mirror of
https://github.com/KrisKennaway/ii-pix.git
synced 2024-11-19 08:30:48 +00:00
209 lines
7.8 KiB
Cython
209 lines
7.8 KiB
Cython
# cython: infer_types=True
|
|
|
|
cimport cython
|
|
import numpy as np
|
|
# from cython.parallel import prange
|
|
from cython.view cimport array as cvarray
|
|
from libc.stdlib cimport malloc, free
|
|
|
|
|
|
@cython.boundscheck(False)
|
|
@cython.wraparound(False)
|
|
cdef float clip(float a, float min_value, float max_value) nogil:
|
|
return min(max(a, min_value), max_value)
|
|
|
|
|
|
@cython.boundscheck(False)
|
|
@cython.wraparound(False)
|
|
cdef void apply_one_line(float[:, :, ::1] pattern, int xl, int xr, float[] image, int image_shape0, float[] quant_error) nogil:
|
|
cdef int i, j
|
|
cdef float error
|
|
|
|
for i in range(xr - xl):
|
|
for j in range(3):
|
|
error = pattern[0, i, 0] * quant_error[j]
|
|
image[(xl + i) * image_shape0 + j] = clip(image[(xl + i) * image_shape0 + j] + error, 0, 255)
|
|
|
|
|
|
@cython.boundscheck(False)
|
|
@cython.wraparound(False)
|
|
cdef apply(dither, screen, int x, int y, float [:, :, ::1]image, float[] quant_error):
|
|
cdef int i, j, k
|
|
|
|
# XXX only need 2 dimensions now
|
|
cdef float[:, :, ::1] pattern = dither.PATTERN
|
|
cdef int yt, yb, xl, xr
|
|
yt, yb = y_dither_bounds(pattern, dither.ORIGIN[0], screen.Y_RES, y)
|
|
xl, xr = x_dither_bounds(pattern, dither.ORIGIN[1], screen.X_RES, x)
|
|
|
|
cdef float error
|
|
# We could avoid clipping here, i.e. allow RGB values to extend beyond
|
|
# 0..255 to capture a larger range of residual error. This is faster
|
|
# but seems to reduce image quality.
|
|
for i in range(yb - yt):
|
|
for j in range(xr - xl):
|
|
for k in range(3):
|
|
error = pattern[i, j, 0] * quant_error[k]
|
|
image[yt+i, xl+j, k] = clip(image[yt+i, xl+j, k] + error, 0, 255)
|
|
|
|
|
|
@cython.boundscheck(False)
|
|
@cython.wraparound(False)
|
|
cdef x_dither_bounds(float [:, :, ::1] pattern, int x_origin, int x_res, int x):
|
|
cdef int el = max(x_origin - x, 0)
|
|
cdef int er = min(pattern.shape[1], x_res - 1 - x)
|
|
|
|
cdef int xl = x - x_origin + el
|
|
cdef int xr = x - x_origin + er
|
|
|
|
return xl, xr
|
|
|
|
|
|
@cython.boundscheck(False)
|
|
@cython.wraparound(False)
|
|
cdef y_dither_bounds(float [:, :, ::1] pattern, int y_origin, int y_res, int y):
|
|
pshape = pattern.shape
|
|
et = max(y_origin - y, 0)
|
|
eb = min(pshape[0], y_res - 1 - y)
|
|
|
|
yt = y - y_origin + et
|
|
yb = y - y_origin + eb
|
|
|
|
|
|
return yt, yb
|
|
|
|
@cython.boundscheck(False)
|
|
@cython.wraparound(False)
|
|
def dither_lookahead(
|
|
screen, float[:,:,::1] image_rgb, dither, differ, int x, int y, char[:, ::1] options_4bit,
|
|
float[:, :, ::1] options_rgb, int lookahead):
|
|
cdef float[:, :, ::1] pattern = dither.PATTERN
|
|
cdef int x_res = screen.X_RES
|
|
cdef int dither_x_origin = dither.ORIGIN[1]
|
|
|
|
cdef int xl, xr
|
|
xl, xr = x_dither_bounds(pattern, dither_x_origin, x_res, x)
|
|
|
|
# X coord value of larger of dither bounding box or lookahead horizon
|
|
cdef int xxr = min(max(x + lookahead, xr), x_res)
|
|
|
|
cdef int i, j, k, l
|
|
|
|
# XXX malloc
|
|
#cdef float [:, :, ::1] lah_image_rgb = cvarray((2 ** lookahead, lookahead + xr - xl, 3), itemsize=sizeof(float), format="f")
|
|
cdef int lah_shape0 = 2 ** lookahead
|
|
cdef int lah_shape1 = lookahead + xr - xl
|
|
cdef int lah_shape2 = 3
|
|
cdef float *lah_image_rgb = <float *> malloc(lah_shape0 * lah_shape1 * lah_shape2 * sizeof(float))
|
|
for i in range(2**lookahead):
|
|
# Copies of input pixels so we can dither in bulk
|
|
for j in range(xxr - x):
|
|
for k in range(3):
|
|
lah_image_rgb[i * lah_shape1 * lah_shape2 + j * lah_shape2 + k] = image_rgb[y, x+j, k]
