_short_palette(
|
|
palette_rgb12_iigs, most_frequent_colours)
|
|
|
|
for i in range(16):
|
|
new_palettes_cam[palette_idx, i, :] = (
|
|
np.array(dither_shr_pyx.convert_rgb12_iigs_to_cam(
|
|
self._rgb12_iigs_to_cam16ucs, palette_rgb12_iigs[
|
|
i]), dtype=np.float32))
|
|
|
|
new_palettes_rgb12_iigs[palette_idx, :, :] = palette_rgb12_iigs
|
|
|
|
self._palettes_accepted = False
|
|
return new_palettes_cam, new_palettes_rgb12_iigs
|
|
|
|
def _fit_global_palette(self):
|
|
"""Compute a 16-colour palette for the entire image to use as
|
|
starting point for the sub-palettes. This should help when the image
|
|
has large blocks of colour since the sub-palettes will tend to pick the
|
|
same colours."""
|
|
|
|
clusters = cluster.MiniBatchKMeans(n_clusters=16, max_iter=10000)
|
|
clusters.fit_predict(self._colours_cam.reshape(-1, 3))
|
|
|
|
# Dict of {palette idx : frequency count}
|
|
palette_freq = {idx: 0 for idx in range(16)}
|
|
for idx, freq in zip(*np.unique(clusters.labels_, return_counts=True)):
|
|
palette_freq[idx] = freq
|
|
|
|
frequency_order = [
|
|
k for k, v in sorted(
|
|
list(palette_freq.items()), key=lambda kv: kv[1], reverse=True)]
|
|
|
|
self._global_palette = (
|
|
dither_shr_pyx.convert_cam16ucs_to_rgb12_iigs(
|
|
clusters.cluster_centers_[frequency_order].astype(
|
|
np.float32)))
|
|
|
|
@staticmethod
|
|
def _fill_short_palette(palette_iigs_rgb, most_frequent_colours):
|
|
"""Fill out the palette to 16 unique entries."""
|
|
|
|
# We want to maintain order of insertion so that we respect the
|
|
# ordering of fixed colours in the palette. Python doesn't have an
|
|
# orderedset but dicts preserve insertion order.
|
|
palette_set = {}
|
|
for palette_entry in palette_iigs_rgb:
|
|
palette_set[tuple(palette_entry)] = True
|
|
if len(palette_set) == 16:
|
|
return palette_iigs_rgb
|
|
|
|
# Add most frequent image colours that are not yet in the palette
|
|
for palette_colour, freq in most_frequent_colours:
|
|
if tuple(palette_colour) in palette_set:
|
|
continue
|
|
palette_set[tuple(palette_colour)] = True
|
|
if len(palette_set) == 16:
|
|
break
|
|
|
|
# We couldn't find any more unique colours, fill out with random ones.
|
|
while len(palette_set) < 16:
|
|
palette_set[
|
|
tuple(np.random.randint(0, 16, size=3, dtype=np.uint8))] = True
|
|
|
|
return np.array(tuple(palette_set.keys()), dtype=np.uint8)
|
|
|
|
def _reassign_unused_palettes(self, line_to_palette, palettes_iigs_rgb):
|
|
palettes_used = [False] * 16
|
|
for palette in line_to_palette:
|
|
palettes_used[palette] = True
|
|
best_palette_lines = [v for k, v in sorted(list(zip(
|
|
self._palette_line_errors, range(200))))]
|
|
|
|
all_palettes = set()
|
|
for palette_idx, palette_iigs_rgb in enumerate(palettes_iigs_rgb):
|
|
palette_set = set()
|
|
for palette_entry in palette_iigs_rgb:
|
|
palette_set.add(tuple(palette_entry))
|
|
palette_set = frozenset(palette_set)
|
|
if palette_set in all_palettes:
|
|
print("Duplicate palette", palette_idx, palette_set)
|
|
palettes_used[palette_idx] = False
|
|
|
|
for palette_idx, palette_used in enumerate(palettes_used):
|
|
if palette_used:
|
|
continue
|
|
|
|
# TODO: also remove from old entry
|
