Compare commits

...

188 Commits
v1.7 ... v1.50

Author SHA1 Message Date
e1b26ae287 readme 2019-08-10 21:38:08 +02:00
1c151f4a3f remove dysfunctional repl 2019-08-10 21:36:26 +02:00
8917926996 new version 2019-08-10 20:45:41 +02:00
b54a9b9831 fix output of word arrays containing addressofs 2019-08-10 20:43:27 +02:00
f08906dba1 fix byte->word typecast 2019-08-10 14:20:42 +02:00
a6bba824d3 fixed some array codegen issues 2019-08-10 12:55:27 +02:00
fd84152a2b import cleanups 2019-08-09 02:21:04 +02:00
3466106119 fixed some array codegen issues 2019-08-09 02:15:31 +02:00
c79b587eea nonconst forloops (bytes) 2019-08-08 23:13:02 +02:00
4862fb7db1 asmsub return value in registers is now put on evalstack, and loopvar sequence numbering 2019-08-08 00:13:58 +02:00
2136db0e61 fix auto var naming collisions 2019-08-07 22:25:57 +02:00
2f0c0f6fcd fix function arguments 2019-08-07 02:31:27 +02:00
7ddc01f883 added continuous compilation mode (file watching) 2019-08-05 23:36:24 +02:00
126c2162f1 syntax fix in readme 2019-08-05 21:11:58 +02:00
094c8ab94c Merge branch 'asmgen2-ast-only' 2019-08-05 21:07:32 +02:00
efe2723874 version 2019-08-05 21:06:41 +02:00
bccfeb2fa2 fix some unittests 2019-08-05 21:04:15 +02:00
d498d5445c added more examples/test programs 2019-08-05 21:01:41 +02:00
5095d090cc added optimized multiplications to asmgen2 2019-08-05 21:00:55 +02:00
6544fcdc36 fixed output of force_output blocks 2019-08-04 23:08:58 +02:00
e834924857 more ++ and -- code, 'dontuse' zeropage option 2019-08-04 22:44:20 +02:00
2c3b8a9819 more ++ and -- code, 'dontuse' zeropage option 2019-08-04 22:35:27 +02:00
309c82fc9e fixed some compiler errors 2019-08-04 19:54:32 +02:00
0f91ce6441 removed a few more hazardous zp addresses 2019-08-04 19:40:31 +02:00
f29ec3b4e1 relaxed symbol shadowing 2019-08-04 18:52:03 +02:00
cc1fc869cf fix param type casts for builtin functions 2019-08-04 18:25:00 +02:00
0431d3cddc implemented asm for continue and break 2019-08-04 16:05:50 +02:00
a1cd202cd2 some more array asm 2019-08-04 15:33:00 +02:00
b842493cf0 trying to fix arithmetic and funcion calls and var scoping issues 2019-08-03 13:21:38 +02:00
4718f09cb7 trying to fix arithmetic and funcion calls 2019-08-03 01:51:12 +02:00
e9c357a885 fix range typing issues and function call param cleanup bug for asmsub 2019-08-02 01:26:28 +02:00
fb00ff74d1 simplistic repeat and while loops 2019-08-01 21:23:55 +02:00
b740b079db simplified mapping of builtin functions to just a jsr 2019-08-01 21:03:21 +02:00
6394841041 fix byte/word add/sub mixup 2019-08-01 20:42:09 +02:00
3f4050c647 more for loops, words 2019-08-01 00:35:25 +02:00
82f01d84c2 more for loops 2019-07-31 22:15:20 +02:00
299ea72d70 various for loops 2019-07-31 21:47:30 +02:00
50aa286d3a begin of for asm 2019-07-31 00:54:04 +02:00
6f7322150f fix string literal replacing by identifierref 2019-07-31 00:14:12 +02:00
cc9965cc96 improved deduction of array datatypes 2019-07-30 23:35:25 +02:00
ae90a957c6 fix var prefix issues in asm gen of anonscopes 2019-07-30 21:13:52 +02:00
8cec032e7d more asm for byte writes to memory 2019-07-30 02:49:13 +02:00
3732ab1e62 fix compilation errors 2019-07-30 02:26:30 +02:00
fba149ee28 removed the ~ before block names 2019-07-29 23:11:13 +02:00
4661cba974 asm for when statements added 2019-07-29 22:47:04 +02:00
025be8cb7c fix infinte loop in constantfolding of when choices 2019-07-29 22:06:59 +02:00
3aea32551b fixes 2019-07-29 02:47:01 +02:00
8e8c112ff0 improved subroutine param ast checks, added asm for Carry parameter 2019-07-29 00:33:19 +02:00
b0dda08e74 assembler reserved symbols checked 2019-07-28 23:37:33 +02:00
2c25df122a merge strings in asm output 2019-07-28 21:29:49 +02:00
7cb5702b37 array asm 2019-07-28 21:03:09 +02:00
b7502c7eaa fixed some node update issues in Modifying Ast visitor 2019-07-28 15:18:53 +02:00
fed020825a some more asmgen v2; fixed duplicate label namings, if stmt, and vars in anon scopes 2019-07-28 13:12:13 +02:00
1c411897df some more asmgen v2, and seemingly useless assignments to memory variables are no longer optimized away 2019-07-27 03:11:15 +02:00
f94e241fb2 fix array datatypes in vardecls 2019-07-26 23:51:53 +02:00
757cbfd1ba readme 2019-07-24 00:45:04 +02:00
3de80319db readme 2019-07-24 00:43:37 +02:00
f9617d777a floats from rom 2019-07-24 00:39:01 +02:00
9961a404ae got rid of bytecode based compiler and vm 2019-07-23 20:44:11 +02:00
776c844d02 more ast-codegen v2 2019-07-23 01:36:49 +02:00
03782a37a2 begin of ast-codegen v2 2019-07-21 23:50:13 +02:00
173663380b slight optimization for creating the asmpatterns list 2019-07-20 22:37:16 +02:00
c6fdd65c63 shuffling some things around 2019-07-18 22:23:31 +02:00
d9546f9dc7 version 2019-07-18 01:38:35 +02:00
2a6b0f5db7 remove some more dead code 2019-07-18 01:31:12 +02:00
b4e1b42cec remove some dead code 2019-07-17 22:35:38 +02:00
a8898a5993 using sealed class instead of interface 2019-07-17 02:35:26 +02:00
e03c68b632 optimize imports 2019-07-17 02:11:16 +02:00
a0074de12b updated the compiled examples 2019-07-17 00:39:03 +02:00
411bedcc46 fixed assignment type error with structs
added structs example
2019-07-16 23:56:00 +02:00
07d8caf884 string literal concatenation and repeating added again 2019-07-16 23:34:43 +02:00
c0e83ef8df wordings 2019-07-16 21:31:14 +02:00
4dbf4b2005 tweaks about initialization values 2019-07-16 20:32:23 +02:00
61af72b906 struct literals 2019-07-16 02:36:32 +02:00
17be722e2b arrays without init value are once again cleared with zeros 2019-07-15 23:05:04 +02:00
16d7927d2f fix arrays and some struct parsing issues 2019-07-15 22:28:05 +02:00
55a7a5d9d5 fix aggregate functions in astvm 2019-07-15 03:57:51 +02:00
78d7849197 fixes 2019-07-15 03:08:26 +02:00
d5b12fb01d made astchecker readonly 2019-07-15 01:47:59 +02:00
31f4e378aa split up Literalvalue into numeric and reference ones 2019-07-15 01:11:32 +02:00
8a26b7b248 - fixed lookup of members in structs defined in another scope
- preserve order of variable definitions in the Ast (and thus, the output)
2019-07-13 23:03:22 +02:00
87c28cfdbc restructure c64 machinedefinition 2019-07-13 03:16:48 +02:00
1f5420010d prevent struct member vars from shuffling around, can take address of struct now 2019-07-13 01:16:34 +02:00
a089c48378 finalize v 1.11 2019-07-12 20:31:18 +02:00
3e5deda46c struct finished 2019-07-12 20:07:41 +02:00
7500c6efd0 struct fixes 2019-07-12 17:57:56 +02:00
717b5f3b07 struct fixes 2019-07-12 16:40:18 +02:00
9f6fa60bf1 prepare 2019-07-12 14:38:37 +02:00
1e9586f635 Structs can be compiled and executed in the vm! structs are just syntactic sugar for a set of variables for now. 2019-07-12 12:41:08 +02:00
44f9d5e69e added struct syntax 2019-07-12 06:14:59 +02:00
7c9b8f7d43 cleaned up some buildprocess scripts 2019-07-11 17:27:57 +02:00
845a99d623 return statement only has one single possible value
astvm can now more or less run all examples
2019-07-10 19:27:44 +02:00
3d7a4bf81a astvm can now more or less run all examples 2019-07-10 18:44:54 +02:00
d4b3e35bd2 astvm almost complete 2019-07-10 16:50:41 +02:00
a59f7c75dc fixed some compile time and vm arithmetic errors 2019-07-10 13:33:52 +02:00
44fe2369d6 multitarget assignments removed 2019-07-10 10:11:37 +02:00
aaaab2cfcf fix asm gen for loops when dealing with registers as loopvar 2019-07-10 08:51:05 +02:00
9a3dab20dc extra warnings about register usage in loops 2019-07-10 08:30:17 +02:00
20379b5927 fixed astvm postincrdecr and rsave/rrestore 2019-07-10 08:13:42 +02:00
34dcce67e4 fixed petscii conversion when printing text 2019-07-10 07:10:34 +02:00
