2022-11-26 15:53:35 +01:00
|
|
|
adpcm {
|
|
|
|
|
2023-10-10 02:24:06 +02:00
|
|
|
; IMA ADPCM decoder. Supports mono and stereo streams.
|
2022-11-26 15:53:35 +01:00
|
|
|
; https://wiki.multimedia.cx/index.php/IMA_ADPCM
|
|
|
|
; https://wiki.multimedia.cx/index.php/Microsoft_IMA_ADPCM
|
|
|
|
|
2023-03-03 00:47:12 +01:00
|
|
|
; IMA ADPCM encodes two 16-bit PCM audio samples in 1 byte (1 word per nibble)
|
|
|
|
; thus compressing the audio data by a factor of 4.
|
|
|
|
; The encoding precision is about 13 bits per sample so it's a lossy compression scheme.
|
|
|
|
;
|
2023-10-10 02:24:06 +02:00
|
|
|
; HOW TO CREATE IMA-ADPCM ENCODED AUDIO? Use sox or ffmpeg like so (example):
|
2023-03-03 00:47:12 +01:00
|
|
|
; $ sox --guard source.mp3 -r 8000 -c 1 -e ima-adpcm out.wav trim 01:27.50 00:09
|
|
|
|
; $ ffmpeg -i source.mp3 -ss 00:01:27.50 -to 00:01:36.50 -ar 8000 -ac 1 -c:a adpcm_ima_wav -block_size 256 -map_metadata -1 -bitexact out.wav
|
2023-10-10 02:24:06 +02:00
|
|
|
; And/or use a tool such as https://github.com/dbry/adpcm-xq (make sure to set the correct block size, -b8)
|
2023-10-10 22:41:07 +02:00
|
|
|
;
|
|
|
|
; NOTE: for speed reasons this implementation doesn't guard against clipping errors.
|
|
|
|
; if the output sounds distorted, lower the volume of the source waveform to 80% and try again etc.
|
2023-10-10 02:24:06 +02:00
|
|
|
|
|
|
|
|
|
|
|
; IMA-ADPCM file data stream format:
|
|
|
|
; If the IMA data is mono, an individual chunk of data begins with the following preamble:
|
|
|
|
; bytes 0-1: initial predictor (in little-endian format)
|
|
|
|
; byte 2: initial index
|
|
|
|
; byte 3: unknown, usually 0 and is probably reserved
|
|
|
|
; If the IMA data is stereo, a chunk begins with two preambles, one for the left audio channel and one for the right channel.
|
|
|
|
; (so we have 8 bytes of preamble).
|
|
|
|
; The remaining bytes in the chunk are the IMA nibbles. The first 4 bytes, or 8 nibbles,
|
|
|
|
; belong to the left channel and -if it's stereo- the next 4 bytes belong to the right channel.
|
2023-03-03 00:47:12 +01:00
|
|
|
|
|
|
|
|
2022-11-26 15:53:35 +01:00
|
|
|
ubyte[] t_index = [ -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8]
|
2023-05-28 13:51:58 +02:00
|
|
|
uword[] @split t_step = [
|
2022-11-26 15:53:35 +01:00
|
|
|
7, 8, 9, 10, 11, 12, 13, 14,
|
|
|
|
16, 17, 19, 21, 23, 25, 28, 31,
|
|
|
|
34, 37, 41, 45, 50, 55, 60, 66,
|
|
|
|
73, 80, 88, 97, 107, 118, 130, 143,
|
|
|
|
157, 173, 190, 209, 230, 253, 279, 307,
|
|
|
|
337, 371, 408, 449, 494, 544, 598, 658,
|
|
|
|
724, 796, 876, 963, 1060, 1166, 1282, 1411,
|
|
|
|
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
|
|
|
|
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
|
|
|
|
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
|
|
|
|
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
|
|
|
|
32767]
|
|
|
|
|
2023-10-10 22:41:07 +02:00
|
|
|
uword @requirezp predict ; decoded 16 bit pcm sample for first channel.
|
|
|
|
uword @requirezp predict_2 ; decoded 16 bit pcm sample for second channel.
|
2023-03-03 00:47:12 +01:00
|
|
|
ubyte @requirezp index
|
2023-10-10 02:24:06 +02:00
|
|
|
ubyte @requirezp index_2
|
2023-10-12 22:29:01 +02:00
|
|
|
uword @requirezp pstep
|
|
|
|
uword @requirezp pstep_2
|
2022-11-26 15:53:35 +01:00
|
|
|
|
|
|
|
sub init(uword startPredict, ubyte startIndex) {
|
2023-10-10 02:24:06 +02:00
|
|
|
; initialize first decoding channel.
|
2022-11-26 15:53:35 +01:00
|
|
|
predict = startPredict
|
|
|
|
index = startIndex
|
|
|
|
pstep = t_step[index]
|
|
|
|
}
|
|
|
|
|
2023-10-10 02:24:06 +02:00
|
|
|
sub init_second(uword startPredict_2, ubyte startIndex_2) {
|
|
|
|
; initialize second decoding channel.
|
|
|
|
predict_2 = startPredict_2
|
|
|
|
index_2 = startIndex_2
|
|
|
|
pstep_2 = t_step[index_2]
|
|
|
|
}
|
|
|
|
|
2024-07-22 01:05:58 +02:00
|
|
|
sub decode_nibble(ubyte @zp nibble) {
|
2023-10-12 22:29:01 +02:00
|
|
|
; Decoder for nibbles for the first channel.