|
worst_line = best_palette_lines.pop()
|
|
self._palette_lines[palette_idx] = [worst_line]
|
|
|
|
|
|
def convert(screen, rgb: np.ndarray, args):
|
|
# Conversion matrix from RGB to CAM16UCS colour values. Indexed by
|
|
# 24-bit RGB value
|
|
base_dir = os.path.dirname(__file__)
|
|
rgb24_to_cam16ucs = np.load(
|
|
os.path.join(base_dir, "data/rgb24_to_cam16ucs.npy"))
|
|
rgb12_iigs_to_cam16ucs = np.load(
|
|
os.path.join(base_dir, "data/rgb12_iigs_to_cam16ucs.npy"))
|
|
|
|
# TODO: flags
|
|
inner_iterations = 10
|
|
outer_iterations = 20
|
|
|
|
if args.show_output:
|
|
pygame.init()
|
|
canvas = pygame.display.set_mode((640, 400))
|
|
canvas.fill((0, 0, 0))
|
|
pygame.display.set_caption("][-Pix image preview")
|
|
pygame.event.pump() # Update caption
|
|
pygame.display.flip()
|
|
|
|
total_image_error = None
|
|
cluster_palette = ClusterPalette(
|
|
rgb, fixed_colours=args.fixed_colours,
|
|
rgb12_iigs_to_cam16ucs=rgb12_iigs_to_cam16ucs,
|
|
rgb24_to_cam16ucs=rgb24_to_cam16ucs)
|
|
|
|
output_base, output_ext = os.path.splitext(args.output)
|
|
|
|
seq = 0
|
|
for (
|
|
new_total_image_error, output_4bit, line_to_palette,
|
|
palettes_rgb12_iigs,
|
|
palettes_linear_rgb
|
|
) in cluster_palette.iterate(inner_iterations, outer_iterations):
|
|
|
|
if args.verbose and total_image_error is not None:
|
|
print("Improved quality +%f%% (%f)" % (
|
|
(1 - new_total_image_error / total_image_error) * 100,
|
|
new_total_image_error))
|
|
total_image_error = new_total_image_error
|
|
for i in range(16):
|
|
screen.set_palette(i, palettes_rgb12_iigs[i, :, :])
|
|
|
|
# Recompute current screen RGB image
|
|
screen.set_pixels(output_4bit)
|
|
output_rgb = np.empty((200, 320, 3), dtype=np.uint8)
|
|
for i in range(200):
|
|
screen.line_palette[i] = line_to_palette[i]
|
|
output_rgb[i, :, :] = (
|
|
palettes_linear_rgb[line_to_palette[i]][
|
|
output_4bit[i, :]] * 255
|
|
).astype(np.uint8)
|
|
|
|
output_srgb = (image_py.linear_to_srgb(output_rgb)).astype(np.uint8)
|
|
out_image = image_py.resize(
|
|
Image.fromarray(output_srgb), screen.X_RES * 2, screen.Y_RES * 2,
|
|
srgb_output=True)
|
|
|
|
if args.show_output:
|
|
surface = pygame.surfarray.make_surface(
|
|
np.asarray(out_image).transpose((1, 0, 2))) # flip y/x axes
|
|
canvas.blit(surface, (0, 0))
|
|
pygame.display.set_caption("][-Pix image preview [Iteration %d]"
|
|
% seq)
|
|
pygame.event.pump() # Update caption
|
|
pygame.display.flip()
|
|
|
|
unique_colours = np.unique(
|
|
palettes_rgb12_iigs.reshape(-1, 3), axis=0).shape[0]
|
|
if args.verbose:
|
|
print("%d unique colours" % unique_colours)
|
|
|
|
if args.save_preview:
|
|
# Save super hi-res image
|
|
if args.save_intermediate:
|
|
outfile = "%s-%d-preview.png" % (output_base, seq)
|
|
else:
|
|
outfile = "%s-preview.png" % output_base
|
|
out_image.save(outfile, "PNG")
|
|
screen.pack()
|
|
|
|
if args.save_intermediate:
|
|
outfile = "%s-%d%s" % (output_base, seq, output_ext)
|
|
else:
|
|
outfile = "%s%s" % (output_base, output_ext)
|
|
with open(outfile, "wb") as f:
|
|
f.write(bytes(screen.memory))
|
|
|
|
seq += 1
|
|
|
|
if args.show_final_score:
|
|
print("FINAL_SCORE:", total_image_error)
|