mirror of
https://github.com/KrisKennaway/ii-pix.git
synced 2024-11-19 23:32:18 +00:00
613a36909c
Keep iterating until N iterations without quality improvement
249 lines
10 KiB
Python
249 lines
10 KiB
Python
"""Image converter to Apple II Double Hi-Res format."""
|
|
|
|
import argparse
|
|
import os.path
|
|
|
|
from PIL import Image
|
|
import colour
|
|
import numpy as np
|
|
from sklearn import cluster
|
|
|
|
from os import environ
|
|
environ['PYGAME_HIDE_SUPPORT_PROMPT'] = '1'
|
|
import pygame
|
|
|
|
import dither as dither_pyx
|
|
import dither_pattern
|
|
import image as image_py
|
|
import palette as palette_py
|
|
import screen as screen_py
|
|
|
|
|
|
# TODO:
|
|
# - support LR/DLR
|
|
# - support HGR
|
|
|
|
class ClusterPalette:
|
|
def __init__(self, image: Image):
|
|
self._colours_cam = self._image_colours_cam(image)
|
|
self._best_palette_distances = [1e9] * 16
|
|
self._palettes_cam = np.empty((16, 16, 3), dtype=np.float32)
|
|
self._palettes_rgb = np.empty((16, 16, 3), dtype=np.float32)
|
|
|
|
def _image_colours_cam(self, image: Image):
|
|
colours_rgb = np.asarray(image).reshape((-1, 3))
|
|
with colour.utilities.suppress_warnings(colour_usage_warnings=True):
|
|
colours_cam = colour.convert(colours_rgb, "RGB",
|
|
"CAM16UCS").astype(np.float32)
|
|
return colours_cam
|
|
|
|
def _fit_global_palette(self):
|
|
"""Compute a 16-colour palette for the entire image to use as
|
|
starting point for the sub-palettes. This should help when the image
|
|
has large blocks of colour since the sub-palettes will tend to pick the
|
|
same colours."""
|
|
clusters = cluster.MiniBatchKMeans(n_clusters=16, max_iter=10000)
|
|
clusters.fit_predict(self._colours_cam)
|
|
return clusters.cluster_centers_
|
|
|
|
def iterate(self):
|
|
self._global_palette = self._fit_global_palette()
|
|
for palette_idx in range(16):
|
|
palette_band_width = 3
|
|
p_lower = max(palette_idx + 0.5 - (palette_band_width / 2), 0)
|
|
p_upper = min(palette_idx + 0.5 + (palette_band_width / 2), 16)
|
|
# TODO: dynamically tune palette cuts
|
|
palette_pixels = self._colours_cam[
|
|
int(p_lower * (200 / 16)) * 320:int(p_upper * (
|
|
200 / 16)) * 320, :]
|
|
|
|
# TODO: clustering should be aware of the fact that we will
|
|
# down-quantize to a 4-bit RGB value afterwards. i.e. we should
|
|
# not pick multiple centroids that will quantize to the same RGB
|
|
# value since we'll "waste" a palette entry. This doesn't seem to
|
|
# be a major issue in practise though, and fixing it would require
|
|
# implementing our own (optimized) k-means.
|
|
best_wce = self._best_palette_distances[palette_idx]
|
|
# TODO: tune tolerance
|
|
clusters = cluster.MiniBatchKMeans(
|
|
n_clusters=16, max_iter=10000, init=self._global_palette,
|
|
n_init=1)
|
|
clusters.fit_predict(palette_pixels)
|
|
if clusters.inertia_ < best_wce:
|
|
self._palettes_cam[palette_idx, :, :] = np.array(
|
|
clusters.cluster_centers_).astype(np.float32)
|
|
best_wce = clusters.inertia_
|
|
self._best_palette_distances[palette_idx] = best_wce
|
|
|
|
# Suppress divide by zero warning,
|
|
# https://github.com/colour-science/colour/issues/900
|
|
with colour.utilities.suppress_warnings(python_warnings=True):
|
|
palette_rgb = colour.convert(
|
|
self._palettes_cam[palette_idx], "CAM16UCS", "RGB")
|
|
# SHR colour palette only uses 4-bit values
|
|
palette_rgb = np.round(palette_rgb * 15) / 15
|
|
self._palettes_rgb[palette_idx, :, :] = palette_rgb.astype(
|
|
np.float32)
|
|
|
|
return self._palettes_cam, self._palettes_rgb
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("input", type=str, help="Input image file to process.")
