mirror of
https://github.com/KrisKennaway/ii-pix.git
synced 2024-11-19 08:30:48 +00:00
505 lines
18 KiB
Python
505 lines
18 KiB
Python
import argparse
|
|
import bz2
|
|
import functools
|
|
import os.path
|
|
import pickle
|
|
from typing import Tuple
|
|
|
|
from PIL import Image
|
|
import numpy as np
|
|
import pyximport;
|
|
|
|
pyximport.install(language_level=3)
|
|
import dither_apply
|
|
|
|
|
|
# TODO:
|
|
# - only lookahead for 560px
|
|
# - palette class
|
|
# - compare to bmp2dhr and a2bestpix
|
|
|
|
def srgb_to_linear_array(a: np.ndarray, gamma=2.4) -> np.ndarray:
|
|
return np.where(a <= 0.04045, a / 12.92, ((a + 0.055) / 1.055) ** gamma)
|
|
|
|
|
|
def linear_to_srgb_array(a: np.ndarray, gamma=2.4) -> np.ndarray:
|
|
return np.where(a <= 0.0031308, a * 12.92, 1.055 * a ** (1.0 / gamma) -
|
|
0.055)
|
|
|
|
|
|
def srgb_to_linear(im: np.ndarray) -> np.ndarray:
|
|
rgb_linear = srgb_to_linear_array(im / 255.0, gamma=2.4)
|
|
return (np.clip(rgb_linear, 0.0, 1.0) * 255).astype(np.float32)
|
|
|
|
|
|
def linear_to_srgb(im: np.ndarray) -> np.ndarray:
|
|
srgb = linear_to_srgb_array(im / 255.0, gamma=2.4)
|
|
return (np.clip(srgb, 0.0, 1.0) * 255).astype(np.float32)