0c7f107d01 fix irq routine removal 2019-07-10 03:57:03 +02:00
1f89571aa5 proper NOP removal 2019-07-10 03:06:31 +02:00
7eed1ebbf8 optimized typecasting more 2019-07-10 02:54:39 +02:00
12cb7d7abe optimize redundant typecasts more 2019-07-10 01:52:04 +02:00
c9b16dcbd9 nicer printing of arrays, fix inc/dec overflow issue in runtimevalue 2019-07-10 01:16:32 +02:00
dcab6d00bb ver 2019-07-10 00:50:18 +02:00
a85743f241 docs about 'when' statement 2019-07-10 00:45:53 +02:00
14cabde5cf when statement extended with multiple choice values 2019-07-10 00:25:21 +02:00
cc078503e3 tehtriz example uses when statement 2019-07-09 23:39:03 +02:00
2a0c3377f9 fixed Nop statements without parent 2019-07-09 23:27:09 +02:00
16454f5560 optimized when asm 2019-07-09 21:59:50 +02:00
c1343a78f1 when working correctly in asm (corrected dup & cmp) 2019-07-09 21:41:47 +02:00
9d0c65c682 when working correctly in stackvm and astvm 2019-07-09 20:39:08 +02:00
9e6408244f fix scoping of variables in when statement 2019-07-09 19:44:59 +02:00
3581017489 added ast printing of when statement 2019-07-09 09:02:56 +02:00
9bc36b4d99 Merge remote-tracking branch 'origin/master'
# Conflicts:
#	compiler/src/prog8/ast/Interfaces.kt
#	compiler/src/prog8/ast/expressions/AstExpressions.kt
#	compiler/src/prog8/ast/processing/AstChecker.kt
#	compiler/src/prog8/ast/processing/IAstModifyingVisitor.kt
#	compiler/src/prog8/ast/processing/IAstVisitor.kt
#	compiler/src/prog8/ast/processing/StatementReorderer.kt
#	compiler/src/prog8/ast/statements/AstStatements.kt
#	compiler/src/prog8/compiler/AstToSourceCode.kt
#	compiler/src/prog8/compiler/target/c64/AsmGen.kt
#	compiler/src/prog8/optimizer/StatementOptimizer.kt
#	examples/test.p8
2019-07-09 08:44:23 +02:00
e8caf6d319 1.9 2019-07-09 08:42:38 +02:00
5b9cc9592f removed kotlin.reflection dependency
optimized gradle build now using shadowjar
2019-07-09 08:27:47 +02:00
3cf87536ff fix asmsub syntax 2019-07-09 07:24:21 +02:00
cc452dffb8 restructure asmgen to improve compilation and IDE performance issues 2019-07-09 06:23:11 +02:00
e414d301a4 script fixes 2019-07-09 05:09:13 +02:00
5ff79073f4 added DUP opcodes 2019-07-09 04:09:29 +02:00
70462ffe6d syntax check and optimization of 'when' 2019-07-09 02:42:56 +02:00
158fe7596b astvm eval of 'when' 2019-07-09 00:17:34 +02:00
f4f113da7b parser for 'when' statement 2019-07-09 00:02:38 +02:00
d6b6254b72 simplified the asmsub syntax 2019-07-08 23:00:18 +02:00
65fa8c4613 ast source printer fixes 2019-07-08 22:29:22 +02:00
c1102393bb should not shuffle assignments. 2019-07-08 22:18:25 +02:00
dbe048158c cleaned up the ast processing:
- visitor pattern names are now used for the interfaces and the methods
- separated a modifying and a read-only ast visitor
There is now also an AstPrinter that produces original source code back from an AST
2019-07-08 21:51:16 +02:00
2b3382ff8e cleaned up the ast processing:
- visitor pattern names are now used for the interfaces and the methods
- separated a modifying and a read-only ast visitor
There is now also an AstPrinter that produces original source code back from an AST
2019-07-08 21:32:32 +02:00
c970d899fa DirectMemoryWrite is not an expression 2019-07-08 16:59:11 +02:00
3c563d281a restructuring more things 2019-07-08 15:13:24 +02:00
1794f704e7 restructuring more things 2019-07-08 14:38:51 +02:00
ade7a4c398 restructuring vm 2019-07-08 13:40:52 +02:00
5a27b035b0 restructuring of the AST package 2019-07-08 13:33:31 +02:00
e84bb8d94a some attempts to make the gradle build faster 2019-07-08 12:26:15 +02:00
5ed0893d96 tweak 2019-07-02 22:27:31 +02:00
89314a0e1a fix reading and writing rtc jiffy clock, memory can now intercept reads and writes 2019-07-02 20:48:14 +02:00
fd0abf61df fix build script docs 2019-07-02 04:56:31 +02:00
ac70ae6a76 scripts 2019-07-02 04:39:53 +02:00
d83f49d84f remove unused variables, subroutines, blocks 2019-07-02 04:29:51 +02:00
ff1294207e improved parameter name shadowing check 2019-07-02 00:32:55 +02:00
a56956797a chars can now have a color 2019-07-01 23:41:30 +02:00
3242495b0b slightly improved warning about implicit float casts 2019-07-01 18:43:39 +02:00
49eb7e7803 remove bogus 2019-07-01 18:11:16 +02:00
1d7f0d3537 streamline moving values to heap 2019-07-01 18:01:36 +02:00
31137743f0 simplified string handling a little in LiteralValue 2019-07-01 14:19:41 +02:00
2c69e10489 heapId writable 2019-07-01 14:10:52 +02:00
3a1fa9e069 fixed constantfolding of array values 2019-07-01 13:53:29 +02:00
2c08d2f9c6 fix array size in vardecls 2019-06-30 20:10:53 +02:00
4743cacb73 fix swap() 2019-06-30 18:06:11 +02:00
5f5a1447e0 array on heap fix 2019-06-30 17:58:08 +02:00
a3004555a8 branch 2019-06-30 17:07:08 +02:00
267c678292 more swap logic, some typing fixes 2019-06-28 22:10:01 +02:00
6c50043a4a swap isn't yet finished 2019-06-28 02:57:13 +02:00
3ee1b2efdd left and right of a binary expression should usually have the same datatype, insert typecast if needed 2019-06-28 02:39:55 +02:00
75d8c832ad implemented Jump 2019-06-28 01:21:31 +02:00
53a4379c45 implemented all builtin functions in the AstVm 2019-06-28 00:10:27 +02:00
29b3a7e94e optimize redundant typecasts, fix some runtime type casting errors 2019-06-27 21:09:21 +02:00
0782f6ecf1 function call arguments 2019-06-27 00:07:41 +02:00
595e58ec46 taking care of memory mapped vars 2019-06-26 03:28:34 +02:00
060e05c868 strlen and strings with zeros in them should terminate at the zero 2019-06-26 02:34:43 +02:00
f49eefad6f some builtin functions 2019-06-26 00:01:23 +02:00
d68360461b registers 2019-06-25 22:48:40 +02:00
343978d164 for loop and cleaner iteration over values 2019-06-25 21:49:02 +02:00
b11d10e2ff fix Return when dealing with non-subroutine scopes 2019-06-25 01:44:57 +02:00
268856823a got rid of old Value in favor of new RuntimeValue implementation 2019-06-24 22:45:27 +02:00
4bac5043b6 fix integer wraparounds for RuntimeValue 2019-06-24 22:18:50 +02:00
eb25b4c800 fix some initial value datatypes and type casting in assignments 2019-06-24 04:09:30 +02:00
a079e44b02 fix some initial value datatypes and type casting in assignments 2019-06-24 01:31:25 +02:00
e53c860f1a first go at ast-based virtual machine (rather than the stackvm that uses intermediate code) 2019-06-24 00:17:48 +02:00
99121004bf more sensible subroutine inlining 2019-06-23 20:06:35 +02:00
6dd3371781 some infix functions 2019-06-23 15:43:52 +02:00
f473be8951 simple cleaup script 2019-06-23 14:10:50 +02:00
ebd38f27e6 cleaned up some symbol visibilities 2019-06-23 13:49:35 +02:00
a6c3251668 simple subroutine inlining 2019-06-23 03:15:23 +02:00
560047adee variables init subroutine must never be optimized away (fixes primes example) 2019-06-21 23:56:45 +02:00
a86852874f readme 2019-06-21 23:41:20 +02:00
6d44d6a901 travis ci 2019-06-21 23:22:34 +02:00
968f02823f travis ci 2019-06-21 23:14:53 +02:00
5d321d759e travis ci 2019-06-21 23:12:25 +02:00
7de7d5234f callgraph fixed scanning asm subroutines, and deletion of unused subs and modules 2019-06-21 23:08:29 +02:00
b374af3526 remove unused/empty modules 2019-06-21 00:12:22 +02:00
b35430214b some more program node cleanups 2019-06-20 21:46:59 +02:00
e96d3d4455 update kotlin version
cleaning up the way the root of the Ast and the global namespace work (introduced ProgramAst node)
2019-06-20 20:15:18 +02:00
6a17f7a0ad Merge remote-tracking branch 'origin/master' 2019-05-30 16:04:09 +02:00
c559682c0b refresh IDE project files 2019-05-30 16:03:53 +02:00
6ce1277438 fix classpaths in windows command files 2019-05-06 17:14:13 +02:00
172 changed files with 26454 additions and 17232 deletions

