mirror of
https://github.com/KrisKennaway/ii-pix.git
synced 2024-11-19 08:30:48 +00:00
447 lines
16 KiB
Python
447 lines
16 KiB
Python
import argparse
|
|
import functools
|
|
from typing import Tuple
|
|
|
|
from PIL import Image
|
|
import colormath.color_conversions
|
|
import colormath.color_diff
|
|
import colormath.color_objects
|
|
import numpy as np
|
|
|
|
|
|
# TODO:
|
|
# - switch to colours library
|
|
# - only lookahead for 560px
|
|
# - vectorize colour differences
|
|
# - palette class
|
|
# - compare to bmp2dhr and a2bestpix
|
|
|
|
def srgb_to_linear_array(a: np.ndarray, gamma=2.4) -> np.ndarray:
|
|
return np.where(a <= 0.04045, a / 12.92, ((a + 0.055) / 1.055) ** gamma)
|
|
|
|
|
|
def linear_to_srgb_array(a: np.ndarray, gamma=2.4) -> np.ndarray:
|
|
return np.where(a <= 0.0031308, a * 12.92, 1.055 * a ** (1.0 / gamma) -
|
|
0.055)
|
|
|
|
|
|
# XXX work uniformly with 255 or 1.0 range
|
|
def srgb_to_linear(im: np.ndarray) -> np.ndarray:
|
|
rgb_linear = srgb_to_linear_array(im / 255.0, gamma=2.4)
|
|
return (np.clip(rgb_linear, 0.0, 1.0) * 255).astype(np.float32)
|
|
|
|
|
|
def linear_to_srgb(im: np.ndarray) -> np.ndarray:
|
|
srgb = linear_to_srgb_array(im / 255.0, gamma=2.4)
|
|
return (np.clip(srgb, 0.0, 1.0) * 255).astype(np.float32)
|
|
|
|
|
|
# Default bmp2dhr palette
|
|
RGB = {
|
|
(False, False, False, False): np.array((0, 0, 0)), # Black
|
|
(False, False, False, True): np.array((148, 12, 125)), # Magenta
|
|
(False, False, True, False): np.array((99, 77, 0)), # Brown
|
|
(False, False, True, True): np.array((249, 86, 29)), # Orange
|
|
(False, True, False, False): np.array((51, 111, 0)), # Dark green
|
|
# XXX RGB values are used as keys in DOTS dict, need to be unique
|
|
(False, True, False, True): np.array((126, 126, 125)), # Grey1
|
|
(False, True, True, False): np.array((67, 200, 0)), # Green
|
|
(False, True, True, True): np.array((221, 206, 23)), # Yellow
|
|
(True, False, False, False): np.array((32, 54, 212)), # Dark blue
|
|
(True, False, False, True): np.array((188, 55, 255)), # Violet
|
|
(True, False, True, False): np.array((126, 126, 126)), # Grey2
|
|
(True, False, True, True): np.array((255, 129, 236)), # Pink
|
|
(True, True, False, False): np.array((7, 168, 225)), # Med blue
|
|
(True, True, False, True): np.array((158, 172, 255)), # Light blue
|
|
(True, True, True, False): np.array((93, 248, 133)), # Aqua
|
|
(True, True, True, True): np.array((255, 255, 255)), # White
|
|
}
|
|
|
|
# OpenEmulator
|
|
sRGB = {
|
|
(False, False, False, False): np.array((0, 0, 0)), # Black
|
|
(False, False, False, True): np.array((206, 0, 123)), # Magenta
|
|
(False, False, True, False): np.array((100, 105, 0)), # Brown
|
|
(False, False, True, True): np.array((247, 79, 0)), # Orange
|
|
(False, True, False, False): np.array((0, 153, 0)), # Dark green
|
|
# XXX RGB values are used as keys in DOTS dict, need to be unique
|
|
(False, True, False, True): np.array((131, 132, 132)), # Grey1
|
|
(False, True, True, False): np.array((0, 242, 0)), # Green
|
|
(False, True, True, True): np.array((216, 220, 0)), # Yellow
|
|
(True, False, False, False): np.array((21, 0, 248)), # Dark blue
|
|
(True, False, False, True): np.array((235, 0, 242)), # Violet
