import audioread import librosa import numpy as np class Audio: def __init__( self, filename: str, normalization: float = None): self.filename = filename # TODO: take into account that the available range is slightly offset # as fraction of total cycle count? self._tick_range = [4, 66] self.cycles_per_tick = 73 # TODO: round to divisor of video frame rate self.sample_rate = 14340 # int(1024. * 1024 / self.cycles_per_tick) self.normalization = normalization or self._normalization() print(self.normalization) def _decode(self, f, buf) -> np.array: data = np.frombuffer(buf, dtype='int16').astype( 'float32').reshape((f.channels, -1), order='F') a = librosa.core.to_mono(data) a = librosa.resample(a, f.samplerate, self.sample_rate).flatten() return a def _normalization(self, read_bytes=1024 * 1024 * 10): """Read first read_bytes of audio stream and compute normalization. We compute the 2.5th and 97.5th percentiles i.e. only 2.5% of samples will clip. """ raw = bytearray() with audioread.audio_open(self.filename) as f: for buf in f.read_data(): raw.extend(bytearray(buf)) if len(raw) > read_bytes: break a = self._decode(f, raw) norm = np.max(np.abs(np.percentile(a, [2.5, 97.5]))) assert norm return 16384. / norm def audio_stream(self): with audioread.audio_open(self.filename) as f: for buf in f.read_data(128 * 1024): a = self._decode(f, buf) a /= 16384 # normalize to -1.0 .. 1.0 a *= self.normalization # Convert to -16 .. 16 a = (a * 16).astype(np.int) a = np.clip(a, -15, 16) yield from a