|
2022-11-26 15:53:35 +01:00
|
|
|
; this is the hotspot of the decoder algorithm!
|
2023-10-12 22:29:01 +02:00
|
|
|
; Note that the generated assembly from this is pretty efficient,
|
|
|
|
; rewriting it by hand in asm seems to improve it only 5-10%
|
2022-11-26 15:53:35 +01:00
|
|
|
cx16.r0s = 0 ; difference
|
2024-02-04 23:18:11 +01:00
|
|
|
if nibble & %0100 !=0
|
2022-11-26 15:53:35 +01:00
|
|
|
cx16.r0s += pstep
|
|
|
|
pstep >>= 1
|
2024-02-04 23:18:11 +01:00
|
|
|
if nibble & %0010 !=0
|
2022-11-26 15:53:35 +01:00
|
|
|
cx16.r0s += pstep
|
|
|
|
pstep >>= 1
|
2024-02-04 23:18:11 +01:00
|
|
|
if nibble & %0001 !=0
|
2022-11-26 15:53:35 +01:00
|
|
|
cx16.r0s += pstep
|
|
|
|
pstep >>= 1
|
|
|
|
cx16.r0s += pstep
|
2024-02-04 23:18:11 +01:00
|
|
|
if nibble & %1000 !=0
|
|
|
|
predict -= cx16.r0
|
2023-10-10 22:41:07 +02:00
|
|
|
else
|
2024-02-04 23:18:11 +01:00
|
|
|
predict += cx16.r0
|
2023-10-10 22:41:07 +02:00
|
|
|
|
|
|
|
; NOTE: the original C/Python code uses a 32 bits prediction value and clips it to a 16 bit word
|
|
|
|
; but for speed reasons we only work with 16 bit words here all the time (with possible clipping error)
|
|
|
|
; if predicted > 32767:
|
|
|
|
; predicted = 32767
|
|
|
|
; elif predicted < -32767:
|
|
|
|
; predicted = - 32767
|
|
|
|
|
2022-11-26 15:53:35 +01:00
|
|
|
index += t_index[nibble]
|
2023-10-12 22:29:01 +02:00
|
|
|
if_neg
|
2022-11-26 15:53:35 +01:00
|
|
|
index = 0
|
2023-10-12 22:29:01 +02:00
|
|
|
else if index >= len(t_step)-1
|
2022-11-26 15:53:35 +01:00
|
|
|
index = len(t_step)-1
|
|
|
|
pstep = t_step[index]
|
|
|
|
}
|
2023-10-10 02:24:06 +02:00
|
|
|
|
2024-07-22 01:05:58 +02:00
|
|
|
sub decode_nibble_second(ubyte @zp nibble) {
|
2023-10-12 22:29:01 +02:00
|
|
|
; Decoder for nibbles for the second channel.
|
2023-10-10 02:24:06 +02:00
|
|
|
; this is the hotspot of the decoder algorithm!
|
2023-10-12 22:29:01 +02:00
|
|
|
; Note that the generated assembly from this is pretty efficient,
|
|
|
|
; rewriting it by hand in asm seems to improve it only 5-10%
|
2023-10-10 02:24:06 +02:00
|
|
|
cx16.r0s = 0 ; difference
|
2024-02-04 23:18:11 +01:00
|
|
|
if nibble & %0100 !=0
|
2023-10-10 02:24:06 +02:00
|
|
|
cx16.r0s += pstep_2
|
|
|
|
pstep_2 >>= 1
|
2024-02-04 23:18:11 +01:00
|
|
|
if nibble & %0010 !=0
|
2023-10-10 02:24:06 +02:00
|
|
|
cx16.r0s += pstep_2
|
|
|
|
pstep_2 >>= 1
|
2024-02-04 23:18:11 +01:00
|
|
|
if nibble & %0001 !=0
|
2023-10-10 02:24:06 +02:00
|
|
|
cx16.r0s += pstep_2
|
|
|
|
pstep_2 >>= 1
|
|
|
|
cx16.r0s += pstep_2
|
2024-02-04 23:18:11 +01:00
|
|
|
if nibble & %1000 !=0
|
|
|
|
predict_2 -= cx16.r0
|
2023-10-10 22:41:07 +02:00
|
|
|
else
|
2024-02-04 23:18:11 +01:00
|
|
|
predict_2 += cx16.r0
|
2023-10-10 22:41:07 +02:00
|
|
|
|
|
|
|
; NOTE: the original C/Python code uses a 32 bits prediction value and clips it to a 16 bit word
|
|
|
|
; but for speed reasons we only work with 16 bit words here all the time (with possible clipping error)
|
|
|
|
; if predicted > 32767:
|
|
|
|
; predicted = 32767
|
|
|
|
; elif predicted < -32767:
|
|
|
|
; predicted = - 32767
|
|
|
|
|
2023-10-12 22:29:01 +02:00
|
|
|
index_2 += t_index[nibble]
|
|
|
|
if_neg
|
2023-10-10 02:24:06 +02:00
|
|
|
index_2 = 0
|
2023-10-12 22:29:01 +02:00
|
|
|
else if index_2 >= len(t_step)-1
|
2023-10-10 02:24:06 +02:00
|
|
|
index_2 = len(t_step)-1
|
|
|
|
pstep_2 = t_step[index_2]
|
|
|
|
}
|
2022-11-26 15:53:35 +01:00
|
|
|
}
|