1301 lines
45 KiB
Plaintext
Raw Normal View History

2021-02-01 22:18:00 +01:00
; Bitmap pixel graphics routines for the CommanderX16
2020-12-25 02:59:19 +01:00
; Custom routines to use the full-screen 640x480 and 320x240 screen modes.
2021-02-21 22:48:06 +01:00
; (These modes are not supported by the documented GRAPH_xxxx kernal routines)
2021-02-01 22:18:00 +01:00
;
; No text layer is currently shown, text can be drawn as part of the bitmap itself.
; Note: for similar graphics routines that also work on the C-64, use the "graphics" module instead.
; Note: for color palette manipulation, use the "palette" module or write Vera registers yourself.
2021-02-01 22:18:00 +01:00
; Note: this library implements code for various resolutions and color depths. This takes up memory.
; If you're memory constrained you should probably not use this built-in library,
; but make a copy in your project only containing the code for the required resolution.
;
;
; SCREEN MODE LIST:
; mode 0 = reset back to default text mode
; mode 1 = bitmap 320 x 240 monochrome
2023-07-26 21:43:58 +02:00
; mode 2 = bitmap 320 x 240 x 4c (not yet implemented: just use 256c, there's enough vram for that)
; mode 3 = bitmap 320 x 240 x 16c (not yet implemented: just use 256c, there's enough vram for that)
2022-04-03 22:56:13 +02:00
; mode 4 = bitmap 320 x 240 x 256c (like SCREEN $80 but using this api instead of kernal)
; mode 5 = bitmap 640 x 480 monochrome
; mode 6 = bitmap 640 x 480 x 4c
2021-02-27 03:30:21 +01:00
; higher color dephts in highres are not supported due to lack of VRAM
; TODO remove the phx/plx pairs in non-stack compiler version
gfx2 {
2023-06-30 00:29:50 +02:00
%option no_symbol_prefixing
; read-only control variables:
ubyte active_mode = 0
uword width = 0
uword height = 0
ubyte bpp = 0
bool monochrome_dont_stipple_flag = false ; set to false to enable stippling mode in monochrome displaymodes
2020-12-26 01:25:52 +01:00
sub screen_mode(ubyte mode) {
when mode {
1 -> {
2021-03-04 01:31:29 +01:00
; lores monochrome
cx16.VERA_DC_VIDEO = (cx16.VERA_DC_VIDEO & %11001111) | %00100000 ; enable only layer 1
cx16.VERA_DC_HSCALE = 64
cx16.VERA_DC_VSCALE = 64
cx16.VERA_L1_CONFIG = %00000100
cx16.VERA_L1_MAPBASE = 0
cx16.VERA_L1_TILEBASE = 0
width = 320
height = 240
bpp = 1
}
2023-07-26 21:43:58 +02:00
; TODO modes 2, 3
4 -> {
; lores 256c
cx16.VERA_DC_VIDEO = (cx16.VERA_DC_VIDEO & %11001111) | %00100000 ; enable only layer 1
cx16.VERA_DC_HSCALE = 64
cx16.VERA_DC_VSCALE = 64
cx16.VERA_L1_CONFIG = %00000111
cx16.VERA_L1_MAPBASE = 0
cx16.VERA_L1_TILEBASE = 0
width = 320
height = 240
bpp = 8
}
5 -> {
; highres monochrome
cx16.VERA_DC_VIDEO = (cx16.VERA_DC_VIDEO & %11001111) | %00100000 ; enable only layer 1
cx16.VERA_DC_HSCALE = 128
cx16.VERA_DC_VSCALE = 128
cx16.VERA_L1_CONFIG = %00000100
cx16.VERA_L1_MAPBASE = 0
cx16.VERA_L1_TILEBASE = %00000001
width = 640
height = 480
bpp = 1
}
2021-01-27 02:31:20 +01:00
6 -> {
; highres 4c
cx16.VERA_DC_VIDEO = (cx16.VERA_DC_VIDEO & %11001111) | %00100000 ; enable only layer 1
cx16.VERA_DC_HSCALE = 128
cx16.VERA_DC_VSCALE = 128
cx16.VERA_L1_CONFIG = %00000101
cx16.VERA_L1_MAPBASE = 0
cx16.VERA_L1_TILEBASE = %00000001
width = 640
height = 480
bpp = 2
}
else -> {
; back to default text mode
cx16.r15L = cx16.VERA_DC_VIDEO & %00000111 ; retain chroma + output mode
cbm.CINT()
cx16.VERA_DC_VIDEO = (cx16.VERA_DC_VIDEO & %11111000) | cx16.r15L
width = 0
height = 0
bpp = 0
mode = 0
}
}
2020-12-26 01:25:52 +01:00
active_mode = mode
if bpp
clear_screen()
}
sub clear_screen() {
monochrome_stipple(false)
position(0, 0)
when active_mode {
1 -> {
; lores monochrome
repeat 240/2/8
cs_innerloop640()
}
2023-07-26 21:43:58 +02:00
; TODO modes 2, 3
4 -> {
; lores 256c
repeat 240/2
cs_innerloop640()
}
5 -> {
; highres monochrome
repeat 480/8
cs_innerloop640()
}
2021-01-27 02:31:20 +01:00
6 -> {
; highres 4c
repeat 480/4
cs_innerloop640()
}
; modes 7 and 8 not supported due to lack of VRAM
}
position(0, 0)
}
sub monochrome_stipple(bool enable) {