2
.gitignore vendored
View File

@ -24,8 +24,6 @@ __pycache__/
parser.out
parsetab.py
.pytest_cache/
compiler/src/prog8_kotlin.jar
compiler/src/compiled_java
.attach_pid*
.gradle

2
.idea/.gitignore generated vendored Normal file
View File

@ -0,0 +1,2 @@
# Default ignored files
/shelf/

3
.idea/dictionaries/irmen.xml generated Normal file
View File

@ -0,0 +1,3 @@
<component name="ProjectDictionaryState">
<dictionary name="irmen" />
</component>

20
.idea/gradle.xml generated
View File

@ -1,20 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="GradleSettings">
<option name="linkedExternalProjectsSettings">
<GradleProjectSettings>
<option name="distributionType" value="DEFAULT_WRAPPED" />
<option name="externalProjectPath" value="$PROJECT_DIR$" />
<option name="gradleHome" value="/usr/share/java/gradle" />
<option name="modules">
<set>
<option value="$PROJECT_DIR$" />
<option value="$PROJECT_DIR$/compiler" />
<option value="$PROJECT_DIR$/parser" />
</set>
</option>
<option name="useQualifiedModuleNames" value="true" />
</GradleProjectSettings>
</option>
</component>
</project>

View File

@ -0,0 +1,10 @@
<component name="InspectionProjectProfileManager">
<profile version="1.0">
<option name="myName" value="Project Default" />
<inspection_tool class="SpellCheckingInspection" enabled="true" level="TYPO" enabled_by_default="true">
<option name="processCode" value="false" />
<option name="processLiterals" value="true" />
<option name="processComments" value="false" />
</inspection_tool>
</profile>
</component>

6
.idea/kotlinc.xml generated Normal file
View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Kotlin2JvmCompilerArguments">
<option name="jvmTarget" value="1.8" />
</component>
</project>

19
.idea/libraries/KotlinJavaRuntime.xml generated Normal file
View File

@ -0,0 +1,19 @@
<component name="libraryTable">
<library name="KotlinJavaRuntime">
<CLASSES>
<root url="jar://$KOTLIN_BUNDLED$/lib/kotlin-stdlib.jar!/" />
<root url="jar://$KOTLIN_BUNDLED$/lib/kotlin-reflect.jar!/" />
<root url="jar://$KOTLIN_BUNDLED$/lib/kotlin-test.jar!/" />
<root url="jar://$KOTLIN_BUNDLED$/lib/kotlin-stdlib-jdk7.jar!/" />
<root url="jar://$KOTLIN_BUNDLED$/lib/kotlin-stdlib-jdk8.jar!/" />
</CLASSES>
<JAVADOC />
<SOURCES>
<root url="jar://$KOTLIN_BUNDLED$/lib/kotlin-stdlib-sources.jar!/" />
<root url="jar://$KOTLIN_BUNDLED$/lib/kotlin-reflect-sources.jar!/" />
<root url="jar://$KOTLIN_BUNDLED$/lib/kotlin-test-sources.jar!/" />
<root url="jar://$KOTLIN_BUNDLED$/lib/kotlin-stdlib-jdk7-sources.jar!/" />
<root url="jar://$KOTLIN_BUNDLED$/lib/kotlin-stdlib-jdk8-sources.jar!/" />
</SOURCES>
</library>
</component>

View File

@ -0,0 +1,9 @@
<component name="libraryTable">
<library name="antlr-4.7.2-complete">
<CLASSES>
<root url="jar://$PROJECT_DIR$/parser/antlr/lib/antlr-4.7.2-complete.jar!/" />
</CLASSES>
<JAVADOC />
<SOURCES />
</library>
</component>

9
.idea/libraries/antlr_runtime_4_7_2.xml generated Normal file
View File

@ -0,0 +1,9 @@
<component name="libraryTable">
<library name="antlr-runtime-4.7.2">
<CLASSES>
<root url="jar://$PROJECT_DIR$/parser/antlr/lib/antlr-runtime-4.7.2.jar!/" />
</CLASSES>
<JAVADOC />
<SOURCES />
</library>
</component>

10
.idea/libraries/unittest_libs.xml generated Normal file
View File

@ -0,0 +1,10 @@
<component name="libraryTable">
<library name="unittest-libs">
<CLASSES>
<root url="file://$PROJECT_DIR$/compiler/lib" />
</CLASSES>
<JAVADOC />
<SOURCES />
<jarDirectory url="file://$PROJECT_DIR$/compiler/lib" recursive="false" />
</library>
</component>

3
.idea/misc.xml generated
View File

@ -1,7 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ExternalStorageConfigurationManager" enabled="true" />
<component name="ProjectRootManager" version="2" languageLevel="JDK_1_8" default="false" project-jdk-name="1.8" project-jdk-type="JavaSDK">
<component name="ProjectRootManager" version="2" languageLevel="JDK_1_8" default="false" project-jdk-name="Kotlin SDK" project-jdk-type="KotlinSDK">
<output url="file://$PROJECT_DIR$/out" />
</component>
</project>

4
.idea/modules.xml generated
View File

@ -2,7 +2,11 @@
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/DeprecatedStackVm/DeprecatedStackVm.iml" filepath="$PROJECT_DIR$/DeprecatedStackVm/DeprecatedStackVm.iml" />
<module fileurl="file://$PROJECT_DIR$/compiler/compiler.iml" filepath="$PROJECT_DIR$/compiler/compiler.iml" />
<module fileurl="file://$PROJECT_DIR$/docs/docs.iml" filepath="$PROJECT_DIR$/docs/docs.iml" />
<module fileurl="file://$PROJECT_DIR$/examples/examples.iml" filepath="$PROJECT_DIR$/examples/examples.iml" />
<module fileurl="file://$PROJECT_DIR$/parser/parser.iml" filepath="$PROJECT_DIR$/parser/parser.iml" />
</modules>
</component>
</project>

124
.idea/uiDesigner.xml generated Normal file
View File

@ -0,0 +1,124 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Palette2">
<group name="Swing">
<item class="com.intellij.uiDesigner.HSpacer" tooltip-text="Horizontal Spacer" icon="/com/intellij/uiDesigner/icons/hspacer.png" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="1" hsize-policy="6" anchor="0" fill="1" />
</item>
<item class="com.intellij.uiDesigner.VSpacer" tooltip-text="Vertical Spacer" icon="/com/intellij/uiDesigner/icons/vspacer.png" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="1" anchor="0" fill="2" />
</item>
<item class="javax.swing.JPanel" icon="/com/intellij/uiDesigner/icons/panel.png" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="3" hsize-policy="3" anchor="0" fill="3" />
</item>
<item class="javax.swing.JScrollPane" icon="/com/intellij/uiDesigner/icons/scrollPane.png" removable="false" auto-create-binding="false" can-attach-label="true">
<default-constraints vsize-policy="7" hsize-policy="7" anchor="0" fill="3" />
</item>
<item class="javax.swing.JButton" icon="/com/intellij/uiDesigner/icons/button.png" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="3" anchor="0" fill="1" />
<initial-values>
<property name="text" value="Button" />
</initial-values>
</item>
<item class="javax.swing.JRadioButton" icon="/com/intellij/uiDesigner/icons/radioButton.png" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="3" anchor="8" fill="0" />
<initial-values>
<property name="text" value="RadioButton" />
</initial-values>
</item>
<item class="javax.swing.JCheckBox" icon="/com/intellij/uiDesigner/icons/checkBox.png" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="3" anchor="8" fill="0" />
<initial-values>
<property name="text" value="CheckBox" />
</initial-values>
</item>
<item class="javax.swing.JLabel" icon="/com/intellij/uiDesigner/icons/label.png" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="0" anchor="8" fill="0" />
<initial-values>
<property name="text" value="Label" />
</initial-values>
</item>
<item class="javax.swing.JTextField" icon="/com/intellij/uiDesigner/icons/textField.png" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1">
<preferred-size width="150" height="-1" />
</default-constraints>
</item>
<item class="javax.swing.JPasswordField" icon="/com/intellij/uiDesigner/icons/passwordField.png" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1">
<preferred-size width="150" height="-1" />
</default-constraints>
</item>
<item class="javax.swing.JFormattedTextField" icon="/com/intellij/uiDesigner/icons/formattedTextField.png" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1">
<preferred-size width="150" height="-1" />
</default-constraints>
</item>
<item class="javax.swing.JTextArea" icon="/com/intellij/uiDesigner/icons/textArea.png" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JTextPane" icon="/com/intellij/uiDesigner/icons/textPane.png" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JEditorPane" icon="/com/intellij/uiDesigner/icons/editorPane.png" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JComboBox" icon="/com/intellij/uiDesigner/icons/comboBox.png" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="2" anchor="8" fill="1" />
</item>
<item class="javax.swing.JTable" icon="/com/intellij/uiDesigner/icons/table.png" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JList" icon="/com/intellij/uiDesigner/icons/list.png" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="2" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JTree" icon="/com/intellij/uiDesigner/icons/tree.png" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3">
<preferred-size width="150" height="50" />
</default-constraints>
</item>
<item class="javax.swing.JTabbedPane" icon="/com/intellij/uiDesigner/icons/tabbedPane.png" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="3" hsize-policy="3" anchor="0" fill="3">
<preferred-size width="200" height="200" />
</default-constraints>
</item>
<item class="javax.swing.JSplitPane" icon="/com/intellij/uiDesigner/icons/splitPane.png" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="3" hsize-policy="3" anchor="0" fill="3">
<preferred-size width="200" height="200" />
</default-constraints>
</item>
<item class="javax.swing.JSpinner" icon="/com/intellij/uiDesigner/icons/spinner.png" removable="false" auto-create-binding="true" can-attach-label="true">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1" />
</item>
<item class="javax.swing.JSlider" icon="/com/intellij/uiDesigner/icons/slider.png" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="8" fill="1" />
</item>
<item class="javax.swing.JSeparator" icon="/com/intellij/uiDesigner/icons/separator.png" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="6" anchor="0" fill="3" />
</item>
<item class="javax.swing.JProgressBar" icon="/com/intellij/uiDesigner/icons/progressbar.png" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="0" fill="1" />
</item>
<item class="javax.swing.JToolBar" icon="/com/intellij/uiDesigner/icons/toolbar.png" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="6" anchor="0" fill="1">
<preferred-size width="-1" height="20" />
</default-constraints>
</item>
<item class="javax.swing.JToolBar$Separator" icon="/com/intellij/uiDesigner/icons/toolbarSeparator.png" removable="false" auto-create-binding="false" can-attach-label="false">
<default-constraints vsize-policy="0" hsize-policy="0" anchor="0" fill="1" />
</item>
<item class="javax.swing.JScrollBar" icon="/com/intellij/uiDesigner/icons/scrollbar.png" removable="false" auto-create-binding="true" can-attach-label="false">
<default-constraints vsize-policy="6" hsize-policy="0" anchor="0" fill="2" />
</item>
</group>
</component>
</project>