|
|
|
|
|
|
# Default bmp2dhr palette
|
|
RGB = {
|
|
0: np.array((0, 0, 0)), # Black
|
|
8: np.array((148, 12, 125)), # Magenta
|
|
4: np.array((99, 77, 0)), # Brown
|
|
12: np.array((249, 86, 29)), # Orange
|
|
2: np.array((51, 111, 0)), # Dark green
|
|
10: np.array((126, 126, 125)), # Grey2
|
|
6: np.array((67, 200, 0)), # Green
|
|
14: np.array((221, 206, 23)), # Yellow
|
|
1: np.array((32, 54, 212)), # Dark blue
|
|
9: np.array((188, 55, 255)), # Violet
|
|
5: np.array((126, 126, 126)), # Grey1
|
|
13: np.array((255, 129, 236)), # Pink
|
|
3: np.array((7, 168, 225)), # Med blue
|
|
11: np.array((158, 172, 255)), # Light blue
|
|
7: np.array((93, 248, 133)), # Aqua
|
|
15: np.array((255, 255, 255)), # White
|
|
}
|
|
|
|
# Maps palette values to screen dots. Note that these are the same as
|
|
# the binary values in reverse order.
|
|
DOTS = {
|
|
0: (False, False, False, False),
|
|
1: (True, False, False, False),
|
|
2: (False, True, False, False),
|
|
3: (True, True, False, False),
|
|
4: (False, False, True, False),
|
|
5: (True, False, True, False),
|
|
6: (False, True, True, False),
|
|
7: (True, True, True, False),
|
|
8: (False, False, False, True),
|
|
9: (True, False, False, True),
|
|
10: (False, True, False, True),
|
|
11: (True, True, False, True),
|
|
12: (False, False, True, True),
|
|
13: (True, False, True, True),
|
|
14: (False, True, True, True),
|
|
15: (True, True, True, True)
|
|
}
|
|
DOTS_TO_4BIT = {}
|
|
for k, v in DOTS.items():
|
|
DOTS_TO_4BIT[v] = k
|
|
|
|
# OpenEmulator
|
|
sRGB = {
|
|
0: np.array((0, 0, 0)), # Black
|
|
8: np.array((206, 0, 123)), # Magenta
|
|
4: np.array((100, 105, 0)), # Brown
|
|
12: np.array((247, 79, 0)), # Orange
|
|
2: np.array((0, 153, 0)), # Dark green
|
|
# XXX RGB values are used as keys in DOTS dict, need to be unique
|
|
10: np.array((131, 132, 132)), # Grey2
|
|
6: np.array((0, 242, 0)), # Green
|
|
14: np.array((216, 220, 0)), # Yellow
|
|
1: np.array((21, 0, 248)), # Dark blue
|
|
9: np.array((235, 0, 242)), # Violet
|
|
5: np.array((140, 140, 140)), # Grey1 # XXX
|
|
13: np.array((244, 104, 240)), # Pink
|
|
3: np.array((0, 181, 248)), # Med blue
|
|
11: np.array((160, 156, 249)), # Light blue
|
|
7: np.array((21, 241, 132)), # Aqua
|
|
15: np.array((244, 247, 244)), # White
|
|
}
|
|
|
|
# # Virtual II (sRGB)
|
|
# sRGB = {
|
|
# (False, False, False, False): np.array((0, 0, 0)), # Black
|
|
# (False, False, False, True): np.array((231,36,66)), # Magenta
|
|
# (False, False, True, False): np.array((154,104,0)), # Brown
|
|
# (False, False, True, True): np.array((255,124,0)), # Orange
|
|
# (False, True, False, False): np.array((0,135,45)), # Dark green
|
|
# (False, True, False, True): np.array((104,104,104)), # Grey2 XXX
|
|
# (False, True, True, False): np.array((0,222,0)), # Green
|
|
# (False, True, True, True): np.array((255,252,0)), # Yellow
|
|
# (True, False, False, False): np.array((1,30,169)), # Dark blue
|
|
# (True, False, False, True): np.array((230,73,228)), # Violet
|
|
# (True, False, True, False): np.array((185,185,185)), # Grey1 XXX
|
|
# (True, False, True, True): np.array((255,171,153)), # Pink
|
|
# (True, True, False, False): np.array((47,69,255)), # Med blue
|
|
# (True, True, False, True): np.array((120,187,255)), # Light blue
|
|
# (True, True, True, False): np.array((83,250,208)), # Aqua
|
|
# (True, True, True, True): np.array((255, 255, 255)), # White
|
|
# }
|
|
RGB = {}
|
|
for k, v in sRGB.items():
|
|
RGB[k] = (np.clip(srgb_to_linear_array(v / 255), 0.0, 1.0) * 255).astype(
|
|
np.uint8)
|
|
|
|
|
|
class ColourDistance:
|
|
@staticmethod
|
|
def distance(rgb1: np.ndarray, rgb2: np.ndarray) -> np.ndarray:
|
|
raise NotImplementedError
|
|
|
|
|
|
class CIE2000Distance(ColourDistance):
|
|
"""CIE2000 delta-E distance."""
|
|
|
|
def __init__(self):
|
|
with bz2.open("nearest.pickle.bz2", "rb") as f:
|
|
self._distances = pickle.load(f)
|
|
assert self._distances.dtype == np.uint8
|
|
|
|
@staticmethod
|
|
def _flatten_rgb(rgb):
|
|
return (rgb[..., 0] << 16) + (rgb[..., 1] << 8) + (rgb[..., 2])
|
|
|
|
def distance(self, rgb: np.ndarray, bit4: np.ndarray) -> np.ndarray:
|
|
rgb24 = self._flatten_rgb(np.clip(rgb, 0, 255).astype(np.int))
|
|
return self._distances[rgb24, bit4].astype(np.int)
|
|
|
|
|
|
class Screen:
|
|
X_RES = None
|
|
Y_RES = None
|
|
X_PIXEL_WIDTH = None
|
|
|
|
def __init__(self):
|
|
self.main = np.zeros(8192, dtype=np.uint8)
|
|
self.aux = np.zeros(8192, dtype=np.uint8)
|
|
|
|
@staticmethod
|
|
def y_to_base_addr(y: int) -> int:
|
|
"""Maps y coordinate to screen memory base address."""