monochrome_dont_stipple_flag = not enable
}
sub rect(uword x, uword y, uword rwidth, uword rheight, ubyte color) {
if rwidth==0 or rheight==0
2020-12-27 17:34:25 +01:00
return
horizontal_line(x, y, rwidth, color)
if rheight==1
2020-12-27 17:34:25 +01:00
return
horizontal_line(x, y+rheight-1, rwidth, color)
vertical_line(x, y+1, rheight-2, color)
if rwidth==1
2020-12-27 17:34:25 +01:00
return
vertical_line(x+rwidth-1, y+1, rheight-2, color)
2020-12-27 17:34:25 +01:00
}
sub fillrect(uword x, uword y, uword rwidth, uword rheight, ubyte color) {
if rwidth==0
2020-12-27 17:34:25 +01:00
return
repeat rheight {
horizontal_line(x, y, rwidth, color)
2020-12-27 17:34:25 +01:00
y++
}
}
sub horizontal_line(uword x, uword y, uword length, ubyte color) {
ubyte[9] masked_ends = [ 0, %10000000, %11000000, %11100000, %11110000, %11111000, %11111100, %11111110, %11111111]
ubyte[9] masked_starts = [ 0, %00000001, %00000011, %00000111, %00001111, %00011111, %00111111, %01111111, %11111111]
2020-12-27 17:34:25 +01:00
if length==0
return
2020-12-27 15:14:44 +01:00
when active_mode {
1, 5 -> {
; monochrome modes, either resolution
ubyte separate_pixels = (8-lsb(x)) & 7
if separate_pixels as uword > length
separate_pixels = lsb(length)
if separate_pixels {
position(x,y)
cx16.VERA_ADDR_H &= %00000111 ; vera auto-increment off
cx16.VERA_DATA0 = cx16.VERA_DATA0 | masked_starts[separate_pixels]
length -= separate_pixels
x += separate_pixels
2020-12-27 15:14:44 +01:00
}
if length {
position(x, y)
separate_pixels = lsb(length) & 7
x += length & $fff8
%asm {{
lsr length+1
ror length
lsr length+1
ror length
lsr length+1
ror length
lda color
bne +
ldy #0 ; black
bra _loop
+ lda monochrome_dont_stipple_flag
beq _stipple
ldy #255 ; don't stipple
bra _loop
_stipple lda y
and #1 ; determine stipple pattern to use
bne +
ldy #%01010101
bra _loop
+ ldy #%10101010
_loop lda length
ora length+1
beq _done
sty cx16.VERA_DATA0
lda length
bne +
dec length+1
+ dec length
bra _loop
_done
}}
cx16.VERA_ADDR_H &= %00000111 ; vera auto-increment off
cx16.VERA_DATA0 = cx16.VERA_DATA0 | masked_ends[separate_pixels]
}
2021-01-29 23:52:29 +01:00
cx16.VERA_ADDR_H &= %00000111 ; vera auto-increment off again
2020-12-27 15:14:44 +01:00
}
2021-01-27 02:31:20 +01:00
4 -> {
; lores 256c
position(x, y)
%asm {{
lda color
phx
ldx length+1
beq +
ldy #0
- sta cx16.VERA_DATA0
iny
bne -
dex
bne -
+ ldy length ; remaining
beq +
- sta cx16.VERA_DATA0
dey
bne -
+ plx
}}
}
6 -> {
2023-07-26 21:43:58 +02:00
; highres 4c ....also mostly usable for mode 2, lores 4c?
color &= 3
ubyte[4] colorbits
ubyte ii
for ii in 3 downto 0 {
colorbits[ii] = color
color <<= 2
}
void addr_mul_24_for_highres_4c(y, x) ; 24 bits result is in r0 and r1L (highest byte)
%asm {{
lda cx16.VERA_ADDR_H
and #%00000111 ; no auto advance
sta cx16.VERA_ADDR_H
stz cx16.VERA_CTRL ; setup vera addr 0
lda cx16.r1
and #1
sta cx16.VERA_ADDR_H
lda cx16.r0
sta cx16.VERA_ADDR_L
lda cx16.r0+1
sta cx16.VERA_ADDR_M
phx
ldx x
}}
2021-01-29 23:52:29 +01:00
repeat length {
%asm {{
txa
and #3
tay
lda cx16.VERA_DATA0
and gfx2.plot.mask4c,y
ora colorbits,y
sta cx16.VERA_DATA0
cpy #%00000011 ; next vera byte?
2021-04-28 02:55:49 +02:00
bne ++
inc cx16.VERA_ADDR_L
2021-04-28 02:55:49 +02:00
bne ++
inc cx16.VERA_ADDR_M
2021-02-04 17:47:52 +01:00
+ bne +
inc cx16.VERA_ADDR_H
+ inx ; next pixel
}}
}
2021-01-29 23:52:29 +01:00
%asm {{
plx
}}
2021-01-27 02:31:20 +01:00
}
2020-12-27 15:14:44 +01:00
}
}
sub vertical_line(uword x, uword y, uword lheight, ubyte color) {
2021-01-27 02:31:20 +01:00
when active_mode {
1, 5 -> {
; monochrome, lo-res
cx16.r15L = gfx2.plot.bits[x as ubyte & 7] ; bitmask
if color {
if monochrome_dont_stipple_flag {
; draw continuous line.
position2(x,y,true)
if active_mode==1
set_both_strides(11) ; 40 increment = 1 line in 320 px monochrome
else
set_both_strides(12) ; 80 increment = 1 line in 640 px monochrome
repeat lheight {
%asm {{
lda cx16.VERA_DATA0
ora cx16.r15L
sta cx16.VERA_DATA1
}}
}
} else {
; draw stippled line.