2
.idea/vcs.xml generated
View File

@ -1,6 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="" vcs="Git" />
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

11
.travis.yml Normal file
View File

@ -0,0 +1,11 @@
language: java
# jdk: openjdk8
# dist: xenial
# sudo: false
before_install:
- chmod +x gradlew
script:
- ./gradlew test

View File

@ -0,0 +1,10 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="JAVA_MODULE" version="4">
<component name="NewModuleRootManager" inherit-compiler-output="true">
<exclude-output />
<content url="file://$MODULE_DIR$" />
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
<orderEntry type="library" name="KotlinJavaRuntime" level="project" />
</component>
</module>

File diff suppressed because it is too large Load Diff

View File

@ -1,10 +1,11 @@
package prog8.compiler.intermediate
package compiler.intermediate
import prog8.stackvm.Syscall
import prog8.vm.RuntimeValue
import prog8.vm.stackvm.Syscall
open class Instruction(val opcode: Opcode,
val arg: Value? = null,
val arg2: Value? = null,
val arg: RuntimeValue? = null,
val arg2: RuntimeValue? = null,
val callLabel: String? = null,
val callLabel2: String? = null)
{
@ -14,8 +15,8 @@ open class Instruction(val opcode: Opcode,
val argStr = arg?.toString() ?: ""
val result =
when {
opcode==Opcode.LINE -> "_line $callLabel"
opcode==Opcode.INLINE_ASSEMBLY -> {
opcode== Opcode.LINE -> "_line $callLabel"
opcode== Opcode.INLINE_ASSEMBLY -> {
// inline assembly is not written out (it can't be processed as intermediate language)
// instead, it is converted into a system call that can be intercepted by the vm
if(callLabel!=null)
@ -23,10 +24,10 @@ open class Instruction(val opcode: Opcode,
else
"inline_assembly"
}
opcode==Opcode.INCLUDE_FILE -> {
opcode== Opcode.INCLUDE_FILE -> {
"include_file \"$callLabel\" $arg $arg2"
}
opcode==Opcode.SYSCALL -> {
opcode== Opcode.SYSCALL -> {
val syscall = Syscall.values().find { it.callNr==arg!!.numericValue() }
"syscall $syscall"
}