|
|
a = y // 64
|
|
d = y - 64 * a
|
|
b = d // 8
|
|
c = d - 8 * b
|
|
|
|
return 1024 * c + 128 * b + 40 * a
|
|
|
|
def _image_to_bitmap(self, image: np.ndarray) -> np.ndarray:
|
|
raise NotImplementedError
|
|
|
|
def pack(self, image: np.ndarray):
|
|
bitmap = self._image_to_bitmap(image)
|
|
# The DHGR display encodes 7 pixels across interleaved 4-byte sequences
|
|
# of AUX and MAIN memory, as follows:
|
|
# PBBBAAAA PDDCCCCB PFEEEEDD PGGGGFFF
|
|
# Aux N Main N Aux N+1 Main N+1 (N even)
|
|
main_col = np.zeros(
|
|
(self.Y_RES, self.X_RES * self.X_PIXEL_WIDTH // 14), dtype=np.uint8)
|
|
aux_col = np.zeros(
|
|
(self.Y_RES, self.X_RES * self.X_PIXEL_WIDTH // 14), dtype=np.uint8)
|
|
for byte_offset in range(80):
|
|
column = np.zeros(self.Y_RES, dtype=np.uint8)
|
|
for bit in range(7):
|
|
column |= (bitmap[:, 7 * byte_offset + bit].astype(
|
|
np.uint8) << bit)
|
|
if byte_offset % 2 == 0:
|
|
aux_col[:, byte_offset // 2] = column
|
|
else:
|
|
main_col[:, (byte_offset - 1) // 2] = column
|
|
|
|
for y in range(self.Y_RES):
|
|
addr = self.y_to_base_addr(y)
|
|
self.aux[addr:addr + 40] = aux_col[y, :]
|
|
self.main[addr:addr + 40] = main_col[y, :]
|
|
|
|
@staticmethod
|
|
def pixel_palette_options(last_pixel, x: int):
|
|
raise NotImplementedError
|
|
|
|
|
|
class DHGR140Screen(Screen):
|
|
"""DHGR screen ignoring colour fringing, i.e. treating as 140x192x16."""
|
|
|
|
X_RES = 140
|
|
Y_RES = 192
|
|
X_PIXEL_WIDTH = 4
|
|
|
|
def _image_to_bitmap(self, image_4bit: np.ndarray) -> np.ndarray:
|
|
bitmap = np.zeros(
|
|
(self.Y_RES, self.X_RES * self.X_PIXEL_WIDTH), dtype=np.bool)
|
|
for y in range(self.Y_RES):
|
|
for x in range(self.X_RES):
|
|
pixel = image_4bit[y, x].item()
|
|
dots = DOTS[pixel]
|
|
bitmap[y, x * self.X_PIXEL_WIDTH:(
|
|
(x + 1) * self.X_PIXEL_WIDTH)] = dots
|
|
return bitmap
|
|
|
|
@staticmethod
|
|
def pixel_palette_options(last_pixel_4bit, x: int):
|
|
return np.array(list(RGB.keys())), np.array(list(RGB.values()))
|
|
|
|
|
|
class DHGR560Screen(Screen):
|
|
"""DHGR screen including colour fringing."""