if x&1 {
y++
lheight--
}
position2(x,y,true)
if active_mode==1
set_both_strides(12) ; 80 increment = 2 line in 320 px monochrome
else
set_both_strides(13) ; 160 increment = 2 line in 640 px monochrome
repeat lheight/2 {
%asm {{
lda cx16.VERA_DATA0
ora cx16.r15L
sta cx16.VERA_DATA1
}}
}
}
} else {
position2(x,y,true)
cx16.r15 = ~cx16.r15 ; erase pixels
if active_mode==1
set_both_strides(11) ; 40 increment = 1 line in 320 px monochrome
else
set_both_strides(12) ; 80 increment = 1 line in 640 px monochrome
repeat lheight {
%asm {{
lda cx16.VERA_DATA0
and cx16.r15L
sta cx16.VERA_DATA1
}}
}
}
}
2021-01-27 02:31:20 +01:00
4 -> {
; lores 256c
; set vera auto-increment to 320 pixel increment (=next line)
position(x,y)
2021-01-29 23:52:29 +01:00
cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & %00000111 | (14<<4)
2020-12-29 02:13:38 +01:00
%asm {{
ldy lheight
2020-12-29 22:53:53 +01:00
beq +
2021-01-27 02:31:20 +01:00
lda color
- sta cx16.VERA_DATA0
2020-12-29 02:13:38 +01:00
dey
bne -
2020-12-29 22:53:53 +01:00
+
2020-12-29 02:13:38 +01:00
}}
}
2021-01-27 02:31:20 +01:00
6 -> {
; highres 4c
; use TWO vera adress pointers simultaneously one for reading, one for writing, so auto-increment is possible
if lheight==0
return
position2(x,y,true)
set_both_strides(13) ; 160 increment = 1 line in 640 px 4c mode
;; color &= 3
;; color <<= gfx2.plot.shift4c[lsb(x) & 3]
cx16.r2L = lsb(x) & 3
when color & 3 {
1 -> color = gfx2.plot.shiftedleft_4c_1[cx16.r2L]
2 -> color = gfx2.plot.shiftedleft_4c_2[cx16.r2L]
3 -> color = gfx2.plot.shiftedleft_4c_3[cx16.r2L]
}
ubyte @shared mask = gfx2.plot.mask4c[lsb(x) & 3]
repeat lheight {
2021-02-05 18:09:21 +01:00
%asm {{
lda cx16.VERA_DATA0
and mask
ora color
sta cx16.VERA_DATA1
2021-02-05 18:09:21 +01:00
}}
2021-01-27 02:31:20 +01:00
}
2020-12-29 02:13:38 +01:00
}
2020-12-27 17:34:25 +01:00
}
2021-01-27 02:31:20 +01:00
sub set_both_strides(ubyte stride) {
stride <<= 4
cx16.VERA_CTRL = 0
cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & %00000111 | stride
cx16.VERA_CTRL = 1
cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & %00000111 | stride
}
2020-12-27 17:34:25 +01:00
}
sub line(uword @zp x1, uword @zp y1, uword @zp x2, uword @zp y2, ubyte color) {
; Bresenham algorithm.
; This code special-cases various quadrant loops to allow simple ++ and -- operations.
if y1>y2 {
; make sure dy is always positive to have only 4 instead of 8 special cases
cx16.r0 = x1
x1 = x2
x2 = cx16.r0
cx16.r0 = y1
y1 = y2
y2 = cx16.r0
2020-12-27 17:34:25 +01:00
}
word @zp dx = (x2 as word)-x1
word @zp dy = (y2 as word)-y1
2020-12-27 17:34:25 +01:00
if dx==0 {
vertical_line(x1, y1, abs(dy) as uword +1, color)
2020-12-27 17:34:25 +01:00
return
}
if dy==0 {
if x1>x2
x1=x2
horizontal_line(x1, y1, abs(dx) as uword +1, color)
2020-12-27 17:34:25 +01:00
return
}
word @zp d = 0
2023-07-29 15:16:48 +02:00
cx16.r1L = true ; 'positive_ix'
2020-12-27 17:34:25 +01:00
if dx < 0 {
dx = -dx
2023-07-29 15:16:48 +02:00
cx16.r1L = false
2020-12-27 17:34:25 +01:00
}
2021-03-09 21:54:31 +01:00
word @zp dx2 = dx*2
word @zp dy2 = dy*2
2020-12-27 17:34:25 +01:00
cx16.r14 = x1 ; internal plot X
if dx >= dy {
2023-07-29 15:16:48 +02:00
if cx16.r1L {
2020-12-27 17:34:25 +01:00
repeat {
plot(cx16.r14, y1, color)
if cx16.r14==x2
return
cx16.r14++
2021-03-09 21:54:31 +01:00
d += dy2
2020-12-27 17:34:25 +01:00
if d > dx {
y1++
2021-03-09 21:54:31 +01:00
d -= dx2
2020-12-27 17:34:25 +01:00
}
}
} else {
repeat {
plot(cx16.r14, y1, color)
if cx16.r14==x2
return
cx16.r14--
2021-03-09 21:54:31 +01:00
d += dy2
2020-12-27 17:34:25 +01:00
if d > dx {
y1++
2021-03-09 21:54:31 +01:00
d -= dx2
2020-12-27 17:34:25 +01:00
}
}
}
}
else {
2023-07-29 15:16:48 +02:00
if cx16.r1L {
2020-12-27 17:34:25 +01:00
repeat {
plot(cx16.r14, y1, color)
if y1 == y2
return
y1++
2021-03-09 21:54:31 +01:00
d += dx2
2020-12-27 17:34:25 +01:00
if d > dy {
cx16.r14++
2021-03-09 21:54:31 +01:00
d -= dy2
2020-12-27 17:34:25 +01:00
}
}
} else {
repeat {
plot(cx16.r14, y1, color)
if y1 == y2
return
y1++
2021-03-09 21:54:31 +01:00
d += dx2
2020-12-27 17:34:25 +01:00
if d > dy {
cx16.r14--
2021-03-09 21:54:31 +01:00
d -= dy2
2020-12-27 17:34:25 +01:00
}
}
}
}
}
sub circle(uword @zp xcenter, uword @zp ycenter, ubyte radius, ubyte color) {
2020-12-27 15:14:44 +01:00
; Midpoint algorithm.