|
|
(True, False, True, False): np.array((140, 140, 140)), # Grey2 # XXX
|
|
(True, False, True, True): np.array((244, 104, 240)), # Pink
|
|
(True, True, False, False): np.array((0, 181, 248)), # Med blue
|
|
(True, True, False, True): np.array((160, 156, 249)), # Light blue
|
|
(True, True, True, False): np.array((21, 241, 132)), # Aqua
|
|
(True, True, True, True): np.array((244, 247, 244)), # White
|
|
}
|
|
|
|
# # Virtual II (sRGB)
|
|
# sRGB = {
|
|
# (False, False, False, False): np.array((0, 0, 0)), # Black
|
|
# (False, False, False, True): np.array((231,36,66)), # Magenta
|
|
# (False, False, True, False): np.array((154,104,0)), # Brown
|
|
# (False, False, True, True): np.array((255,124,0)), # Orange
|
|
# (False, True, False, False): np.array((0,135,45)), # Dark green
|
|
# (False, True, False, True): np.array((104,104,104)), # Grey2 XXX
|
|
# (False, True, True, False): np.array((0,222,0)), # Green
|
|
# (False, True, True, True): np.array((255,252,0)), # Yellow
|
|
# (True, False, False, False): np.array((1,30,169)), # Dark blue
|
|
# (True, False, False, True): np.array((230,73,228)), # Violet
|
|
# (True, False, True, False): np.array((185,185,185)), # Grey1 XXX
|
|
# (True, False, True, True): np.array((255,171,153)), # Pink
|
|
# (True, True, False, False): np.array((47,69,255)), # Med blue
|
|
# (True, True, False, True): np.array((120,187,255)), # Light blue
|
|
# (True, True, True, False): np.array((83,250,208)), # Aqua
|
|
# (True, True, True, True): np.array((255, 255, 255)), # White
|
|
# }
|
|
RGB = {}
|
|
for k, v in sRGB.items():
|
|
RGB[k] = (np.clip(srgb_to_linear_array(v / 255), 0.0, 1.0) * 255).astype(
|
|
np.uint8)
|
|
|
|
DOTS = {}
|
|
for k, v in RGB.items():
|
|
DOTS[tuple(v)] = k
|
|
|
|
|
|
class ColourDistance:
|
|
@staticmethod
|
|
def distance(self, rgb1: np.ndarray, rgb2: np.ndarray) -> float:
|
|
raise NotImplementedError
|
|
|
|
|
|
class RGBDistance(ColourDistance):
|
|
"""Euclidean squared distance in RGB colour space."""
|
|
|
|
@staticmethod
|
|
def distance(self, rgb1: np.ndarray, rgb2: np.ndarray) -> float:
|
|
return float(np.asscalar(np.sum(np.power(np.array(rgb1) - np.array(
|
|
rgb2), 2))))
|
|
|
|
|
|
class CIE2000Distance(ColourDistance):
|
|
"""CIE2000 delta-E distance."""
|
|
|
|
@staticmethod
|
|
def _to_lab(rgb: Tuple[float]):
|
|
srgb = np.clip(
|
|
linear_to_srgb_array(np.array(rgb, dtype=np.float32) / 255), 0.0,
|
|
1.0)
|
|
srgb_color = colormath.color_objects.sRGBColor(*tuple(srgb),
|
|
is_upscaled=False)
|
|
lab = colormath.color_conversions.convert_color(
|
|
srgb_color, colormath.color_objects.LabColor)
|
|
return lab
|
|
|
|
def distance(self, rgb1: np.ndarray, rgb2: np.ndarray) -> float:
|
|
lab1 = self._to_lab(tuple(rgb1))
|
|
lab2 = self._to_lab(tuple(rgb2))
|
|
return colormath.color_diff.delta_e_cie2000(lab1, lab2)
|
|
|
|
|
|
class CCIR601Distance(ColourDistance):
|
|
@staticmethod
|
|
def _to_luma(rgb: np.ndarray):
|
|
return rgb[0] * 0.299 + rgb[1] * 0.587 + rgb[2] * 0.114
|
|
|
|
def distance(self, rgb1: np.ndarray, rgb2: np.ndarray) -> float:
|
|
delta_rgb = ((rgb1[0] - rgb2[0]) / 255, (rgb1[1] - rgb2[1]) / 255,
|
|
(rgb1[2] - rgb2[2]) / 255)