View File

@ -1,53 +1,53 @@
package prog8.compiler.intermediate
package compiler.intermediate
import prog8.ast.*
import prog8.ast.antlr.escape
import prog8.ast.base.*
import prog8.ast.expressions.NumericLiteralValue
import prog8.ast.expressions.ReferenceLiteralValue
import prog8.ast.statements.StructDecl
import prog8.ast.statements.VarDecl
import prog8.ast.statements.ZeropageWish
import prog8.compiler.CompilerException
import prog8.compiler.HeapValues
import prog8.compiler.Zeropage
import prog8.compiler.ZeropageDepletedError
import prog8.vm.RuntimeValue
import java.io.PrintStream
import java.nio.file.Path
class IntermediateProgram(val name: String, var loadAddress: Int, val heap: HeapValues, val importedFrom: Path) {
class IntermediateProgram(val name: String, var loadAddress: Int, val heap: HeapValues, val source: Path) {
class VariableParameters (val zp: ZeropageWish, val memberOfStruct: StructDecl?)
class Variable(val scopedname: String, val value: RuntimeValue, val params: VariableParameters)
class ProgramBlock(val name: String,
var address: Int?,
val instructions: MutableList<Instruction> = mutableListOf(),
val variables: MutableMap<String, Value> = mutableMapOf(), // names are fully scoped
val variables: MutableList<Variable> = mutableListOf(),
val memoryPointers: MutableMap<String, Pair<Int, DataType>> = mutableMapOf(),
val labels: MutableMap<String, Instruction> = mutableMapOf(), // names are fully scoped
val force_output: Boolean)
{
val numVariables: Int
get() { return variables.size }
val numInstructions: Int
get() { return instructions.filter { it.opcode!= Opcode.LINE }.size }
val variablesMarkedForZeropage: MutableSet<String> = mutableSetOf()
}
val allocatedZeropageVariables = mutableMapOf<String, Pair<Int, DataType>>()
val blocks = mutableListOf<ProgramBlock>()
val memory = mutableMapOf<Int, List<Value>>()
val memory = mutableMapOf<Int, List<RuntimeValue>>()
private lateinit var currentBlock: ProgramBlock
val numVariables: Int
get() = blocks.sumBy { it.numVariables }
val numInstructions: Int
get() = blocks.sumBy { it.numInstructions }
fun allocateZeropage(zeropage: Zeropage) {
fun allocateZeropage(zeropage: Zeropage) { // TODO not used anymore???
// allocates all @zp marked variables on the zeropage (for all blocks, as long as there is space in the ZP)
var notAllocated = 0
for(block in blocks) {
val zpVariables = block.variables.filter { it.key in block.variablesMarkedForZeropage }
val zpVariables = block.variables.filter { it.params.zp==ZeropageWish.REQUIRE_ZEROPAGE || it.params.zp==ZeropageWish.PREFER_ZEROPAGE }
if (zpVariables.isNotEmpty()) {
for (variable in zpVariables) {
if(variable.params.zp==ZeropageWish.NOT_IN_ZEROPAGE || variable.params.memberOfStruct!=null)
throw CompilerException("zp conflict")
try {
val address = zeropage.allocate(variable.key, variable.value.type, null)
allocatedZeropageVariables[variable.key] = Pair(address, variable.value.type)
val address = zeropage.allocate(variable.scopedname, variable.value.type, null)
allocatedZeropageVariables[variable.scopedname] = Pair(address, variable.value.type)
} catch (x: ZeropageDepletedError) {
printWarning(x.toString() + " variable ${variable.key} type ${variable.value.type}")
printWarning(x.toString() + " variable ${variable.scopedname} type ${variable.value.type}")
notAllocated++
}
}
@ -85,10 +85,10 @@ class IntermediateProgram(val name: String, var loadAddress: Int, val heap: Heap
val branchOpcodes = setOf(Opcode.JZ, Opcode.JNZ, Opcode.JZW, Opcode.JNZW)
for(blk in blocks) {
val instructionsToReplace = mutableMapOf<Int, Instruction>()
blk.instructions.asSequence().withIndex().filter {it.value.opcode!=Opcode.LINE}.windowed(2).toList().forEach {
blk.instructions.asSequence().withIndex().filter {it.value.opcode!= Opcode.LINE }.windowed(2).toList().forEach {
if (it[1].value.opcode in branchOpcodes) {
if (it[0].value.opcode in pushvalue) {
val value = it[0].value.arg!!.asBooleanValue
val value = it[0].value.arg!!.asBoolean
instructionsToReplace[it[0].index] = Instruction(Opcode.NOP)
val replacement: Instruction =
if (value) {
@ -138,8 +138,8 @@ class IntermediateProgram(val name: String, var loadAddress: Int, val heap: Heap
for(blk in blocks) {
val instructionsToReplace = mutableMapOf<Int, Instruction>()
blk.instructions.asSequence().withIndex().filter {it.value.opcode!=Opcode.LINE}.windowed(2).toList().forEach {
if(it[0].value.opcode==Opcode.CALL && it[1].value.opcode==Opcode.RETURN) {
blk.instructions.asSequence().withIndex().filter {it.value.opcode!= Opcode.LINE }.windowed(2).toList().forEach {
if(it[0].value.opcode== Opcode.CALL && it[1].value.opcode== Opcode.RETURN) {
instructionsToReplace[it[1].index] = Instruction(Opcode.JUMP, callLabel = it[0].value.callLabel)
instructionsToReplace[it[0].index] = Instruction(Opcode.NOP)
}
@ -256,17 +256,17 @@ class IntermediateProgram(val name: String, var loadAddress: Int, val heap: Heap
instructionsToReplace[index1] = Instruction(Opcode.NOP)
}
Opcode.CAST_W_TO_UB, Opcode.CAST_UW_TO_UB -> {
val ins = Instruction(Opcode.PUSH_BYTE, Value(DataType.UBYTE, ins0.arg!!.integerValue() and 255))
val ins = Instruction(Opcode.PUSH_BYTE, RuntimeValue(DataType.UBYTE, ins0.arg!!.integerValue() and 255))
instructionsToReplace[index0] = ins
instructionsToReplace[index1] = Instruction(Opcode.NOP)
}
Opcode.MSB -> {
val ins = Instruction(Opcode.PUSH_BYTE, Value(DataType.UBYTE, ins0.arg!!.integerValue() ushr 8 and 255))
val ins = Instruction(Opcode.PUSH_BYTE, RuntimeValue(DataType.UBYTE, ins0.arg!!.integerValue() ushr 8 and 255))
instructionsToReplace[index0] = ins
instructionsToReplace[index1] = Instruction(Opcode.NOP)
}
Opcode.CAST_W_TO_F, Opcode.CAST_UW_TO_F -> {
val ins = Instruction(Opcode.PUSH_FLOAT, Value(DataType.FLOAT, ins0.arg!!.integerValue().toDouble()))
val ins = Instruction(Opcode.PUSH_FLOAT, RuntimeValue(DataType.FLOAT, ins0.arg!!.integerValue().toDouble()))
instructionsToReplace[index0] = ins
instructionsToReplace[index1] = Instruction(Opcode.NOP)
}
@ -296,12 +296,12 @@ class IntermediateProgram(val name: String, var loadAddress: Int, val heap: Heap
Opcode.CAST_UW_TO_B, Opcode.CAST_UW_TO_UB -> instructionsToReplace[index1] = Instruction(Opcode.NOP)
Opcode.MSB -> throw CompilerException("msb of a byte")
Opcode.CAST_UB_TO_UW -> {
val ins = Instruction(Opcode.PUSH_WORD, Value(DataType.UWORD, ins0.arg!!.integerValue()))
val ins = Instruction(Opcode.PUSH_WORD, RuntimeValue(DataType.UWORD, ins0.arg!!.integerValue()))
instructionsToReplace[index0] = ins
instructionsToReplace[index1] = Instruction(Opcode.NOP)
}
Opcode.CAST_B_TO_W -> {
val ins = Instruction(Opcode.PUSH_WORD, Value(DataType.WORD, ins0.arg!!.integerValue()))
val ins = Instruction(Opcode.PUSH_WORD, RuntimeValue(DataType.WORD, ins0.arg!!.integerValue()))
instructionsToReplace[index0] = ins
instructionsToReplace[index1] = Instruction(Opcode.NOP)
}
@ -315,17 +315,18 @@ class IntermediateProgram(val name: String, var loadAddress: Int, val heap: Heap
instructionsToReplace[index0] = ins
instructionsToReplace[index1] = Instruction(Opcode.NOP)
}
Opcode.CAST_B_TO_F, Opcode.CAST_UB_TO_F-> {