|
|
X_RES = 560
|
|
Y_RES = 192
|
|
X_PIXEL_WIDTH = 1
|
|
|
|
def _image_to_bitmap(self, image_4bit: np.ndarray) -> np.ndarray:
|
|
bitmap = np.zeros((self.Y_RES, self.X_RES), dtype=np.bool)
|
|
for y in range(self.Y_RES):
|
|
for x in range(self.X_RES):
|
|
pixel = image_4bit[y, x].item()
|
|
dots = DOTS[pixel]
|
|
phase = x % 4
|
|
bitmap[y, x] = dots[phase]
|
|
return bitmap
|
|
|
|
@staticmethod
|
|
def pixel_palette_options(last_pixel_4bit, x: int):
|
|
last_dots = DOTS[last_pixel_4bit]
|
|
other_dots = list(last_dots)
|
|
other_dots[x % 4] = not other_dots[x % 4]
|
|
other_dots = tuple(other_dots)
|
|
other_pixel_4bit = DOTS_TO_4BIT[other_dots]
|
|
return (
|
|
np.array([last_pixel_4bit, other_pixel_4bit]),
|
|
np.array([RGB[last_pixel_4bit], RGB[other_pixel_4bit]]))
|
|
|
|
|
|
class Dither:
|
|
PATTERN = None
|
|
ORIGIN = None
|
|
|
|
@functools.lru_cache(None)
|
|
def x_dither_bounds(self, screen: Screen, x: int):
|
|
pshape = self.PATTERN.shape
|
|
el = max(self.ORIGIN[1] - x, 0)
|
|
er = min(pshape[1], screen.X_RES - 1 - x)
|
|
|
|
xl = x - self.ORIGIN[1] + el
|
|
xr = x - self.ORIGIN[1] + er
|
|
|
|
return el, er, xl, xr
|
|
|
|
@functools.lru_cache(None)
|
|
def y_dither_bounds(self, screen: Screen, y: int, one_line=False):
|
|
pshape = self.PATTERN.shape
|
|
et = max(self.ORIGIN[0] - y, 0)
|
|
eb = min(pshape[0], screen.Y_RES - 1 - y)
|
|
|
|
yt = y - self.ORIGIN[0] + et
|
|
yb = y - self.ORIGIN[0] + eb
|
|
|
|
if one_line:
|
|
yb = yt + 1
|
|
eb = et + 1
|
|
|
|
return et, eb, yt, yb
|
|
|
|
def apply(self, screen: Screen, image: np.ndarray, x: int, y: int,
|
|
quant_error: np.ndarray, one_line=False):
|
|
el, er, xl, xr = self.x_dither_bounds(screen, x)
|
|
et, eb, yt, yb = self.y_dither_bounds(screen, y, one_line)
|
|
return dither_apply.apply(self.PATTERN, el, er, xl, xr, et, eb, yt,
|
|
yb, image, quant_error)
|
|
# error = self.PATTERN * quant_error.reshape((1, 1, 3))
|
|
#
|
|
# # We could avoid clipping here, i.e. allow RGB values to extend beyond
|
|
# # 0..255 to capture a larger range of residual error. This is faster
|
|
# # but seems to reduce image quality.
|
|
# # XXX extend image region to avoid need for boundary box clipping
|
|
# image[yt:yb, xl:xr, :] = np.clip(
|
|
# image[yt:yb, xl:xr, :] + error[et:eb, el:er, :], 0, 255)
|
|
|
|
def apply_one_line(self, screen: Screen, image: np.ndarray, x: int, y: int,
|
|
quant_error: np.ndarray):
|
|
el, er, xl, xr = self.x_dither_bounds(screen, x)
|
|
return dither_apply.apply_one_line(self.PATTERN, el, er, xl, xr, y,
|
|
image, quant_error)
|
|
# error = self.PATTERN[0, :] * quant_error.reshape(1, 3)
|
|
#
|
|
# image[y, xl:xr, :] = np.clip(
|
|
# image[y, xl:xr, :] + error[el:er, :], 0, 255)
|
|
|
|
|
|
class FloydSteinbergDither(Dither):
|
|
# 0 * 7
|
|
# 3 5 1
|
|
PATTERN = np.array(((0, 0, 7), (3, 5, 1)),
|
|
dtype=np.float32).reshape(2, 3, 1) / np.float(16)
|
|
# XXX X_ORIGIN since ORIGIN[0] == 0
|
|
ORIGIN = (0, 1)
|
|
|
|
|
|
class BuckelsDither(Dither):
|
|
# 0 * 2 1
|
|
# 1 2 1 0
|
|
# 0 1 0 0
|
|
PATTERN = np.array(((0, 0, 2, 1), (1, 2, 1, 0), (0, 1, 0, 0)),
|
|
dtype=np.float32).reshape(3, 4, 1) / np.float32(8)
|
|
ORIGIN = (0, 1)
|
|
|
|
|
|
class JarvisDither(Dither):
|
|
# 0 0 X 7 5
|
|
# 3 5 7 5 3
|
|
# 1 3 5 3 1
|
|
PATTERN = np.array(((0, 0, 0, 7, 5), (3, 5, 7, 5, 3), (1, 3, 5, 3, 1)),
|
|
dtype=np.float32).reshape(3, 5, 1) / np.float32(48)
|
|
ORIGIN = (0, 2)
