ii-pix/convert.py
2021-11-17 22:55:47 +00:00

366 lines
16 KiB
Python

"""Image converter to Apple II Double Hi-Res format."""
import argparse
import os.path
from typing import Tuple, List
from PIL import Image
import colour
import numpy as np
from sklearn import cluster
from os import environ
environ['PYGAME_HIDE_SUPPORT_PROMPT'] = '1'
import pygame
import dither as dither_pyx
import dither_pattern
import image as image_py
import palette as palette_py
import screen as screen_py
# TODO:
# - support LR/DLR
# - support HGR
class ClusterPalette:
def __init__(
self, image: Image, rgb12_iigs_to_cam16ucs, reserved_colours=0):
self._colours_cam = self._image_colours_cam(image)
self._reserved_colours = reserved_colours
self._errors = [1e9] * 16
self._palettes_cam = np.empty((16, 16, 3), dtype=np.float32)
self._palettes_rgb = np.empty((16, 16, 3), dtype=np.uint8)
self._global_palette = np.empty((16, 16, 3), dtype=np.float32)
self._rgb12_iigs_to_cam16ucs = rgb12_iigs_to_cam16ucs
def _image_colours_cam(self, image: Image):
colours_rgb = np.asarray(image).reshape((-1, 3))
with colour.utilities.suppress_warnings(colour_usage_warnings=True):
colours_cam = colour.convert(colours_rgb, "RGB",
"CAM16UCS").astype(np.float32)
return colours_cam
def _fit_global_palette(self):
"""Compute a 16-colour palette for the entire image to use as
starting point for the sub-palettes. This should help when the image
has large blocks of colour since the sub-palettes will tend to pick the
same colours."""
clusters = cluster.MiniBatchKMeans(n_clusters=16, max_iter=10000)
clusters.fit_predict(self._colours_cam)
labels = clusters.labels_
frequency_order = [
k for k, v in sorted(
# List of (palette idx, frequency count)
list(zip(*np.unique(labels, return_counts=True))),
key=lambda kv: kv[1], reverse=True)]
res = np.empty((16, 3), dtype=np.uint8)
for i in range(16):
res[i, :] = dither_pyx.convert_cam16ucs_to_rgb12_iigs(
clusters.cluster_centers_[frequency_order][i].astype(
np.float32))
return res
def propose_palettes(self) -> Tuple[np.ndarray, np.ndarray, List[float]]:
"""Attempt to find new palettes that locally improve image quality.
Re-fit a set of 16 palettes from (overlapping) line ranges of the
source image, using k-means clustering in CAM16-UCS colour space.
We maintain the total image error for the pixels on which the 16
palettes are clustered. A new palette that increases this local
image error is rejected.
New palettes that reduce local error cannot be applied immediately
though, because they may cause an increase in *global* image error
when dithering. i.e. they would reduce the overall image quality.
The current (locally) best palettes are returned and can be applied
using accept_palettes().
"""
new_errors = list(self._errors)
new_palettes_cam = np.copy(self._palettes_cam)
new_palettes_rgb12_iigs = np.copy(self._palettes_rgb)
# Compute a new 16-colour global palette for the entire image,
# used as the starting center positions for k-means clustering of the
# individual palettes
self._global_palette = self._fit_global_palette()
dynamic_colours = 16 - self._reserved_colours
# The 16 palettes are striped across consecutive (overlapping) line
# ranges. The basic unit is 200/16 = 12.5 lines, but we extend the
# line range to cover a multiple of this so that the palette ranges
# overlap. Since nearby lines tend to have similar colours, this has
# the effect of smoothing out the colour transitions across palettes.
palette_band_width = 3
for palette_idx in range(16):
p_lower = max(palette_idx + 0.5 - (palette_band_width / 2), 0)
p_upper = min(palette_idx + 0.5 + (palette_band_width / 2), 16)
# TODO: dynamically tune palette cuts
palette_pixels = self._colours_cam[
int(p_lower * (200 / 16)) * 320:int(p_upper * (
200 / 16)) * 320, :]
# TODO: clustering should be aware of the fact that we will
# quantize to a 4-bit RGB value afterwards. i.e. we should
# not pick multiple centroids that will quantize to the same RGB
# value since we'll "waste" a palette entry. This doesn't seem to
# be a major issue in practise though, and fixing it would require
# implementing our own (optimized) k-means.
# TODO: tune tolerance
# clusters = cluster.MiniBatchKMeans(
# n_clusters=16, max_iter=10000,
# init=self._global_palette,
# n_init=1)
# clusters.fit_predict(palette_pixels)
#
# palette_error = clusters.inertia_
palettes_rgb12_iigs, palette_error = \
dither_pyx.k_means_with_fixed_centroids(
n_clusters=16, n_fixed=self._reserved_colours,
samples=palette_pixels,
initial_centroids=self._global_palette,
max_iterations=1000, tolerance=0.05,
rgb12_iigs_to_cam16ucs=self._rgb12_iigs_to_cam16ucs
)
if (palette_error >= self._errors[palette_idx] and not
self._reserved_colours):