|
|
parser.add_argument("output", type=str, help="Output file for converted "
|
|
"Apple II image.")
|
|
parser.add_argument(
|
|
"--lookahead", type=int, default=8,
|
|
help=("How many pixels to look ahead to compensate for NTSC colour "
|
|
"artifacts (default: 8)"))
|
|
parser.add_argument(
|
|
'--dither', type=str, choices=list(dither_pattern.PATTERNS.keys()),
|
|
default=dither_pattern.DEFAULT_PATTERN,
|
|
help="Error distribution pattern to apply when dithering (default: "
|
|
+ dither_pattern.DEFAULT_PATTERN + ")")
|
|
parser.add_argument(
|
|
'--show-input', action=argparse.BooleanOptionalAction, default=False,
|
|
help="Whether to show the input image before conversion.")
|
|
parser.add_argument(
|
|
'--show-output', action=argparse.BooleanOptionalAction, default=True,
|
|
help="Whether to show the output image after conversion.")
|
|
parser.add_argument(
|
|
'--palette', type=str, choices=list(set(palette_py.PALETTES.keys())),
|
|
default=palette_py.DEFAULT_PALETTE,
|
|
help='RGB colour palette to dither to. "ntsc" blends colours over 8 '
|
|
'pixels and gives better image quality on targets that '
|
|
'use/emulate NTSC, but can be substantially slower. Other '
|
|
'palettes determine colours based on 4 pixel sequences '
|
|
'(default: ' + palette_py.DEFAULT_PALETTE + ")")
|
|
parser.add_argument(
|
|
'--show-palette', type=str, choices=list(palette_py.PALETTES.keys()),
|
|
help="RGB colour palette to use when --show_output (default: "
|
|
"value of --palette)")
|
|
parser.add_argument(
|
|
'--verbose', action=argparse.BooleanOptionalAction,
|
|
default=False, help="Show progress during conversion")
|
|
parser.add_argument(
|
|
'--gamma_correct', type=float, default=2.4,
|
|
help='Gamma-correct image by this value (default: 2.4)'
|
|
)
|
|
args = parser.parse_args()
|
|
if args.lookahead < 1:
|
|
parser.error('--lookahead must be at least 1')
|
|
|
|
# palette = palette_py.PALETTES[args.palette]()
|
|
screen = screen_py.SHR320Screen()
|
|
|
|
# Conversion matrix from RGB to CAM16UCS colour values. Indexed by
|
|
# 24-bit RGB value
|
|
rgb_to_cam16 = np.load("data/rgb_to_cam16ucs.npy")
|
|
|
|
# Open and resize source image
|
|
image = image_py.open(args.input)
|
|
if args.show_input:
|
|
image_py.resize(image, screen.X_RES, screen.Y_RES,
|
|
srgb_output=False).show()
|
|
rgb = np.array(
|
|
image_py.resize(image, screen.X_RES, screen.Y_RES,
|
|
gamma=args.gamma_correct)).astype(np.float32) / 255
|
|
|
|
iigs_palette = np.empty((16, 16, 3), dtype=np.uint8)
|
|
|
|
# TODO: flags
|
|
penalty = 1e9
|
|
iterations = 50
|
|
|
|
pygame.init()
|
|
# TODO: for some reason I need to execute this twice - the first time
|
|
# the window is created and immediately destroyed
|
|
_ = pygame.display.set_mode((640, 400))
|
|
canvas = pygame.display.set_mode((640, 400))
|
|
canvas.fill((0, 0, 0))
|
|
pygame.display.flip()
|
|
|
|
total_image_error = 1e9
|
|
cluster_palette = ClusterPalette(rgb)
|
|
iterations_since_improvement = 0
|
|
while iterations_since_improvement < iterations:
|
|