|
|
luma_diff = (self._to_luma(rgb1) - self._to_luma(rgb2)) / 255
|
|
|
|
# TODO: this is the formula bmp2dhr uses but what motivates it?
|
|
return (
|
|
delta_rgb[0] * delta_rgb[0] * 0.299 +
|
|
delta_rgb[1] * delta_rgb[1] * 0.587 +
|
|
delta_rgb[2] * delta_rgb[2] * 0.114) * 0.75 + (
|
|
luma_diff * luma_diff)
|
|
|
|
|
|
class Screen:
|
|
X_RES = None
|
|
Y_RES = None
|
|
X_PIXEL_WIDTH = None
|
|
|
|
def __init__(self):
|
|
self.main = np.zeros(8192, dtype=np.uint8)
|
|
self.aux = np.zeros(8192, dtype=np.uint8)
|
|
|
|
@staticmethod
|
|
def y_to_base_addr(y: int) -> int:
|
|
"""Maps y coordinate to screen memory base address."""
|
|
a = y // 64
|
|
d = y - 64 * a
|
|
b = d // 8
|
|
c = d - 8 * b
|
|
|
|
return 1024 * c + 128 * b + 40 * a
|
|
|
|
def _image_to_bitmap(self, image: np.ndarray) -> np.ndarray:
|
|
raise NotImplementedError
|
|
|
|
def pack(self, image: np.ndarray):
|
|
bitmap = self._image_to_bitmap(image)
|
|
# The DHGR display encodes 7 pixels across interleaved 4-byte sequences
|
|
# of AUX and MAIN memory, as follows:
|
|
# PBBBAAAA PDDCCCCB PFEEEEDD PGGGGFFF
|
|
# Aux N Main N Aux N+1 Main N+1 (N even)
|
|
main_col = np.zeros(
|
|
(self.Y_RES, self.X_RES * self.X_PIXEL_WIDTH // 14), dtype=np.uint8)
|
|
aux_col = np.zeros(
|
|
(self.Y_RES, self.X_RES * self.X_PIXEL_WIDTH // 14), dtype=np.uint8)
|
|
for byte_offset in range(80):
|
|
column = np.zeros(self.Y_RES, dtype=np.uint8)
|
|
for bit in range(7):
|
|
column |= (bitmap[:, 7 * byte_offset + bit].astype(
|
|
np.uint8) << bit)
|
|
if byte_offset % 2 == 0:
|
|
aux_col[:, byte_offset // 2] = column
|
|
else:
|
|
main_col[:, (byte_offset - 1) // 2] = column
|
|
|
|
for y in range(self.Y_RES):
|
|
addr = self.y_to_base_addr(y)
|
|
self.aux[addr:addr + 40] = aux_col[y, :]
|
|
self.main[addr:addr + 40] = main_col[y, :]
|
|
|
|
@staticmethod
|
|
def pixel_palette_options(last_pixel, x: int):
|
|
raise NotImplementedError
|
|
|
|
@staticmethod
|
|
def find_closest_color(pixel, palette_options, differ: ColourDistance):
|
|
least_diff = 1e9
|
|
best_colour = None
|
|
|
|
for v in palette_options:
|
|
diff = differ.distance(tuple(v), pixel)
|
|
if diff < least_diff:
|
|
least_diff = diff
|
|
best_colour = v
|
|
return best_colour
|
|
|
|
|
|
class DHGR140Screen(Screen):
|
|
"""DHGR screen ignoring colour fringing, i.e. treating as 140x192x16."""
|
|
|
|
X_RES = 140
|
|
Y_RES = 192
|
|
X_PIXEL_WIDTH = 4
|
|
|
|
def _image_to_bitmap(self, image: np.ndarray) -> np.ndarray:
|
|
bitmap = np.zeros(
|
|
(self.Y_RES, self.X_RES * self.X_PIXEL_WIDTH), dtype=np.bool)
|
|
for y in range(self.Y_RES):
|
|
for x in range(self.X_RES):
|
|
pixel = image[y, x]
|
|
dots = DOTS[pixel]
|
|
bitmap[y, x * self.X_PIXEL_WIDTH:(
|
|
(x + 1) * self.X_PIXEL_WIDTH)] = dots
|
|
return bitmap
|
|
|
|
@staticmethod
|
|
def pixel_palette_options(last_pixel, x: int):
|
|
return RGB.values()
|
|
|
|
|
|
class DHGR560Screen(Screen):
|
|
"""DHGR screen including colour fringing."""