2020-12-27 17:34:25 +01:00
if radius==0
return
2020-12-27 15:14:44 +01:00
ubyte @zp xx = radius
ubyte @zp yy = 0
word @zp decisionOver2 = (1 as word)-xx
; R14 = internal plot X
; R15 = internal plot Y
while xx>=yy {
cx16.r14 = xcenter + xx
cx16.r15 = ycenter + yy
plot(cx16.r14, cx16.r15, color)
cx16.r14 = xcenter - xx
plot(cx16.r14, cx16.r15, color)
cx16.r14 = xcenter + xx
cx16.r15 = ycenter - yy
plot(cx16.r14, cx16.r15, color)
cx16.r14 = xcenter - xx
plot(cx16.r14, cx16.r15, color)
cx16.r14 = xcenter + yy
cx16.r15 = ycenter + xx
plot(cx16.r14, cx16.r15, color)
cx16.r14 = xcenter - yy
plot(cx16.r14, cx16.r15, color)
cx16.r14 = xcenter + yy
cx16.r15 = ycenter - xx
plot(cx16.r14, cx16.r15, color)
cx16.r14 = xcenter - yy
plot(cx16.r14, cx16.r15, color)
yy++
if decisionOver2<=0
decisionOver2 += (yy as word)*2+1
else {
xx--
decisionOver2 += (yy as word -xx)*2+1
}
}
}
2020-12-27 17:34:25 +01:00
sub disc(uword @zp xcenter, uword @zp ycenter, ubyte @zp radius, ubyte color) {
2020-12-27 15:14:44 +01:00
; Midpoint algorithm, filled
2020-12-27 17:34:25 +01:00
if radius==0
return
2020-12-27 15:14:44 +01:00
ubyte @zp yy = 0
2020-12-27 17:34:25 +01:00
word @zp decisionOver2 = (1 as word)-radius
2020-12-27 15:14:44 +01:00
2020-12-27 17:34:25 +01:00
while radius>=yy {
horizontal_line(xcenter-radius, ycenter+yy, radius*$0002+1, color)
horizontal_line(xcenter-radius, ycenter-yy, radius*$0002+1, color)
horizontal_line(xcenter-yy, ycenter+radius, yy*$0002+1, color)
horizontal_line(xcenter-yy, ycenter-radius, yy*$0002+1, color)
2020-12-27 15:14:44 +01:00
yy++
if decisionOver2<=0
decisionOver2 += (yy as word)*2+1
else {
2020-12-27 17:34:25 +01:00
radius--
decisionOver2 += (yy as word -radius)*2+1
2020-12-27 15:14:44 +01:00
}
}
}
2023-05-23 00:27:42 +02:00
sub plot(uword @zp x, uword @zp y, ubyte @zp color) {
ubyte[8] @shared bits = [128, 64, 32, 16, 8, 4, 2, 1]
ubyte[4] @shared mask4c = [%00111111, %11001111, %11110011, %11111100]
ubyte[4] @shared shift4c = [6,4,2,0]
ubyte[4] shiftedleft_4c_1 = [1<<6, 1<<4, 1<<2, 1<<0]
ubyte[4] shiftedleft_4c_2 = [2<<6, 2<<4, 2<<2, 2<<0]
ubyte[4] shiftedleft_4c_3 = [3<<6, 3<<4, 3<<2, 3<<0]
when active_mode {
1 -> {
; lores monochrome
%asm {{
lda x
eor y
ora monochrome_dont_stipple_flag
and #1
}}
if_nz {
%asm {{
lda x
and #7
pha ; xbits
}}
x /= 8
x += y*(320/8)
%asm {{
stz cx16.VERA_CTRL
stz cx16.VERA_ADDR_H
lda x+1
sta cx16.VERA_ADDR_M
lda x
sta cx16.VERA_ADDR_L
ply ; xbits
lda bits,y
ldy color
beq +
tsb cx16.VERA_DATA0
bra ++
+ trb cx16.VERA_DATA0
+
}}
}
}
2023-07-26 21:43:58 +02:00
; TODO modes 2, 3
2021-01-27 02:31:20 +01:00
4 -> {
; lores 256c
void addr_mul_24_for_lores_256c(y, x) ; 24 bits result is in r0 and r1L (highest byte)
2021-04-28 02:22:21 +02:00
%asm {{
stz cx16.VERA_CTRL
lda cx16.r1
ora #%00010000 ; enable auto-increment so next_pixel() can be used after this
sta cx16.VERA_ADDR_H
lda cx16.r0+1
sta cx16.VERA_ADDR_M
lda cx16.r0
sta cx16.VERA_ADDR_L
lda color
sta cx16.VERA_DATA0
}}
2021-01-27 02:31:20 +01:00
}
5 -> {
; highres monochrome
%asm {{
lda x
eor y
ora monochrome_dont_stipple_flag
and #1
}}
if_nz {
%asm {{
lda x
and #7
pha ; xbits
}}
x /= 8
x += y*(640/8)
%asm {{
stz cx16.VERA_CTRL
stz cx16.VERA_ADDR_H
lda x+1
sta cx16.VERA_ADDR_M
lda x
sta cx16.VERA_ADDR_L
ply ; xbits
lda bits,y
ldy color
beq +
tsb cx16.VERA_DATA0
bra ++
+ trb cx16.VERA_DATA0
+
}}
}
}
2021-01-27 02:31:20 +01:00
6 -> {
2023-07-26 21:43:58 +02:00
; highres 4c ....also mostly usable for mode 2, lores 4c?