# TODO: clean this up - e.g. pass in an acceptance lambda to iterate()
|
|
old_best_palette_distances = cluster_palette._best_palette_distances
|
|
old_palettes_cam = cluster_palette._palettes_cam
|
|
old_palettes_rgb = cluster_palette._palettes_rgb
|
|
|
|
new_palettes_cam, new_palettes_rgb = cluster_palette.iterate()
|
|
output_4bit, line_to_palette, new_total_image_error = \
|
|
dither_pyx.dither_shr(
|
|
rgb, new_palettes_cam, new_palettes_rgb, rgb_to_cam16,
|
|
float(penalty)
|
|
)
|
|
|
|
if new_total_image_error < total_image_error:
|
|
if total_image_error < 1e9:
|
|
print("Improved quality +%f%% (%f)" % (
|
|
(1 - new_total_image_error / total_image_error) * 100,
|
|
new_total_image_error))
|
|
total_image_error = new_total_image_error
|
|
palettes_rgb = new_palettes_rgb
|
|
iterations_since_improvement = 0
|
|
else:
|
|
cluster_palette._palettes_cam = old_palettes_cam
|
|
cluster_palette._palettes_rgb = old_palettes_rgb
|
|
cluster_palette._best_palette_distances = old_best_palette_distances
|
|
iterations_since_improvement += 1
|
|
continue
|
|
|
|
for i in range(16):
|
|
iigs_palette[i, :, :] = (
|
|
np.round(image_py.linear_to_srgb(
|
|
palettes_rgb[i, :, :] * 255) / 255 * 15)).astype(np.uint8)
|
|
screen.set_palette(i, iigs_palette[i, :, :])
|
|
|
|
screen.set_pixels(output_4bit)
|
|
output_rgb = np.empty((200, 320, 3), dtype=np.uint8)
|
|
for i in range(200):
|
|
screen.line_palette[i] = line_to_palette[i]
|
|
output_rgb[i, :, :] = (
|
|
palettes_rgb[line_to_palette[i]][
|
|
output_4bit[i, :]] * 255).astype(np.uint8)
|
|
output_srgb = image_py.linear_to_srgb(output_rgb).astype(np.uint8)
|
|
|
|
# dither = dither_pattern.PATTERNS[args.dither]()
|
|
# bitmap = dither_pyx.dither_image(
|
|
# screen, rgb, dither, args.lookahead, args.verbose, rgb_to_cam16)
|
|
|
|
# Show output image by rendering in target palette
|
|
# output_palette_name = args.show_palette or args.palette
|
|
# output_palette = palette_py.PALETTES[output_palette_name]()
|
|
# output_screen = screen_py.DHGRScreen(output_palette)
|
|
# if output_palette_name == "ntsc":
|
|
# output_srgb = output_screen.bitmap_to_image_ntsc(bitmap)
|
|
# else:
|
|
# output_srgb = image_py.linear_to_srgb(
|
|
# output_screen.bitmap_to_image_rgb(bitmap)).astype(np.uint8)
|
|
out_image = image_py.resize(
|
|
Image.fromarray(output_srgb), screen.X_RES * 2, screen.Y_RES * 2,
|
|
srgb_output=True)
|
|
|
|
if args.show_output:
|
|
surface = pygame.surfarray.make_surface(np.asarray(
|
|
out_image).transpose((1, 0, 2)))
|
|
canvas.blit(surface, (0, 0))
|
|
pygame.display.flip()
|
|
|
|
unique_colours = np.unique(iigs_palette.reshape(-1, 3), axis=0).shape[0]
|
|
print("%d unique colours" % unique_colours)
|
|
|
|
# Save Double hi-res image
|
|
outfile = os.path.join(os.path.splitext(args.output)[0] + "-preview.png")
|
|
out_image.save(outfile, "PNG")
|
|
screen.pack()
|
|
# with open(args.output, "wb") as f:
|
|
# f.write(bytes(screen.aux))
|
|
# f.write(bytes(screen.main))
|
|
with open(args.output, "wb") as f:
|
|
f.write(bytes(screen.memory))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|