|
|
# Leave enough space at right of image so we can dither the last of our lookahead pixels.
|
|
for j in range(xxr - x, lookahead + xr - xl):
|
|
for k in range(3):
|
|
lah_image_rgb[i * lah_shape1 * lah_shape2 + j * lah_shape2 + k] = 0
|
|
|
|
cdef float[3] quant_error
|
|
# Iterating by row then column is faster for some reason?
|
|
for i in range(xxr - x):
|
|
xl, xr = x_dither_bounds(pattern, dither_x_origin, x_res, i)
|
|
for j in range(2 ** lookahead):
|
|
# Don't update the input at position x (since we've already chosen
|
|
# fixed outputs), but do propagate quantization errors to positions >x
|
|
# so we can compensate for how good/bad these choices were
|
|
|
|
# options_rgb choices are fixed, but we can still distribute
|
|
# quantization error from having made these choices, in order to compute
|
|
# the total error
|
|
for k in range(3):
|
|
quant_error[k] = lah_image_rgb[j * lah_shape1 * lah_shape2 + i * lah_shape2 + k] - options_rgb[j, i, k]
|
|
apply_one_line(pattern, xl, xr, &lah_image_rgb[j * lah_shape1 * lah_shape2], lah_shape2, quant_error)
|
|
|
|
cdef int best
|
|
cdef int best_error = 2**31-1
|
|
cdef int total_error
|
|
cdef long flat, dist, bit4
|
|
|
|
cdef long r, g, b
|
|
cdef (unsigned char)[:, ::1] distances = differ._distances
|
|
for i in range(2**lookahead):
|
|
total_error = 0
|
|
for j in range(lookahead):
|
|
# Clip lah_image_rgb into 0..255 range to prepare for computing colour distance
|
|
r = <long>clip(lah_image_rgb[i * lah_shape1 * lah_shape2 + j * lah_shape2 + 0], 0, 255)
|
|
g = <long>clip(lah_image_rgb[i * lah_shape1 * lah_shape2 + j * lah_shape2 + 1], 0, 255)
|
|
b = <long>clip(lah_image_rgb[i * lah_shape1 * lah_shape2 + j * lah_shape2 + 2], 0, 255)
|
|
|
|
flat = (r << 16) + (g << 8) + b
|
|
bit4 = options_4bit[i, j]
|
|
dist = distances[flat, bit4]
|
|
total_error += dist ** 2
|
|
if total_error >= best_error:
|
|
break
|
|
if total_error < best_error:
|
|
best_error = total_error
|
|
best = i
|
|
free(lah_image_rgb)
|
|
return options_4bit[best, 0], options_rgb[best, 0, :]
|
|
|
|
import functools
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def lookahead_options(screen, lookahead, last_pixel_4bit, x):
|
|
options_4bit = np.empty((2 ** lookahead, lookahead), dtype=np.uint8)
|
|
options_rgb = np.empty((2 ** lookahead, lookahead, 3), dtype=np.float32)
|
|
for i in range(2 ** lookahead):
|
|
output_pixel_4bit = last_pixel_4bit
|
|
for j in range(lookahead):
|
|
xx = x + j
|
|
palette_choices_4bit, palette_choices_rgb = \
|
|
screen.pixel_palette_options(output_pixel_4bit, xx)
|
|
output_pixel_4bit = palette_choices_4bit[(i & (1 << j)) >> j]
|
|
output_pixel_rgb = np.array(
|
|
palette_choices_rgb[(i & (1 << j)) >> j])
|
|
# XXX copy
|
|
options_4bit[i, j] = output_pixel_4bit
|
|
options_rgb[i, j, :] = np.copy(output_pixel_rgb)
|
|
|
|
return options_4bit, options_rgb
|
|
|
|
|
|
@cython.boundscheck(False)
|
|
@cython.wraparound(False)
|
|
def dither_image(
|
|
screen, float[:, :, ::1] image_rgb, dither, differ, int lookahead):
|
|
cdef (unsigned char)[:, ::1] image_4bit = np.empty(
|
|
(image_rgb.shape[0], image_rgb.shape[1]), dtype=np.uint8)
|
|
|
|
cdef int yres = screen.Y_RES
|
|
cdef int xres = screen.X_RES
|
|
|
|
cdef int y, x, i
|
|
cdef float[3] quant_error
|
|
cdef (unsigned char)[:, ::1] options_4bit
|
|
cdef float[:, :, ::1] options_rgb
|
|
cdef unsigned char output_pixel_4bit
|
|
cdef float[::1] input_pixel_rgb
|
|
|
|
for y in range(yres):
|
|
# print(y)
|
|
output_pixel_4bit = 0
|
|
for x in range(xres):
|
|
input_pixel_rgb = image_rgb[y, x, :]
|
|
options_4bit, options_rgb = lookahead_options(
|
|
screen, lookahead, output_pixel_4bit, x % 4)
|
|
|
|
output_pixel_4bit, output_pixel_rgb = \
|
|
dither_lookahead(
|
|
screen, image_rgb, dither, differ, x, y, options_4bit,
|
|
options_rgb, lookahead)
|
|
for i in range(3):
|
|
quant_error[i] = input_pixel_rgb[i] - output_pixel_rgb[i]
|
|
image_rgb[y, x, i] = output_pixel_rgb[i]
|
|
image_4bit[y, x] = output_pixel_4bit
|
|
apply(dither, screen, x, y, image_rgb, quant_error)
|
|
|
|
return image_4bit, np.array(image_rgb) |