2021-01-27 02:31:20 +01:00
void addr_mul_24_for_highres_4c(y, x) ; 24 bits result is in r0 and r1L (highest byte)
2021-04-28 02:39:35 +02:00
cx16.r2L = lsb(x) & 3 ; xbits
; color &= 3
; color <<= shift4c[cx16.r2L]
when color & 3 {
1 -> color = shiftedleft_4c_1[cx16.r2L]
2 -> color = shiftedleft_4c_2[cx16.r2L]
3 -> color = shiftedleft_4c_3[cx16.r2L]
}
2021-04-28 02:39:35 +02:00
%asm {{
stz cx16.VERA_CTRL
lda cx16.r1L
sta cx16.VERA_ADDR_H
lda cx16.r0H
sta cx16.VERA_ADDR_M
lda cx16.r0L
sta cx16.VERA_ADDR_L
ldy cx16.r2L ; xbits
lda mask4c,y
and cx16.VERA_DATA0
ora color
sta cx16.VERA_DATA0
}}
}
}
}
sub pget(uword @zp x, uword y) -> ubyte {
when active_mode {
1 -> {
; lores monochrome
%asm {{
lda x
and #7
pha ; xbits
}}
x /= 8
x += y*(320/8)
%asm {{
stz cx16.VERA_CTRL
stz cx16.VERA_ADDR_H
lda x+1
sta cx16.VERA_ADDR_M
lda x
sta cx16.VERA_ADDR_L
ply ; xbits
lda plot.bits,y
and cx16.VERA_DATA0
beq +
lda #1
+
}}
}
2023-07-26 21:43:58 +02:00
; TODO modes 2, 3
4 -> {
; lores 256c
void addr_mul_24_for_lores_256c(y, x) ; 24 bits result is in r0 and r1L (highest byte)
%asm {{
stz cx16.VERA_CTRL
lda cx16.r1
sta cx16.VERA_ADDR_H
lda cx16.r0+1
sta cx16.VERA_ADDR_M
lda cx16.r0
sta cx16.VERA_ADDR_L
lda cx16.VERA_DATA0
}}
}
5 -> {
; hires monochrome
%asm {{
lda x
and #7
pha ; xbits
}}
x /= 8
x += y*(640/8)
%asm {{
stz cx16.VERA_CTRL
stz cx16.VERA_ADDR_H
lda x+1
sta cx16.VERA_ADDR_M
lda x
sta cx16.VERA_ADDR_L
ply ; xbits
lda plot.bits,y
and cx16.VERA_DATA0
beq +
lda #1
+
}}
}
6 -> {
; hires 4c
void addr_mul_24_for_highres_4c(y, x) ; 24 bits result is in r0 and r1L (highest byte)
%asm {{
stz cx16.VERA_CTRL
lda cx16.r1L
sta cx16.VERA_ADDR_H
lda cx16.r0H
sta cx16.VERA_ADDR_M
lda cx16.r0L
sta cx16.VERA_ADDR_L
lda cx16.VERA_DATA0
sta cx16.r0L
}}
cx16.r1L = lsb(x) & 3
cx16.r0L >>= gfx2.plot.shift4c[cx16.r1L]
return cx16.r0L & 3
}
else -> return 0
}
2020-12-23 05:04:19 +01:00
}
2023-05-23 00:27:42 +02:00
sub fill(word @zp x, word @zp y, ubyte new_color) {
; Non-recursive scanline flood fill.
; based loosely on code found here https://www.codeproject.com/Articles/6017/QuickFill-An-efficient-flood-fill-algorithm
; with the fixes applied to the seedfill_4 routine as mentioned in the comments.