|
|
X_RES = 560
|
|
Y_RES = 192
|
|
X_PIXEL_WIDTH = 1
|
|
|
|
def _image_to_bitmap(self, image: np.ndarray) -> np.ndarray:
|
|
bitmap = np.zeros((self.Y_RES, self.X_RES), dtype=np.bool)
|
|
for y in range(self.Y_RES):
|
|
for x in range(self.X_RES):
|
|
pixel = image[y, x]
|
|
dots = DOTS[tuple(pixel)]
|
|
phase = x % 4
|
|
bitmap[y, x] = dots[phase]
|
|
return bitmap
|
|
|
|
def pixel_palette_options(self, last_pixel, x: int):
|
|
last_dots = DOTS[tuple(last_pixel)]
|
|
other_dots = list(last_dots)
|
|
other_dots[x % 4] = not other_dots[x % 4]
|
|
other_dots = tuple(other_dots)
|
|
return RGB[last_dots], RGB[other_dots]
|
|
|
|
|
|
class Dither:
|
|
PATTERN = None
|
|
ORIGIN = None
|
|
|
|
def apply(self, screen: Screen, image: np.ndarray, x: int, y: int,
|
|
quant_error: np.ndarray):
|
|
pshape = self.PATTERN.shape
|
|
error = self.PATTERN.reshape(
|
|
(pshape[0], pshape[1], 1)) * quant_error.reshape((1, 1,
|
|
3))
|
|
# print(quant_error)
|
|
et = max(self.ORIGIN[0] - y, 0)
|
|
eb = min(pshape[0], screen.Y_RES - 1 - y)
|
|
el = max(self.ORIGIN[1] - x, 0)
|
|
er = min(pshape[1], screen.X_RES - 1 - x)
|
|
# print(x, et, eb, el, er)
|
|
|
|
yt = y - self.ORIGIN[0] + et
|
|
yb = y - self.ORIGIN[0] + eb
|
|
xl = x - self.ORIGIN[1] + el
|
|
xr = x - self.ORIGIN[1] + er
|
|
image[yt:yb, xl:xr, :] = np.clip(
|
|
image[yt:yb, xl:xr, :] + error[et:eb, el:er, :], 0, 255)
|
|
|
|
|
|
class FloydSteinbergDither(Dither):
|
|
# 0 * 7
|
|
# 3 5 1
|
|
PATTERN = np.array(((0, 0, 7), (3, 5, 1))) / 16
|
|
ORIGIN = (0, 1)
|
|
|
|
|
|
class BuckelsDither(Dither):
|
|
# 0 * 2 1
|
|
# 1 2 1 0
|
|
# 0 1 0 0
|
|
PATTERN = np.array(((0, 0, 2, 1), (1, 2, 1, 0), (0, 1, 0, 0))) / 8
|
|
ORIGIN = (0, 1)
|
|
|
|
|
|
class JarvisDither(Dither):
|
|
# 0 0 X 7 5
|
|
# 3 5 7 5 3
|
|
# 1 3 5 3 1
|
|
PATTERN = np.array(((0, 0, 0, 7, 5), (3, 5, 7, 5, 3), (1, 3, 5, 3, 1))) / 48
|
|
ORIGIN = (0, 2)
|
|
|
|
|
|
# XXX needed?
|
|
def SRGBResize(im, size, filter) -> np.ndarray:
|
|
# Convert to numpy array of float
|
|
arr = np.array(im, dtype=np.float32) / 255.0
|
|
# Convert sRGB -> linear
|
|
arr = np.where(arr <= 0.04045, arr / 12.92, ((arr + 0.055) / 1.055) ** 2.4)
|
|
# Resize using PIL
|
|
arrOut = np.zeros((size[1], size[0], arr.shape[2]))
|
|
for i in range(arr.shape[2]):
|
|
chan = Image.fromarray(arr[:, :, i])
|
|
chan = chan.resize(size, filter)
|
|
arrOut[:, :, i] = np.array(chan).clip(0.0, 1.0)
|
|
# Convert linear -> sRGB
|
|
arrOut = np.where(arrOut <= 0.0031308, 12.92 * arrOut,
|
|
1.055 * arrOut ** (1.0 / 2.4) - 0.055)
|
|
arrOut = np.rint(np.clip(arrOut, 0.0, 1.0) * 255.0)
|
|
return arrOut
|
|
|
|
|
|
def open_image(screen: Screen, filename: str) -> np.ndarray:
|
|
im = Image.open(filename)