val ins = Instruction(Opcode.PUSH_FLOAT, Value(DataType.FLOAT, ins0.arg!!.integerValue().toDouble()))
Opcode.CAST_B_TO_F, Opcode.CAST_UB_TO_F -> {
val ins = Instruction(Opcode.PUSH_FLOAT, RuntimeValue(DataType.FLOAT, ins0.arg!!.integerValue().toDouble()))
instructionsToReplace[index0] = ins
instructionsToReplace[index1] = Instruction(Opcode.NOP)
}
Opcode.CAST_W_TO_F, Opcode.CAST_UW_TO_F-> throw CompilerException("invalid conversion following a byte")
Opcode.CAST_W_TO_F, Opcode.CAST_UW_TO_F -> throw CompilerException("invalid conversion following a byte")
Opcode.DISCARD_BYTE -> {
instructionsToReplace[index0] = Instruction(Opcode.NOP)
instructionsToReplace[index1] = Instruction(Opcode.NOP)
}
Opcode.DISCARD_WORD, Opcode.DISCARD_FLOAT -> throw CompilerException("invalid discard type following a byte")
Opcode.MKWORD -> {}
else -> throw CompilerException("invalid conversion opcode ${ins1.opcode}")
}
}
@ -387,44 +388,58 @@ class IntermediateProgram(val name: String, var loadAddress: Int, val heap: Heap
fun variable(scopedname: String, decl: VarDecl) {
when(decl.type) {
VarDeclType.VAR -> {
// var decls that are defined inside of a StructDecl are skipped in the output
// because every occurrence of the members will have a separate mangled vardecl for that occurrence
if(decl.parent is StructDecl)
return
val valueparams = VariableParameters(decl.zeropage, decl.struct)
val value = when(decl.datatype) {
in NumericDatatypes -> Value(decl.datatype, (decl.value as LiteralValue).asNumericValue!!)
in NumericDatatypes -> {
RuntimeValue(decl.datatype, (decl.value as NumericLiteralValue).number)
}
in StringDatatypes -> {
val litval = (decl.value as LiteralValue)
val litval = (decl.value as ReferenceLiteralValue)
if(litval.heapId==null)
throw CompilerException("string should already be in the heap")
Value(decl.datatype, litval.heapId)
RuntimeValue(decl.datatype, heapId = litval.heapId)
}
in ArrayDatatypes -> {
val litval = (decl.value as LiteralValue)
if(litval.heapId==null)
val litval = (decl.value as? ReferenceLiteralValue)
if(litval!=null && litval.heapId==null)
throw CompilerException("array should already be in the heap")
Value(decl.datatype, litval.heapId)
if(litval!=null){
RuntimeValue(decl.datatype, heapId = litval.heapId)
} else {
throw CompilerException("initialization value expected")
}
}
DataType.STRUCT -> {
// struct variables have been flattened already
return
}
else -> throw CompilerException("weird datatype")
}
currentBlock.variables[scopedname] = value
if(decl.zeropage)
currentBlock.variablesMarkedForZeropage.add(scopedname)
currentBlock.variables.add(Variable(scopedname, value, valueparams))
}
VarDeclType.MEMORY -> {
// note that constants are all folded away, but assembly code may still refer to them
val lv = decl.value as LiteralValue
if(lv.type!=DataType.UWORD && lv.type!=DataType.UBYTE)
val lv = decl.value as NumericLiteralValue
if(lv.type!= DataType.UWORD && lv.type!= DataType.UBYTE)
throw CompilerException("expected integer memory address $lv")
currentBlock.memoryPointers[scopedname] = Pair(lv.asIntegerValue!!, decl.datatype)
currentBlock.memoryPointers[scopedname] = Pair(lv.number.toInt(), decl.datatype)
}
VarDeclType.CONST -> {
// note that constants are all folded away, but assembly code may still refer to them (if their integers)
// floating point constants are not generated at all!!
val lv = decl.value as LiteralValue
val lv = decl.value as NumericLiteralValue
if(lv.type in IntegerDatatypes)
currentBlock.memoryPointers[scopedname] = Pair(lv.asIntegerValue!!, decl.datatype)
currentBlock.memoryPointers[scopedname] = Pair(lv.number.toInt(), decl.datatype)
}
}
}
fun instr(opcode: Opcode, arg: Value? = null, arg2: Value? = null, callLabel: String? = null, callLabel2: String? = null) {
fun instr(opcode: Opcode, arg: RuntimeValue? = null, arg2: RuntimeValue? = null, callLabel: String? = null, callLabel2: String? = null) {
currentBlock.instructions.add(Instruction(opcode, arg, arg2, callLabel, callLabel2))
}
@ -447,16 +462,20 @@ class IntermediateProgram(val name: String, var loadAddress: Int, val heap: Heap
}
fun newBlock(name: String, address: Int?, options: Set<String>) {
currentBlock = ProgramBlock(name, address, force_output="force_output" in options)
currentBlock = ProgramBlock(name, address, force_output = "force_output" in options)
blocks.add(currentBlock)
}
fun writeCode(out: PrintStream, embeddedLabels: Boolean=true) {
out.println("; stackVM program code for '$name'")
out.println("%memory")
if(memory.isNotEmpty())
TODO("add support for writing/reading initial memory values")
out.println("%end_memory")
writeMemory(out)
writeHeap(out)
for(blk in blocks) {
writeBlock(out, blk, embeddedLabels)
}
}
private fun writeHeap(out: PrintStream) {
out.println("%heap")
heap.allEntries().forEach {
out.print("${it.key} ${it.value.type.name.toLowerCase()} ")
@ -485,34 +504,45 @@ class IntermediateProgram(val name: String, var loadAddress: Int, val heap: Heap
}
}
out.println("%end_heap")
for(blk in blocks) {
out.println("\n%block ${blk.name} ${blk.address?.toString(16) ?: ""}")
}
out.println("%variables")
for(variable in blk.variables) {
val valuestr = variable.value.toString()
out.println("${variable.key} ${variable.value.type.name.toLowerCase()} $valuestr")
}
out.println("%end_variables")
out.println("%memorypointers")
for(iconst in blk.memoryPointers) {
out.println("${iconst.key} ${iconst.value.second.name.toLowerCase()} uw:${iconst.value.first.toString(16)}")
}
out.println("%end_memorypointers")
out.println("%instructions")
val labels = blk.labels.entries.associateBy({it.value}) {it.key}
for(instr in blk.instructions) {
if(!embeddedLabels) {
val label = labels[instr]
if (label != null)
out.println("$label:")
} else {
out.println(instr)
}
}
out.println("%end_instructions")
private fun writeBlock(out: PrintStream, blk: ProgramBlock, embeddedLabels: Boolean) {
out.println("\n%block ${blk.name} ${blk.address?.toString(16) ?: ""}")
out.println("%end_block")
out.println("%variables")
for (variable in blk.variables) {
if(variable.params.zp==ZeropageWish.REQUIRE_ZEROPAGE)
throw CompilerException("zp conflict")
val valuestr = variable.value.toString()
val struct = if(variable.params.memberOfStruct==null) "" else "struct=${variable.params.memberOfStruct.name}"
out.println("${variable.scopedname} ${variable.value.type.name.toLowerCase()} $valuestr zp=${variable.params.zp} s=$struct")
}
out.println("%end_variables")
out.println("%memorypointers")
for (iconst in blk.memoryPointers) {
out.println("${iconst.key} ${iconst.value.second.name.toLowerCase()} uw:${iconst.value.first.toString(16)}")
}
out.println("%end_memorypointers")
out.println("%instructions")
val labels = blk.labels.entries.associateBy({ it.value }) { it.key }
for (instr in blk.instructions) {
if (!embeddedLabels) {
val label = labels[instr]
if (label != null)
out.println("$label:")
} else {
out.println(instr)
}
}
out.println("%end_instructions")
out.println("%end_block")
}
private fun writeMemory(out: PrintStream) {
out.println("%memory")
if (memory.isNotEmpty())
TODO("add support for writing/reading initial memory values")
out.println("%end_memory")
}
}