const ubyte MAXDEPTH = 48
word[MAXDEPTH] @split @shared stack_xl
word[MAXDEPTH] @split @shared stack_xr
word[MAXDEPTH] @split @shared stack_y
2023-05-23 00:27:42 +02:00
byte[MAXDEPTH] @shared stack_dy
cx16.r12L = 0 ; stack pointer
word x1
word x2
byte dy
cx16.r10L = new_color
sub push_stack(word sxl, word sxr, word sy, byte sdy) {
if cx16.r12L==MAXDEPTH
return
cx16.r0s = sy+sdy
if cx16.r0s>=0 and cx16.r0s<=height-1 {
;; stack_xl[cx16.r12L] = sxl
;; stack_xr[cx16.r12L] = sxr
;; stack_y[cx16.r12L] = sy
;; stack_dy[cx16.r12L] = sdy
;; cx16.r12L++
%asm {{
ldy cx16.r12L
2023-05-23 00:27:42 +02:00
lda sxl
sta stack_xl_lsb,y
2023-05-23 00:27:42 +02:00
lda sxl+1
sta stack_xl_msb,y
2023-05-23 00:27:42 +02:00
lda sxr
sta stack_xr_lsb,y
2023-05-23 00:27:42 +02:00
lda sxr+1
sta stack_xr_msb,y
2023-05-23 00:27:42 +02:00
lda sy
sta stack_y_lsb,y
2023-05-23 00:27:42 +02:00
lda sy+1
sta stack_y_msb,y
2023-05-23 00:27:42 +02:00
ldy cx16.r12L
lda sdy
sta stack_dy,y
inc cx16.r12L
}}
}
}
sub pop_stack() {
;; cx16.r12L--
;; x1 = stack_xl[cx16.r12L]
;; x2 = stack_xr[cx16.r12L]
;; y = stack_y[cx16.r12L]
;; dy = stack_dy[cx16.r12L]
%asm {{
dec cx16.r12L
ldy cx16.r12L
lda stack_xl_lsb,y
2023-05-23 00:27:42 +02:00
sta x1
lda stack_xl_msb,y
2023-05-23 00:27:42 +02:00
sta x1+1
lda stack_xr_lsb,y
2023-05-23 00:27:42 +02:00
sta x2
lda stack_xr_msb,y
2023-05-23 00:27:42 +02:00
sta x2+1
lda stack_y_lsb,y
2023-05-23 00:27:42 +02:00
sta y
lda stack_y_msb,y
2023-05-23 00:27:42 +02:00
sta y+1
ldy cx16.r12L
lda stack_dy,y
sta dy
}}
y+=dy
}
cx16.r11L = pget(x as uword, y as uword) ; old_color
if cx16.r11L == cx16.r10L
return
if x<0 or x > width-1 or y<0 or y > height-1
return
push_stack(x, x, y, 1)
push_stack(x, x, y + 1, -1)
word left = 0
while cx16.r12L {
pop_stack()
x = x1
while x >= 0 and pget(x as uword, y as uword) == cx16.r11L {
plot(x as uword, y as uword, cx16.r10L)
x--
}
if x>= x1
goto skip
left = x + 1
if left < x1
push_stack(left, x1 - 1, y, -dy)
x = x1 + 1
do {
while x <= width-1 and pget(x as uword, y as uword) == cx16.r11L {
plot(x as uword, y as uword, cx16.r10L)
x++
}
push_stack(left, x - 1, y, dy)
if x > x2 + 1
push_stack(x2 + 1, x - 1, y, -dy)
skip:
x++
while x <= x2 and pget(x as uword, y as uword) != cx16.r11L
x++
left = x
} until x>x2
}
}
2020-12-23 05:04:19 +01:00
2020-12-27 17:34:25 +01:00
sub position(uword @zp x, uword y) {
2020-12-23 05:04:19 +01:00
when active_mode {
1 -> {
; lores monochrome
2020-12-26 01:25:52 +01:00
cx16.r0 = y*(320/8) + x/8
cx16.vaddr(0, cx16.r0, 0, 1)
}
2023-07-26 21:43:58 +02:00
; TODO modes 2, 3
2021-01-27 02:31:20 +01:00
4 -> {
; lores 256c
void addr_mul_24_for_lores_256c(y, x) ; 24 bits result is in r0 and r1L (highest byte)
cx16.r2L = cx16.r1L
cx16.vaddr(cx16.r2L, cx16.r0, 0, 1)
2021-01-27 02:31:20 +01:00
}
5 -> {
; highres monochrome
2020-12-26 01:25:52 +01:00
cx16.r0 = y*(640/8) + x/8
cx16.vaddr(0, cx16.r0, 0, 1)
}
2021-01-27 02:31:20 +01:00
6 -> {
; highres 4c
2021-02-01 22:18:00 +01:00
void addr_mul_24_for_highres_4c(y, x) ; 24 bits result is in r0 and r1L (highest byte)
cx16.r2L = cx16.r1L
cx16.vaddr(cx16.r2L, cx16.r0, 0, 1)
2020-12-23 05:04:19 +01:00
}
}
}
sub position2(uword @zp x, uword y, bool also_port_1) {
position(x, y)
if also_port_1
cx16.vaddr_clone(0)
}
inline asmsub next_pixel(ubyte color @A) {
2020-12-23 05:04:19 +01:00
; -- sets the next pixel byte to the graphics chip.
; for 8 bpp screens this will plot 1 pixel.
; for 1 bpp screens it will plot 8 pixels at once (color = bit pattern).
2021-01-27 02:56:25 +01:00
; for 2 bpp screens it will plot 4 pixels at once (color = bit pattern).
2020-12-23 05:04:19 +01:00
%asm {{
sta cx16.VERA_DATA0
}}
}
2020-12-30 16:59:31 +01:00
asmsub next_pixels(uword pixels @AY, uword amount @R0) clobbers(A, Y) {
2020-12-26 03:10:53 +01:00
; -- sets the next bunch of pixels from a prepared array of bytes.
; for 8 bpp screens this will plot 1 pixel per byte.
; for 1 bpp screens it will plot 8 pixels at once (colors are the bit patterns per byte).
2021-01-27 02:56:25 +01:00
; for 2 bpp screens it will plot 4 pixels at once (colors are the bit patterns per byte).
%asm {{
phx
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
ldx cx16.r0+1
beq +
ldy #0
- lda (P8ZP_SCRATCH_W1),y
sta cx16.VERA_DATA0
iny
bne -
inc P8ZP_SCRATCH_W1+1 ; next page of 256 pixels
dex
bne -
+ ldx cx16.r0 ; remaining pixels
beq +
ldy #0
- lda (P8ZP_SCRATCH_W1),y
sta cx16.VERA_DATA0
iny
dex
bne -
+ plx
}}
2020-12-23 05:04:19 +01:00
}
asmsub set_8_pixels_from_bits(ubyte bits @R0, ubyte oncolor @A, ubyte offcolor @Y) {
2020-12-26 03:10:53 +01:00
; this is only useful in 256 color mode where one pixel equals one byte value.