|
|
# TODO: convert to sRGB colour profile explicitly, in case it has some other
|
|
# profile already.
|
|
if im.mode != "RGB":
|
|
im = im.convert("RGB")
|
|
return srgb_to_linear(
|
|
SRGBResize(im, (screen.X_RES, screen.Y_RES),
|
|
Image.LANCZOS))
|
|
|
|
|
|
# XXX
|
|
def dither_one_pixel(screen: Screen, differ: ColourDistance,
|
|
input_pixel, last_pixel, x) -> Tuple[int]:
|
|
palette_choices = screen.pixel_palette_options(last_pixel, x)
|
|
return screen.find_closest_color(input_pixel, palette_choices,
|
|
differ)
|
|
|
|
|
|
def dither_lookahead(
|
|
screen: Screen, image: np.ndarray, dither: Dither, differ:
|
|
ColourDistance,
|
|
x, y, last_pixel, lookahead
|
|
) -> Image:
|
|
best_error = 1e9
|
|
best_pixel = None
|
|
for i in range(2 ** lookahead):
|
|
temp_image = np.empty_like(image)
|
|
# XXX
|
|
temp_image[y:y + 3, :, :] = image[y:y + 3, :, :]
|
|
output_pixel = last_pixel
|
|
total_error = 0.0
|
|
choices = []
|
|
inputs = []
|
|
for j in range(min(lookahead, screen.X_RES - x)):
|
|
xx = x + j
|
|
input_pixel = temp_image[y, xx, :]
|
|
palette_choices = screen.pixel_palette_options(output_pixel, xx)
|
|
output_pixel = np.array(palette_choices[(i & (1 << j)) >> j])
|
|
inputs.append(input_pixel)
|
|
choices.append(output_pixel)
|
|
# output_pixel = dither_one_pixel(screen, differ,
|
|
# input_pixel, output_pixel, xx)
|
|
quant_error = input_pixel - output_pixel
|
|
# TODO: try squared error
|
|
total_error += differ.distance(input_pixel, output_pixel)
|
|
dither.apply(screen, temp_image, xx, y, quant_error)
|
|
# print(bin(i), total_error, inputs, choices)
|
|
if total_error < best_error:
|
|
best_error = total_error
|
|
best_pixel = choices[0]
|
|
# print(best_error, best_pixel)
|
|
return best_pixel
|
|
|
|
|
|
def dither_image(
|
|
screen: Screen, image: np.ndarray, dither: Dither, differ:
|
|
ColourDistance, lookahead) -> np.ndarray:
|
|
for y in range(screen.Y_RES):
|
|
print(y)
|
|
output_pixel = (0, 0, 0)
|
|
for x in range(screen.X_RES):
|
|
# print(x)
|
|
input_pixel = image[y, x, :]
|
|
output_pixel = dither_lookahead(screen, image, dither, differ, x,
|
|
y, output_pixel, lookahead)
|
|
# output_pixel = dither_one_pixel(screen, differ, input_pixel,
|
|
# output_pixel, x)
|
|
quant_error = input_pixel - output_pixel
|
|
image[y, x, :] = output_pixel
|
|
dither.apply(screen, image, x, y, quant_error)
|
|
return image
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("input", type=str, help="Input file to process")
|
|
parser.add_argument("output", type=str, help="Output file for ")
|
|
# screen = DHGR140Screen()
|
|
screen = DHGR560Screen()
|
|
|
|
args = parser.parse_args()
|
|
image = open_image(screen, args.input)
|
|
# image.show()
|
|
|
|
# dither = FloydSteinbergDither()
|
|
# dither = BuckelsDither()
|
|
dither = JarvisDither()
|
|
|
|
differ = CIE2000Distance()
|
|
# differ = CCIR601Distance()
|
|
|
|
output = dither_image(screen, image, dither, differ, lookahead=1)
|
|
screen.pack(output)
|
|
|
|
out_image = Image.fromarray(linear_to_srgb(output).astype(np.uint8))
|
|
out_image.show()
|
|
# bitmap = Image.fromarray(screen.bitmap.astype('uint8') * 255)
|
|
|
|
with open(args.output, "wb") as f:
|
|
f.write(bytes(screen.main))
|
|
f.write(bytes(screen.aux))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|