View File

@ -1,4 +1,4 @@
package prog8.compiler.intermediate
package compiler.intermediate
enum class Opcode {
@ -19,6 +19,8 @@ enum class Opcode {
PUSH_REGAY_WORD, // push registers A/Y as a 16-bit word
PUSH_REGXY_WORD, // push registers X/Y as a 16-bit word
PUSH_ADDR_HEAPVAR, // push the address of the variable that's on the heap (string or array)
DUP_B, // duplicate the top byte on the stack
DUP_W, // duplicate the top word on the stack
// popping values off the (evaluation) stack, possibly storing them in another location
DISCARD_BYTE, // discard top byte value

View File

@ -0,0 +1,761 @@
package compiler.target.c64.codegen
// note: to put stuff on the stack, we use Absolute,X addressing mode which is 3 bytes / 4 cycles
// possible space optimization is to use zeropage (indirect),Y which is 2 bytes, but 5 cycles
import prog8.ast.antlr.escape
import prog8.ast.base.DataType
import prog8.ast.base.initvarsSubName
import prog8.ast.statements.ZeropageWish
import prog8.compiler.*
import prog8.compiler.intermediate.Instruction
import prog8.compiler.intermediate.IntermediateProgram
import prog8.compiler.intermediate.LabelInstr
import prog8.compiler.intermediate.Opcode
import prog8.compiler.target.c64.AssemblyProgram
import prog8.compiler.target.c64.MachineDefinition
import prog8.compiler.target.c64.Petscii
import prog8.vm.RuntimeValue
import java.io.File
import java.util.*
import kotlin.math.abs
class AssemblyError(msg: String) : RuntimeException(msg)
internal fun intVal(valueInstr: Instruction) = valueInstr.arg!!.integerValue()
internal fun hexVal(valueInstr: Instruction) = valueInstr.arg!!.integerValue().toHex()
internal fun hexValPlusOne(valueInstr: Instruction) = (valueInstr.arg!!.integerValue()+1).toHex()
internal fun getFloatConst(value: RuntimeValue): String =
globalFloatConsts[value.numericValue().toDouble()]
?: throw AssemblyError("should have a global float const for number $value")
internal val globalFloatConsts = mutableMapOf<Double, String>()
internal fun signExtendA(into: String) =
"""
ora #$7f
bmi +
lda #0
+ sta $into
"""
class AsmGen(private val options: CompilationOptions, private val program: IntermediateProgram,
private val heap: HeapValues, private val zeropage: Zeropage) {
private val assemblyLines = mutableListOf<String>()
private lateinit var block: IntermediateProgram.ProgramBlock
init {
// Convert invalid label names (such as "<anon-1>") to something that's allowed.
val newblocks = mutableListOf<IntermediateProgram.ProgramBlock>()
for(block in program.blocks) {
val newvars = block.variables.map { IntermediateProgram.Variable(symname(it.scopedname, block), it.value, it.params) }.toMutableList()
val newlabels = block.labels.map { symname(it.key, block) to it.value}.toMap().toMutableMap()
val newinstructions = block.instructions.asSequence().map {
when {
it is LabelInstr -> LabelInstr(symname(it.name, block), it.asmProc)
it.opcode == Opcode.INLINE_ASSEMBLY -> it
else ->
Instruction(it.opcode, it.arg, it.arg2,
callLabel = if (it.callLabel != null) symname(it.callLabel, block) else null,
callLabel2 = if (it.callLabel2 != null) symname(it.callLabel2, block) else null)
}
}.toMutableList()
val newMempointers = block.memoryPointers.map { symname(it.key, block) to it.value }.toMap().toMutableMap()
val newblock = IntermediateProgram.ProgramBlock(
block.name,
block.address,
newinstructions,
newvars,
newMempointers,
newlabels,
force_output = block.force_output)
newblocks.add(newblock)
}
program.blocks.clear()
program.blocks.addAll(newblocks)
val newAllocatedZp = program.allocatedZeropageVariables.map { symname(it.key, null) to it.value}
program.allocatedZeropageVariables.clear()
program.allocatedZeropageVariables.putAll(newAllocatedZp)
// make a list of all const floats that are used
for(block in program.blocks) {
for(ins in block.instructions.filter{it.arg?.type== DataType.FLOAT}) {
val float = ins.arg!!.numericValue().toDouble()
if(float !in globalFloatConsts)
globalFloatConsts[float] = "prog8_const_float_${globalFloatConsts.size}"
}
}
}
fun compileToAssembly(optimize: Boolean): AssemblyProgram {
println("Generating assembly code from intermediate code... ")
assemblyLines.clear()
header()
for(b in program.blocks)
block2asm(b)
if(optimize) {
var optimizationsDone = 1
while (optimizationsDone > 0) {
optimizationsDone = optimizeAssembly(assemblyLines)
}
}
File("${program.name}.asm").printWriter().use {
for (line in assemblyLines) { it.println(line) }
}
return AssemblyProgram(program.name)
}
private fun out(str: String, splitlines: Boolean=true) {
if(splitlines) {
for (line in str.split('\n')) {
val trimmed = if (line.startsWith(' ')) "\t" + line.trim() else line.trim()
// trimmed = trimmed.replace(Regex("^\\+\\s+"), "+\t") // sanitize local label indentation
assemblyLines.add(trimmed)
}
} else assemblyLines.add(str)
}
// convert a fully scoped name (defined in the given block) to a valid assembly symbol name
private fun symname(scoped: String, block: IntermediateProgram.ProgramBlock?): String {
if(' ' in scoped)
return scoped
val blockLocal: Boolean
var name = if (block!=null && scoped.startsWith("${block.name}.")) {
blockLocal = true
scoped.substring(block.name.length+1)
}
else {
blockLocal = false
scoped
}
name = name.replace("<", "prog8_").replace(">", "") // take care of the autogenerated invalid (anon) label names
if(name=="-")
return "-"
if(blockLocal)
name = name.replace(".", "_")
else {
val parts = name.split(".", limit=2)
if(parts.size>1)
name = "${parts[0]}.${parts[1].replace(".", "_")}"
}
return name.replace("-", "")
}
private fun makeFloatFill(flt: MachineDefinition.Mflpt5): String {
val b0 = "$"+flt.b0.toString(16).padStart(2, '0')
val b1 = "$"+flt.b1.toString(16).padStart(2, '0')
val b2 = "$"+flt.b2.toString(16).padStart(2, '0')
val b3 = "$"+flt.b3.toString(16).padStart(2, '0')
val b4 = "$"+flt.b4.toString(16).padStart(2, '0')
return "$b0, $b1, $b2, $b3, $b4"
}
private fun header() {
val ourName = this.javaClass.name
out("; 6502 assembly code for '${program.name}'")
out("; generated by $ourName on ${Date()}")
out("; assembler syntax is for the 64tasm cross-assembler")
out("; output options: output=${options.output} launcher=${options.launcher} zp=${options.zeropage}")
out("\n.cpu '6502'\n.enc 'none'\n")
if(program.loadAddress==0) // fix load address
program.loadAddress = if(options.launcher==LauncherType.BASIC)
MachineDefinition.BASIC_LOAD_ADDRESS else MachineDefinition.RAW_LOAD_ADDRESS
when {
options.launcher == LauncherType.BASIC -> {
if (program.loadAddress != 0x0801)
throw AssemblyError("BASIC output must have load address $0801")
out("; ---- basic program with sys call ----")
out("* = ${program.loadAddress.toHex()}")
val year = Calendar.getInstance().get(Calendar.YEAR)
out(" .word (+), $year")
out(" .null $9e, format(' %d ', _prog8_entrypoint), $3a, $8f, ' prog8 by idj'")
out("+\t.word 0")
out("_prog8_entrypoint\t; assembly code starts here\n")
out(" jsr prog8_lib.init_system")
}
options.output == OutputType.PRG -> {
out("; ---- program without basic sys call ----")
out("* = ${program.loadAddress.toHex()}\n")
out(" jsr prog8_lib.init_system")
}
options.output == OutputType.RAW -> {
out("; ---- raw assembler program ----")
out("* = ${program.loadAddress.toHex()}\n")
}
}
if(zeropage.exitProgramStrategy!=Zeropage.ExitProgramStrategy.CLEAN_EXIT) {
// disable shift-commodore charset switching and run/stop key
out(" lda #$80")
out(" lda #$80")
out(" sta 657\t; disable charset switching")
out(" lda #239")
out(" sta 808\t; disable run/stop key")
}
out(" ldx #\$ff\t; init estack pointer")
out(" ; initialize the variables in each block")
for(block in program.blocks) {
val initVarsLabel = block.instructions.firstOrNull { it is LabelInstr && it.name== initvarsSubName } as? LabelInstr
if(initVarsLabel!=null)
out(" jsr ${block.name}.${initVarsLabel.name}")
}
out(" clc")
when(zeropage.exitProgramStrategy) {
Zeropage.ExitProgramStrategy.CLEAN_EXIT -> {
out(" jmp main.start\t; jump to program entrypoint")
}
Zeropage.ExitProgramStrategy.SYSTEM_RESET -> {
out(" jsr main.start\t; call program entrypoint")
out(" jmp (c64.RESET_VEC)\t; cold reset")
}
}
out("")
// the global list of all floating point constants for the whole program
for(flt in globalFloatConsts) {
val floatFill = makeFloatFill(MachineDefinition.Mflpt5.fromNumber(flt.key))
out("${flt.value}\t.byte $floatFill ; float ${flt.key}")
}
}
private fun block2asm(blk: IntermediateProgram.ProgramBlock) {
block = blk
out("\n; ---- block: '${block.name}' ----")
if(!blk.force_output)
out("${block.name}\t.proc\n")
if(block.address!=null) {
out(".cerror * > ${block.address?.toHex()}, 'block address overlaps by ', *-${block.address?.toHex()},' bytes'")
out("* = ${block.address?.toHex()}")
}
// deal with zeropage variables
for(variable in blk.variables) {
val sym = symname(blk.name+"."+variable.scopedname, null)
val zpVar = program.allocatedZeropageVariables[sym]
if(zpVar==null) {
// This var is not on the ZP yet. Attempt to move it there (if it's not a float, those take up too much space)
if(variable.params.zp != ZeropageWish.NOT_IN_ZEROPAGE &&
variable.value.type in zeropage.allowedDatatypes
&& variable.value.type != DataType.FLOAT) {
try {
val address = zeropage.allocate(sym, variable.value.type, null)
out("${variable.scopedname} = $address\t; auto zp ${variable.value.type}")
// make sure we add the var to the set of zpvars for this block
program.allocatedZeropageVariables[sym] = Pair(address, variable.value.type)
} catch (x: ZeropageDepletedError) {
// leave it as it is.
}
}
}
else {
// it was already allocated on the zp
out("${variable.scopedname} = ${zpVar.first}\t; zp ${zpVar.second}")
}
}
out("\n; memdefs and kernel subroutines")
memdefs2asm(block)
out("\n; non-zeropage variables")
vardecls2asm(block)
out("")
val instructionPatternWindowSize = 8 // increase once patterns occur longer than this.
var processed = 0
for (ins in block.instructions.windowed(instructionPatternWindowSize, partialWindows = true)) {
if (processed == 0) {
processed = instr2asm(ins)
if (processed == 0) {
// the instructions are not recognised yet and can't be translated into assembly
