Commodore-64 -> Commodore 64

This commit is contained in:
Frosty-J 2022-10-28 22:45:09 +01:00
parent 13534cd4a9
commit 8b1ae404a3
No known key found for this signature in database
GPG Key ID: 40E77A729BA7811B
6 changed files with 8 additions and 8 deletions

View File

@ -68,7 +68,7 @@ It contains all of the program's code and data and has a certain file format tha
allows it to be loaded directly on the target system. Prog8 currently has no built-in
support for programs that exceed 64 Kb of memory, nor for multi-part loaders.
For the Commodore-64, most programs will have a tiny BASIC launcher that does a SYS into the generated machine code.
For the Commodore 64, most programs will have a tiny BASIC launcher that does a SYS into the generated machine code.
This way the user can load it as any other program and simply RUN it to start. (This is a regular ".prg" program).
Prog8 can create those, but it is also possible to output plain binary programs
that can be loaded into memory anywhere.

View File

@ -15,7 +15,7 @@ This is a compiled programming language targeting the 8-bit
`6510 <https://en.wikipedia.org/wiki/MOS_Technology_6510>`_ /
`65c02 <https://en.wikipedia.org/wiki/MOS_Technology_65C02>`_ microprocessors.
This CPU is from the late 1970's and early 1980's and was used in many home computers from that era,
such as the `Commodore-64 <https://en.wikipedia.org/wiki/Commodore_64>`_.
such as the `Commodore 64 <https://en.wikipedia.org/wiki/Commodore_64>`_.
The language aims to provide many conveniences over raw assembly code (even when using a macro assembler),
while still being low level enough to create high performance programs.
You can compile programs for various machines with this CPU:

View File

@ -46,7 +46,7 @@ sys (part of syslib)
The following return values are currently defined:
- 16 = compiled for CommanderX16 with 65C02 CPU
- 64 = compiled for Commodore-64 with 6502/6510 CPU
- 64 = compiled for Commodore 64 with 6502/6510 CPU
``exit(returncode)``
Immediately stops the program and exits it, with the returncode in the A register.
@ -356,7 +356,7 @@ Full-screen multicolor bitmap graphics routines, available on the Cx16 machine o
palette (cx16 only)
--------------------
Available for the Cx16 target. Various routines to set the display color palette.
There are also a few better looking Commodore-64 color palettes available here,
There are also a few better looking Commodore 64 color palettes available here,
because the Commander X16's default colors for this (the first 16 colors) are too saturated
and are quite different than how they looked on a VIC-II chip in a C-64.

View File

@ -260,7 +260,7 @@ Floating point numbers
^^^^^^^^^^^^^^^^^^^^^^
Floats are stored in the 5-byte 'MFLPT' format that is used on CBM machines,
and currently all floating point operations are specific to the Commodore-64.
and currently all floating point operations are specific to the Commodore 64.
This is because routines in the C-64 BASIC and KERNAL ROMs are used for that.
So floating point operations will only work if the C-64 BASIC ROM (and KERNAL ROM)
are banked in.

View File

@ -119,7 +119,7 @@ Directives
Sets special compiler options.
- ``enable_floats`` (module level) tells the compiler
to deal with floating point numbers (by using various subroutines from the Commodore-64 kernal).
to deal with floating point numbers (by using various subroutines from the Commodore 64 kernal).
Otherwise, floating point support is not enabled. Normally you don't have to use this yourself as
importing the ``floats`` library is required anyway and that will enable it for you automatically.
- ``no_sysinit`` (module level) which cause the resulting program to *not* include
@ -662,7 +662,7 @@ flag such as Carry (Pc).
The 'virtual' 16-bit registers from the Commander X16 can also be specified as ``R0`` .. ``R15`` .
This means you don't have to set them up manually before calling a subroutine that takes
one or more parameters in those 'registers'. You can just list the arguments directly.
*This also works on the Commodore-64!* (however they are not as efficient there because they're not in zeropage)
*This also works on the Commodore 64!* (however they are not as efficient there because they're not in zeropage)
In prog8 and assembly code these 'registers' are directly accessible too via
``cx16.r0`` .. ``cx16.r15`` (these are memory mapped uword values),
``cx16.r0s`` .. ``cx16.r15s`` (these are memory mapped word values),

View File

@ -64,7 +64,7 @@ reserved address in use for
================== =======================
The actual machine will often have many other special addresses as well,
For example, the Commodore-64 has:
For example, the Commodore 64 has:
- ROMs installed in the machine: BASIC, kernal and character roms. Occupying ``$a000``--``$bfff`` and ``$e000``--``$ffff``.
- memory-mapped I/O registers, for the video and sound chips, and the CIA's. Occupying ``$d000``--``$dfff``.