%asm {{
phx
ldx #8
- asl cx16.r0
bcc +
sta cx16.VERA_DATA0
bra ++
+ sty cx16.VERA_DATA0
+ dex
bne -
plx
rts
}}
}
2020-12-26 03:10:53 +01:00
const ubyte charset_bank = $1
const uword charset_addr = $f000 ; in bank 1, so $1f000
sub text_charset(ubyte charset) {
; -- select the text charset to use with the text() routine
2020-12-26 03:10:53 +01:00
; the charset number is the same as for the cx16.screen_set_charset() ROM function.
; 1 = ISO charset, 2 = PETSCII uppercase+graphs, 3= PETSCII uppercase+lowercase.
cx16.screen_set_charset(charset, 0)
}
2020-12-27 17:34:25 +01:00
sub text(uword @zp x, uword y, ubyte color, uword sctextptr) {
2020-12-26 03:10:53 +01:00
; -- Write some text at the given pixel position. The text string must be in screencode encoding (not petscii!).
; You must also have called text_charset() first to select and prepare the character set to use.
2020-12-26 01:25:52 +01:00
uword chardataptr
ubyte[8] @shared char_bitmap_bytes_left
ubyte[8] @shared char_bitmap_bytes_right
2020-12-26 01:25:52 +01:00
when active_mode {
1, 5 -> {
; monochrome mode, either resolution
cx16.r3 = sctextptr
while @(cx16.r3) {
chardataptr = charset_addr + @(cx16.r3) * $0008
; copy the character bitmap into RAM
cx16.vaddr_autoincr(charset_bank, chardataptr, 0, 1)
2020-12-26 03:10:53 +01:00
%asm {{
; pre-shift the bits
phx ; TODO remove in non-stack version
lda text.x
and #7
sta P8ZP_SCRATCH_B1
ldy #0
- lda cx16.VERA_DATA0
stz P8ZP_SCRATCH_REG
ldx P8ZP_SCRATCH_B1
cpx #0
beq +
- lsr a
ror P8ZP_SCRATCH_REG
dex
2020-12-26 03:10:53 +01:00
bne -
+ sta char_bitmap_bytes_left,y
lda P8ZP_SCRATCH_REG
sta char_bitmap_bytes_right,y
iny
cpy #8
bne --
plx ; TODO remove in non-stack version
2020-12-26 03:10:53 +01:00
}}
; left part of shifted char
position2(x, y, true)
set_autoincrs_mode1_or_5()
if color {
%asm {{
ldy #0
- lda char_bitmap_bytes_left,y
ora cx16.VERA_DATA1
sta cx16.VERA_DATA0
iny
cpy #8
bne -
}}
} else {
%asm {{
ldy #0
- lda char_bitmap_bytes_left,y
eor #255
and cx16.VERA_DATA1
sta cx16.VERA_DATA0
iny
cpy #8
bne -
}}
}
; right part of shifted char
if lsb(x) & 7 {
position2(x+8, y, true)
set_autoincrs_mode1_or_5()
if color {
%asm {{
ldy #0
- lda char_bitmap_bytes_right,y
ora cx16.VERA_DATA1
sta cx16.VERA_DATA0
iny
cpy #8
bne -
}}
} else {
%asm {{
ldy #0
- lda char_bitmap_bytes_right,y
eor #255
and cx16.VERA_DATA1
sta cx16.VERA_DATA0
iny
cpy #8
bne -
}}
}
}
cx16.r3++
x += 8
2020-12-26 01:25:52 +01:00
}
}
4 -> {
; lores 256c
2020-12-26 01:25:52 +01:00
while @(sctextptr) {
chardataptr = charset_addr + (@(sctextptr) as uword)*8
cx16.vaddr(charset_bank, chardataptr, 1, 1)
repeat 8 {
position(x,y)
y++
%asm {{
phx ; TODO remove in non-stack version
ldx color
2020-12-26 01:25:52 +01:00
lda cx16.VERA_DATA1
sta P8ZP_SCRATCH_B1
ldy #8
2020-12-26 03:10:53 +01:00
- asl P8ZP_SCRATCH_B1
bcc +
stx cx16.VERA_DATA0 ; write a pixel
bra ++
+ lda cx16.VERA_DATA0 ; don't write a pixel, but do advance to the next address
+ dey
2020-12-26 01:25:52 +01:00
bne -
plx ; TODO remove in non-stack version
2020-12-26 01:25:52 +01:00
}}
}
x+=8
y-=8
sctextptr++
}
}
2021-02-01 22:18:00 +01:00
6 -> {
; hires 4c
; we're going to use a few cx16 registers to make sure every variable is in zeropage in the inner loop.