|
|
|
|
|
|
# XXX needed?
|
|
def SRGBResize(im, size, filter) -> np.ndarray:
|
|
# Convert to numpy array of float
|
|
arr = np.array(im, dtype=np.float32) / 255.0
|
|
# Convert sRGB -> linear
|
|
arr = np.where(arr <= 0.04045, arr / 12.92, ((arr + 0.055) / 1.055) ** 2.4)
|
|
# Resize using PIL
|
|
arrOut = np.zeros((size[1], size[0], arr.shape[2]))
|
|
for i in range(arr.shape[2]):
|
|
chan = Image.fromarray(arr[:, :, i])
|
|
chan = chan.resize(size, filter)
|
|
arrOut[:, :, i] = np.array(chan).clip(0.0, 1.0)
|
|
# Convert linear -> sRGB
|
|
arrOut = np.where(arrOut <= 0.0031308, 12.92 * arrOut,
|
|
1.055 * arrOut ** (1.0 / 2.4) - 0.055)
|
|
arrOut = np.rint(np.clip(arrOut, 0.0, 1.0) * 255.0)
|
|
return arrOut
|
|
|
|
|
|
def open_image(screen: Screen, filename: str) -> np.ndarray:
|
|
im = Image.open(filename)
|
|
# TODO: convert to sRGB colour profile explicitly, in case it has some other
|
|
# profile already.
|
|
if im.mode != "RGB":
|
|
im = im.convert("RGB")
|
|
return srgb_to_linear(
|
|
SRGBResize(im, (screen.X_RES, screen.Y_RES), Image.LANCZOS))
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def lookahead_options(screen, lookahead, last_pixel_4bit, x):
|
|
options_4bit = np.empty((2 ** lookahead, lookahead), dtype=np.uint8)
|
|
options_rgb = np.empty((2 ** lookahead, lookahead, 3), dtype=np.float32)
|
|
for i in range(2 ** lookahead):
|
|
output_pixel_4bit = last_pixel_4bit
|
|
for j in range(lookahead):
|
|
xx = x + j
|
|
palette_choices_4bit, palette_choices_rgb = \
|
|
screen.pixel_palette_options(output_pixel_4bit, xx)
|
|
output_pixel_4bit = palette_choices_4bit[(i & (1 << j)) >> j]
|
|
output_pixel_rgb = np.array(
|
|
palette_choices_rgb[(i & (1 << j)) >> j])
|
|
# XXX copy
|
|
options_4bit[i, j] = output_pixel_4bit
|
|
options_rgb[i, j, :] = np.copy(output_pixel_rgb)
|
|
|
|
return options_4bit, options_rgb
|
|
|
|
|
|
def dither_lookahead(
|
|
screen: Screen, image_rgb: np.ndarray, dither: Dither, differ:
|
|
ColourDistance, x, y, last_pixel_4bit, lookahead
|
|
) -> Tuple[np.ndarray, np.ndarray]:
|
|
el, er, xl, xr = dither.x_dither_bounds(screen, x)
|
|
|
|
# X coord value of larger of dither bounding box or lookahead horizon
|
|
xxr = min(max(x + lookahead, xr), screen.X_RES)
|
|
|
|
# copies of input pixels so we can dither in bulk
|
|
# Leave enough space so we can dither the last of our lookahead pixels
|
|
lah_image_rgb = np.zeros(
|
|
(2 ** lookahead, lookahead + xr - xl, 3), dtype=np.float32)
|
|
lah_image_rgb[:, 0:xxr - x, :] = np.copy(image_rgb[y, x:xxr, :])
|
|
|
|
options_4bit, options_rgb = lookahead_options(
|
|
screen, lookahead, last_pixel_4bit, x % 4)
|
|
for i in range(xxr - x):
|
|
# options_rgb choices are fixed, but we can still distribute
|
|
# quantization error from having made these choices, in order to compute
|
|
# the total error
|
|
input_pixels = np.copy(lah_image_rgb[:, i, :])
|
|
output_pixels = options_rgb[:, i, :]
|
|
quant_error = input_pixels - output_pixels
|
|
# Don't update the input at position x (since we've already chosen
|
|