# Not a local improvement to the existing palette, so ignore it.
# We can't take this shortcut when we're reserving colours
# because it would break the invariant that all palettes must
# share colours.
continue
for i in range(16):
new_palettes_cam[palette_idx, i, :] = (
np.array(dither_pyx.convert_rgb12_iigs_to_cam(
self._rgb12_iigs_to_cam16ucs, palettes_rgb12_iigs[
i]), dtype=np.float32))
# Suppress divide by zero warning,
# https://github.com/colour-science/colour/issues/900
# with colour.utilities.suppress_warnings(python_warnings=True):
# palette_rgb = colour.convert(
# new_palettes_cam[palette_idx, :, :], "CAM16UCS", "RGB")
# palette_rgb_rec601 = np.clip(image_py.srgb_to_linear(
# colour.YCbCr_to_RGB(
# colour.RGB_to_YCbCr(
# image_py.linear_to_srgb(palette_rgb * 255) / 255,
# K=colour.WEIGHTS_YCBCR['ITU-R BT.709']),
# K=colour.WEIGHTS_YCBCR['ITU-R BT.601']) * 255) / 255, 0, 1)
# palette_rgb = np.clip(
# image_py.srgb_to_linear(
# colour.YCbCr_to_RGB(
# colour.RGB_to_YCbCr(
# image_py.linear_to_srgb(
# palette_rgb[:, :] * 255) / 255,
# K=colour.WEIGHTS_YCBCR['ITU-R BT.709']),
# K=colour.WEIGHTS_YCBCR[
# 'ITU-R BT.601']) * 255) / 255,
# 0, 1)
new_palettes_rgb12_iigs[palette_idx, :, :] = palettes_rgb12_iigs
new_errors[palette_idx] = palette_error
return new_palettes_cam, new_palettes_rgb12_iigs, new_errors
def accept_palettes(
self, new_palettes_cam: np.ndarray,
new_palettes_rgb: np.ndarray, new_errors: List[float]):
self._palettes_cam = np.copy(new_palettes_cam)
self._palettes_rgb = np.copy(new_palettes_rgb)
self._errors = list(new_errors)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("input", type=str, help="Input image file to process.")
parser.add_argument("output", type=str, help="Output file for converted "
"Apple II image.")
parser.add_argument(
"--lookahead", type=int, default=8,
help=("How many pixels to look ahead to compensate for NTSC colour "
"artifacts (default: 8)"))
parser.add_argument(
'--dither', type=str, choices=list(dither_pattern.PATTERNS.keys()),
default=dither_pattern.DEFAULT_PATTERN,
help="Error distribution pattern to apply when dithering (default: "
+ dither_pattern.DEFAULT_PATTERN + ")")
parser.add_argument(
'--show-input', action=argparse.BooleanOptionalAction, default=False,
help="Whether to show the input image before conversion.")
parser.add_argument(
'--show-output', action=argparse.BooleanOptionalAction, default=True,
help="Whether to show the output image after conversion.")
parser.add_argument(
'--palette', type=str, choices=list(set(palette_py.PALETTES.keys())),
default=palette_py.DEFAULT_PALETTE,
help='RGB colour palette to dither to. "ntsc" blends colours over 8 '
'pixels and gives better image quality on targets that '
'use/emulate NTSC, but can be substantially slower. Other '
'palettes determine colours based on 4 pixel sequences '
'(default: ' + palette_py.DEFAULT_PALETTE + ")")
parser.add_argument(
'--show-palette', type=str, choices=list(palette_py.PALETTES.keys()),
help="RGB colour palette to use when --show_output (default: "
"value of --palette)")
parser.add_argument(
'--verbose', action=argparse.BooleanOptionalAction,
default=False, help="Show progress during conversion")
parser.add_argument(
'--gamma_correct', type=float, default=2.4,
help='Gamma-correct image by this value (default: 2.4)'
)
args = parser.parse_args()
if args.lookahead < 1:
parser.error('--lookahead must be at least 1')
# palette = palette_py.PALETTES[args.palette]()
screen = screen_py.SHR320Screen()
# Conversion matrix from RGB to CAM16UCS colour values. Indexed by
# 24-bit RGB value
rgb24_to_cam16ucs = np.load("data/rgb24_to_cam16ucs.npy")
rgb12_iigs_to_cam16ucs = np.load("data/rgb12_iigs_to_cam16ucs.npy")
# Open and resize source image
image = image_py.open(args.input)
if args.show_input:
image_py.resize(image, screen.X_RES, screen.Y_RES,
srgb_output=False).show()
rgb = np.array(
image_py.resize(image, screen.X_RES, screen.Y_RES,
gamma=args.gamma_correct)).astype(np.float32) / 255
# TODO: flags
penalty = 1e9
iterations = 10 # 50
pygame.init()
# TODO: for some reason I need to execute this twice - the first time
# the window is created and immediately destroyed
_ = pygame.display.set_mode((640, 400))
canvas = pygame.display.set_mode((640, 400))
canvas.fill((0, 0, 0))
pygame.display.flip()
total_image_error = 1e9
iterations_since_improvement = 0
# palettes_iigs = np.empty((16, 16, 3), dtype=np.uint8)
cluster_palette = ClusterPalette(
rgb, reserved_colours=1, rgb12_iigs_to_cam16ucs=rgb12_iigs_to_cam16ucs)
while iterations_since_improvement < iterations:
new_palettes_cam, new_palettes_rgb12_iigs, new_palette_errors = (
cluster_palette.propose_palettes())
# Suppress divide by zero warning,
# https://github.com/colour-science/colour/issues/900
with colour.utilities.suppress_warnings(python_warnings=True):
new_palettes_linear_rgb = colour.convert(
new_palettes_cam, "CAM16UCS", "RGB").astype(np.float32)