cx16.r11L = color
2021-02-01 22:18:00 +01:00
while @(sctextptr) {
chardataptr = charset_addr + (@(sctextptr) as uword)*8
2023-07-03 21:45:09 +02:00
cx16.vaddr(charset_bank, chardataptr, 1, true) ; for reading the chardata from Vera data channel 1
position(x, y) ; only calculated once, we update vera address in the loop instead
cx16.VERA_ADDR_H &= $0f ; no auto increment
2021-02-01 22:18:00 +01:00
repeat 8 {
cx16.r10L = cx16.VERA_DATA1 ; get the next 8 horizontal character bits
cx16.r7 = x
2021-02-01 22:18:00 +01:00
repeat 8 {
cx16.r10L <<= 1
if_cs {
cx16.r2L = cx16.r7L & 3 ; xbits
when cx16.r11L & 3 {
1 -> cx16.r12L = gfx2.plot.shiftedleft_4c_1[cx16.r2L]
2 -> cx16.r12L = gfx2.plot.shiftedleft_4c_2[cx16.r2L]
3 -> cx16.r12L = gfx2.plot.shiftedleft_4c_3[cx16.r2L]
else -> cx16.r12L = 0
}
cx16.VERA_DATA0 = cx16.VERA_DATA0 & gfx2.plot.mask4c[cx16.r2L] | cx16.r12L
}
cx16.r7++
if (cx16.r7 & 3) == 0 {
; increment the pixel address by one
%asm {{
stz cx16.VERA_CTRL
clc
lda cx16.VERA_ADDR_L
adc #1
sta cx16.VERA_ADDR_L
lda cx16.VERA_ADDR_M
adc #0
sta cx16.VERA_ADDR_M
lda cx16.VERA_ADDR_H
adc #0
sta cx16.VERA_ADDR_H
}}
}
2021-02-01 22:18:00 +01:00
}
; increment pixel address to the next line
%asm {{
stz cx16.VERA_CTRL
clc
lda cx16.VERA_ADDR_L
adc #(640-8)/4
sta cx16.VERA_ADDR_L
lda cx16.VERA_ADDR_M
adc #0
sta cx16.VERA_ADDR_M
lda cx16.VERA_ADDR_H
adc #0
sta cx16.VERA_ADDR_H
}}
2021-02-01 22:18:00 +01:00
}
x+=8
sctextptr++
}
}
2020-12-26 01:25:52 +01:00
}
sub set_autoincrs_mode1_or_5() {
; set autoincrements to go to next pixel row (40 or 80 increment)
if active_mode==1 {
cx16.VERA_CTRL = 0
cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & $0f | (11<<4)
cx16.VERA_CTRL = 1
cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & $0f | (11<<4)
} else {
cx16.VERA_CTRL = 0
cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & $0f | (12<<4)
cx16.VERA_CTRL = 1
cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & $0f | (12<<4)
}
}
2020-12-26 01:25:52 +01:00
}
2020-12-30 16:59:31 +01:00
asmsub cs_innerloop640() clobbers(Y) {
2020-12-23 05:04:19 +01:00
%asm {{
ldy #80
- stz cx16.VERA_DATA0
stz cx16.VERA_DATA0
stz cx16.VERA_DATA0
stz cx16.VERA_DATA0
stz cx16.VERA_DATA0
stz cx16.VERA_DATA0
stz cx16.VERA_DATA0
stz cx16.VERA_DATA0
dey
bne -
rts
}}
}
asmsub addr_mul_24_for_highres_4c(uword yy @R2, uword xx @R3) clobbers(A, Y) -> uword @R0, uword @R1 {
; yy * 160 + xx/4 (24 bits calculation)
2021-01-27 02:31:20 +01:00
; 24 bits result is in r0 and r1L (highest byte)
2021-02-04 17:47:52 +01:00
%asm {{
ldy #5
- asl cx16.r2
rol cx16.r2+1
dey
bne -
lda cx16.r2
sta cx16.r0
lda cx16.r2+1
sta cx16.r0+1
asl cx16.r0
rol cx16.r0+1
asl cx16.r0
rol cx16.r0+1
; xx >>= 2 (xx=R3)
lsr cx16.r3+1
ror cx16.r3
lsr cx16.r3+1
ror cx16.r3
; add r2 and xx (r3) to r0 (24-bits)
2021-02-04 17:47:52 +01:00
stz cx16.r1
clc
lda cx16.r0
adc cx16.r2
sta cx16.r0
lda cx16.r0+1
adc cx16.r2+1
sta cx16.r0+1
bcc +
inc cx16.r1
+ clc
lda cx16.r0
adc cx16.r3
2021-02-04 17:47:52 +01:00
sta cx16.r0
lda cx16.r0+1
adc cx16.r3+1
2021-02-04 17:47:52 +01:00
sta cx16.r0+1
bcc +
inc cx16.r1
+
rts
2021-02-04 17:47:52 +01:00
}}
2021-01-27 02:31:20 +01:00
}
asmsub addr_mul_24_for_lores_256c(uword yy @R0, uword xx @AY) clobbers(A) -> uword @R0, ubyte @R1 {
2021-02-27 03:30:21 +01:00
; yy * 320 + xx (24 bits calculation)
%asm {{
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
lda cx16.r0
sta P8ZP_SCRATCH_B1
lda cx16.r0+1
sta cx16.r1
sta P8ZP_SCRATCH_REG
lda cx16.r0
asl a
rol P8ZP_SCRATCH_REG
asl a
rol P8ZP_SCRATCH_REG
asl a
rol P8ZP_SCRATCH_REG
asl a
rol P8ZP_SCRATCH_REG
asl a
rol P8ZP_SCRATCH_REG
asl a
rol P8ZP_SCRATCH_REG
sta cx16.r0
lda P8ZP_SCRATCH_B1
clc
adc P8ZP_SCRATCH_REG
sta cx16.r0+1
bcc +
inc cx16.r1
+ ; now add the value to this 24-bits number
lda cx16.r0
clc
adc P8ZP_SCRATCH_W1
sta cx16.r0
lda cx16.r0+1
adc P8ZP_SCRATCH_W1+1
sta cx16.r0+1
bcc +
inc cx16.r1
+ lda cx16.r1
rts
}}
}
}