# fixed outputs), but do propagate quantization errors to positions >x
|
|
# so we can compensate for how good/bad these choices were
|
|
# XXX vectorize
|
|
for j in range(2 ** lookahead):
|
|
# print(quant_error[j])
|
|
dither.apply_one_line(screen,
|
|
lah_image_rgb[j, :, :].reshape(1, -1, 3),
|
|
i, 0, quant_error[j])
|
|
|
|
error = differ.distance(np.clip(
|
|
lah_image_rgb[:, 0:lookahead, :], 0, 255), options_4bit)
|
|
# print(error.dtype)
|
|
# print(lah_image_lab)
|
|
# print("error=", error)
|
|
# print(error.shape)
|
|
total_error = np.sum(np.power(error, 2), axis=1)
|
|
# print("total_error=", total_error)
|
|
best = np.argmin(total_error)
|
|
# print("best=", best)
|
|
# print("best 4bit=", options_4bit[best, 0].item(), options_rgb[best, 0, :])
|
|
return options_4bit[best, 0].item(), options_rgb[best, 0, :]
|
|
|
|
|
|
def dither_image(
|
|
screen: Screen, image_rgb: np.ndarray, dither: Dither, differ:
|
|
ColourDistance, lookahead) -> Tuple[np.ndarray, np.ndarray]:
|
|
image_4bit = np.empty(
|
|
(image_rgb.shape[0], image_rgb.shape[1]), dtype=np.uint8)
|
|
|
|
# pattern = dither.PATTERN
|
|
|
|
for y in range(screen.Y_RES):
|
|
print(y)
|
|
output_pixel_4bit = np.uint8(0)
|
|
for x in range(screen.X_RES):
|
|
# for x in range(pattern.ORIGIN[1], pattern.ORIGIN[1] + screen.X_RES):
|
|
input_pixel_rgb = np.copy(image_rgb[y, x, :])
|
|
options_4bit, options_rgb = lookahead_options(
|
|
screen, lookahead, output_pixel_4bit, x % 4)
|
|
|
|
output_pixel_4bit, output_pixel_rgb = \
|
|
dither_apply.dither_lookahead(
|
|
screen, image_rgb, dither, differ, x, y, options_4bit,
|
|
options_rgb,
|
|
lookahead)
|
|
image_4bit[y, x] = output_pixel_4bit
|
|
image_rgb[y, x, :] = output_pixel_rgb
|
|
quant_error = input_pixel_rgb - output_pixel_rgb
|
|
dither.apply(screen, image_rgb, x, y, quant_error)
|
|
|
|
return image_4bit, image_rgb
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("input", type=str, help="Input file to process")
|
|
parser.add_argument("output", type=str, help="Output file for ")
|
|
parser.add_argument(
|
|
"--lookahead", type=int, default=4,
|
|
help=("How many pixels to look ahead to compensate for NTSC colour "
|
|
"artifacts."))
|
|
args = parser.parse_args()
|
|
|
|
# screen = DHGR140Screen()
|
|
screen = DHGR560Screen()
|
|
|
|
image = open_image(screen, args.input)
|
|
# image_rgb.show()
|
|
|
|
# dither = FloydSteinbergDither()
|
|
# dither = BuckelsDither()
|
|
dither = JarvisDither()
|
|
|
|
differ = CIE2000Distance()
|
|
|
|
output_4bit, output_rgb = dither_image(screen, image, dither, differ,
|
|
lookahead=args.lookahead)
|
|
screen.pack(output_4bit)
|
|
|
|
out_image = Image.fromarray(linear_to_srgb(output_rgb).astype(np.uint8))
|
|
outfile = os.path.join(os.path.splitext(args.output)[0] + ".png")
|
|
out_image.save(outfile, "PNG")
|
|
out_image.show(title=outfile)
|
|
# bitmap = Image.fromarray(screen.bitmap.astype('uint8') * 255)
|
|
|
|
with open(args.output, "wb") as f:
|
|
f.write(bytes(screen.main))
|
|
f.write(bytes(screen.aux))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|