# Recompute image with proposed palettes and check whether it has
# lower total image error than our previous best.
new_output_4bit, new_line_to_palette, new_total_image_error = \
dither_pyx.dither_shr(
rgb, new_palettes_cam, new_palettes_linear_rgb,
rgb24_to_cam16ucs, float(penalty))
if new_total_image_error >= total_image_error:
iterations_since_improvement += 1
continue
# We found a globally better set of palettes
iterations_since_improvement = 0
cluster_palette.accept_palettes(
new_palettes_cam, new_palettes_rgb12_iigs, new_palette_errors)
if total_image_error < 1e9:
print("Improved quality +%f%% (%f)" % (
(1 - new_total_image_error / total_image_error) * 100,
new_total_image_error))
output_4bit = new_output_4bit
line_to_palette = new_line_to_palette
total_image_error = new_total_image_error
palettes_rgb12_iigs = new_palettes_rgb12_iigs
palettes_linear_rgb = new_palettes_linear_rgb
# # Recompute 4-bit //gs RGB palettes
# palette_rgb_rec601 = np.clip(
# colour.YCbCr_to_RGB(
# colour.RGB_to_YCbCr(
# image_py.linear_to_srgb(palettes_rgb12_iigs * 255) / 255,
# K=colour.WEIGHTS_YCBCR['ITU-R BT.709']),
# K=colour.WEIGHTS_YCBCR['ITU-R BT.601']), 0, 1)
#
# palettes_iigs = np.round(palette_rgb_rec601 * 15).astype(np.uint8)
for i in range(16):
screen.set_palette(i, palettes_rgb12_iigs[i, :, :])
# Recompute current screen RGB image
screen.set_pixels(output_4bit)
output_rgb = np.empty((200, 320, 3), dtype=np.uint8)
for i in range(200):
screen.line_palette[i] = line_to_palette[i]
output_rgb[i, :, :] = (
palettes_linear_rgb[line_to_palette[i]][output_4bit[i, :]] * 255
).astype(
# np.round(palettes_rgb[line_to_palette[i]][
# output_4bit[i, :]] * 15) / 15 * 255).astype(
np.uint8)
# output_srgb_rec709 = np.clip(colour.YCbCr_to_RGB(
# colour.RGB_to_YCbCr(
# image_py.linear_to_srgb(output_rgb) / 255,
# K=colour.WEIGHTS_YCBCR['ITU-R BT.601']),
# K=colour.WEIGHTS_YCBCR['ITU-R BT.709']), 0, 1) * 255
output_srgb = (image_py.linear_to_srgb(output_rgb)).astype(np.uint8)
# dither = dither_pattern.PATTERNS[args.dither]()
# bitmap = dither_pyx.dither_image(
# screen, rgb, dither, args.lookahead, args.verbose, rgb24_to_cam16ucs)
# Show output image by rendering in target palette
# output_palette_name = args.show_palette or args.palette
# output_palette = palette_py.PALETTES[output_palette_name]()
# output_screen = screen_py.DHGRScreen(output_palette)
# if output_palette_name == "ntsc":
# output_srgb = output_screen.bitmap_to_image_ntsc(bitmap)
# else:
# output_srgb = image_py.linear_to_srgb(
# output_screen.bitmap_to_image_rgb(bitmap)).astype(np.uint8)
out_image = image_py.resize(
Image.fromarray(output_srgb), screen.X_RES * 2, screen.Y_RES * 2,
srgb_output=True)
if args.show_output:
surface = pygame.surfarray.make_surface(
np.asarray(out_image).transpose((1, 0, 2))) # flip y/x axes
canvas.blit(surface, (0, 0))
pygame.display.flip()
# print((palettes_rgb * 255).astype(np.uint8))
unique_colours = np.unique(palettes_rgb12_iigs.reshape(-1, 3), axis=0).shape[0]
print("%d unique colours" % unique_colours)
# Save Double hi-res image
outfile = os.path.join(os.path.splitext(args.output)[0] + "-preview.png")
out_image.save(outfile, "PNG")
screen.pack()
# with open(args.output, "wb") as f:
# f.write(bytes(screen.aux))
# f.write(bytes(screen.main))
with open(args.output, "wb") as f:
f.write(bytes(screen.memory))
if __name__ == "__main__":
main()