throw CompilerException("no asm translation found for instruction pattern: $ins")
}
}
processed--
}
if(!blk.force_output)
out("\n\t.pend\n")
}
private fun memdefs2asm(block: IntermediateProgram.ProgramBlock) {
for(m in block.memoryPointers) {
out(" ${m.key} = ${m.value.first.toHex()}")
}
}
private fun vardecls2asm(block: IntermediateProgram.ProgramBlock) {
val uniqueNames = block.variables.map { it.scopedname }.toSet()
if (uniqueNames.size != block.variables.size)
throw AssemblyError("not all variables have unique names")
// these are the non-zeropage variables.
// first get all the flattened struct members, they MUST remain in order
out("; flattened struct members")
val (structMembers, normalVars) = block.variables.partition { it.params.memberOfStruct!=null }
structMembers.forEach { vardecl2asm(it.scopedname, it.value, it.params) }
// sort the other variables by type
out("; other variables sorted by type")
val sortedVars = normalVars.sortedBy { it.value.type }
for (variable in sortedVars) {
val sym = symname(block.name + "." + variable.scopedname, null)
if(sym in program.allocatedZeropageVariables)
continue // skip the ones that already belong in the zero page
vardecl2asm(variable.scopedname, variable.value, variable.params)
}
}
private fun vardecl2asm(varname: String, value: RuntimeValue, parameters: IntermediateProgram.VariableParameters) {
when (value.type) {
DataType.UBYTE -> out("$varname\t.byte 0")
DataType.BYTE -> out("$varname\t.char 0")
DataType.UWORD -> out("$varname\t.word 0")
DataType.WORD -> out("$varname\t.sint 0")
DataType.FLOAT -> out("$varname\t.byte 0,0,0,0,0 ; float")
DataType.STR, DataType.STR_S -> {
val rawStr = heap.get(value.heapId!!).str!!
val bytes = encodeStr(rawStr, value.type).map { "$" + it.toString(16).padStart(2, '0') }
out("$varname\t; ${value.type} \"${escape(rawStr).replace("\u0000", "<NULL>")}\"")
for (chunk in bytes.chunked(16))
out(" .byte " + chunk.joinToString())
}
DataType.ARRAY_UB -> {
// unsigned integer byte arraysize
val data = makeArrayFillDataUnsigned(value)
if (data.size <= 16)
out("$varname\t.byte ${data.joinToString()}")
else {
out(varname)
for (chunk in data.chunked(16))
out(" .byte " + chunk.joinToString())
}
}
DataType.ARRAY_B -> {
// signed integer byte arraysize
val data = makeArrayFillDataSigned(value)
if (data.size <= 16)
out("$varname\t.char ${data.joinToString()}")
else {
out(varname)
for (chunk in data.chunked(16))
out(" .char " + chunk.joinToString())
}
}
DataType.ARRAY_UW -> {
// unsigned word arraysize
val data = makeArrayFillDataUnsigned(value)
if (data.size <= 16)
out("$varname\t.word ${data.joinToString()}")
else {
out(varname)
for (chunk in data.chunked(16))
out(" .word " + chunk.joinToString())
}
}
DataType.ARRAY_W -> {
// signed word arraysize
val data = makeArrayFillDataSigned(value)
if (data.size <= 16)
out("$varname\t.sint ${data.joinToString()}")
else {
out(varname)
for (chunk in data.chunked(16))
out(" .sint " + chunk.joinToString())
}
}
DataType.ARRAY_F -> {
// float arraysize
val array = heap.get(value.heapId!!).doubleArray!!
val floatFills = array.map { makeFloatFill(MachineDefinition.Mflpt5.fromNumber(it)) }
out(varname)
for (f in array.zip(floatFills))
out(" .byte ${f.second} ; float ${f.first}")
}
DataType.STRUCT -> throw AssemblyError("vars of type STRUCT should have been removed because flattened")
}
}
private fun encodeStr(str: String, dt: DataType): List<Short> {
return when(dt) {
DataType.STR -> {
val bytes = Petscii.encodePetscii(str, true)
bytes.plus(0)
}
DataType.STR_S -> {
val bytes = Petscii.encodeScreencode(str, true)
bytes.plus(0)
}
else -> throw AssemblyError("invalid str type")
}
}
private fun makeArrayFillDataUnsigned(value: RuntimeValue): List<String> {
val array = heap.get(value.heapId!!).array!!
return when {
value.type== DataType.ARRAY_UB ->
// byte array can never contain pointer-to types, so treat values as all integers
array.map { "$"+it.integer!!.toString(16).padStart(2, '0') }
value.type== DataType.ARRAY_UW -> array.map {
when {
it.integer!=null -> "$"+it.integer.toString(16).padStart(2, '0')
it.addressOf!=null -> symname(it.addressOf.scopedname!!, block)
else -> throw AssemblyError("weird type in array")
}
}
else -> throw AssemblyError("invalid arraysize type")
}
}
private fun makeArrayFillDataSigned(value: RuntimeValue): List<String> {
val array = heap.get(value.heapId!!).array!!
// note: array of signed value can never contain pointer-to type, so simply accept values as being all integers
return if (value.type == DataType.ARRAY_B || value.type == DataType.ARRAY_W) {
array.map {
if(it.integer!!>=0)
"$"+it.integer.toString(16).padStart(2, '0')
else
"-$"+abs(it.integer).toString(16).padStart(2, '0')
}
}
else throw AssemblyError("invalid arraysize type")
}
private fun instr2asm(ins: List<Instruction>): Int {
// find best patterns (matching the most of the lines, then with the smallest weight)
val fragments = findPatterns(ins).sortedByDescending { it.segmentSize }
if(fragments.isEmpty()) {
// we didn't find any matching patterns (complex multi-instruction fragments), try simple ones
val firstIns = ins[0]
val singleAsm = simpleInstr2Asm(firstIns, block)
if(singleAsm != null) {
outputAsmFragment(singleAsm)
return 1
}
return 0
}
val best = fragments[0]
outputAsmFragment(best.asm)
return best.segmentSize
}
private fun outputAsmFragment(singleAsm: String) {
if (singleAsm.isNotEmpty()) {
if(singleAsm.startsWith("@inline@"))
out(singleAsm.substring(8), false)
else {
val withNewlines = singleAsm.replace('|', '\n')
out(withNewlines)
}
}
}
private fun findPatterns(segment: List<Instruction>): List<AsmFragment> {
val opcodes = segment.map { it.opcode }
val result = mutableListOf<AsmFragment>()
// check for operations that modify a single value, by putting it on the stack (and popping it afterwards)
if((opcodes[0]==Opcode.PUSH_VAR_BYTE && opcodes[2]==Opcode.POP_VAR_BYTE) ||
(opcodes[0]==Opcode.PUSH_VAR_WORD && opcodes[2]==Opcode.POP_VAR_WORD) ||
(opcodes[0]==Opcode.PUSH_VAR_FLOAT && opcodes[2]==Opcode.POP_VAR_FLOAT)) {
if (segment[0].callLabel == segment[2].callLabel) {
val fragment = sameVarOperation(segment[0].callLabel!!, segment[1])
if (fragment != null) {
fragment.segmentSize = 3
result.add(fragment)
}
}
}
else if((opcodes[0]==Opcode.PUSH_BYTE && opcodes[1] in setOf(Opcode.INC_INDEXED_VAR_B, Opcode.INC_INDEXED_VAR_UB,
Opcode.INC_INDEXED_VAR_UW, Opcode.INC_INDEXED_VAR_W, Opcode.INC_INDEXED_VAR_FLOAT,
Opcode.DEC_INDEXED_VAR_B, Opcode.DEC_INDEXED_VAR_UB, Opcode.DEC_INDEXED_VAR_W,
Opcode.DEC_INDEXED_VAR_UW, Opcode.DEC_INDEXED_VAR_FLOAT))) {
val fragment = sameConstantIndexedVarOperation(segment[1].callLabel!!, segment[0].arg!!.integerValue(), segment[1])
if(fragment!=null) {
fragment.segmentSize=2
result.add(fragment)
}
}
else if((opcodes[0]==Opcode.PUSH_VAR_BYTE && opcodes[1] in setOf(Opcode.INC_INDEXED_VAR_B, Opcode.INC_INDEXED_VAR_UB,
Opcode.INC_INDEXED_VAR_UW, Opcode.INC_INDEXED_VAR_W, Opcode.INC_INDEXED_VAR_FLOAT,
Opcode.DEC_INDEXED_VAR_B, Opcode.DEC_INDEXED_VAR_UB, Opcode.DEC_INDEXED_VAR_W,
Opcode.DEC_INDEXED_VAR_UW, Opcode.DEC_INDEXED_VAR_FLOAT))) {
val fragment = sameIndexedVarOperation(segment[1].callLabel!!, segment[0].callLabel!!, segment[1])
if(fragment!=null) {
fragment.segmentSize=2
result.add(fragment)
}
}
else if((opcodes[0]==Opcode.PUSH_MEM_UB && opcodes[2]==Opcode.POP_MEM_BYTE) ||
(opcodes[0]==Opcode.PUSH_MEM_B && opcodes[2]==Opcode.POP_MEM_BYTE) ||
(opcodes[0]==Opcode.PUSH_MEM_UW && opcodes[2]==Opcode.POP_MEM_WORD) ||
(opcodes[0]==Opcode.PUSH_MEM_W && opcodes[2]==Opcode.POP_MEM_WORD) ||
(opcodes[0]==Opcode.PUSH_MEM_FLOAT && opcodes[2]==Opcode.POP_MEM_FLOAT)) {
if(segment[0].arg==segment[2].arg) {
val fragment = sameMemOperation(segment[0].arg!!.integerValue(), segment[1])
if(fragment!=null) {
fragment.segmentSize = 3
result.add(fragment)
}
}
}
else if((opcodes[0]==Opcode.PUSH_BYTE && opcodes[1]==Opcode.READ_INDEXED_VAR_BYTE &&
opcodes[3]==Opcode.PUSH_BYTE && opcodes[4]==Opcode.WRITE_INDEXED_VAR_BYTE) ||
(opcodes[0]==Opcode.PUSH_BYTE && opcodes[1]==Opcode.READ_INDEXED_VAR_WORD &&
opcodes[3]==Opcode.PUSH_BYTE && opcodes[4]==Opcode.WRITE_INDEXED_VAR_WORD)) {
if(segment[0].arg==segment[3].arg && segment[1].callLabel==segment[4].callLabel) {
val fragment = sameConstantIndexedVarOperation(segment[1].callLabel!!, segment[0].arg!!.integerValue(), segment[2])
if(fragment!=null){
fragment.segmentSize = 5
result.add(fragment)
}
}
}
else if((opcodes[0]==Opcode.PUSH_VAR_BYTE && opcodes[1]==Opcode.READ_INDEXED_VAR_BYTE &&
opcodes[3]==Opcode.PUSH_VAR_BYTE && opcodes[4]==Opcode.WRITE_INDEXED_VAR_BYTE) ||
(opcodes[0]==Opcode.PUSH_VAR_BYTE && opcodes[1]==Opcode.READ_INDEXED_VAR_WORD &&
opcodes[3]==Opcode.PUSH_VAR_BYTE && opcodes[4]==Opcode.WRITE_INDEXED_VAR_WORD)) {
if(segment[0].callLabel==segment[3].callLabel && segment[1].callLabel==segment[4].callLabel) {
val fragment = sameIndexedVarOperation(segment[1].callLabel!!, segment[0].callLabel!!, segment[2])
if(fragment!=null){
fragment.segmentSize = 5
result.add(fragment)
}
}
}
// add any matching patterns from the big list
for(pattern in Patterns.patterns) {
if(pattern.sequence.size > segment.size || (pattern.altSequence!=null && pattern.altSequence.size > segment.size))
continue // don't accept patterns that don't fit
val opcodesList = opcodes.subList(0, pattern.sequence.size)
if(pattern.sequence == opcodesList) {
val asm = pattern.asm(segment)
if(asm!=null)
result.add(AsmFragment(asm, pattern.sequence.size))
} else if(pattern.altSequence!=null) {
val opcodesListAlt = opcodes.subList(0, pattern.altSequence.size)
if(pattern.altSequence == opcodesListAlt) {
val asm = pattern.asm(segment)
if (asm != null)
result.add(AsmFragment(asm, pattern.sequence.size))
}
}
}
return result
}
private fun sameConstantIndexedVarOperation(variable: String, index: Int, ins: Instruction): AsmFragment? {
// an in place operation that consists of a push-value / op / push-index-value / pop-into-indexed-var
return when(ins.opcode) {
Opcode.SHL_BYTE -> AsmFragment(" asl $variable+$index", 8)
Opcode.SHR_UBYTE -> AsmFragment(" lsr $variable+$index", 8)
Opcode.SHR_SBYTE -> AsmFragment(" lda $variable+$index | asl a | ror $variable+$index")
Opcode.SHL_WORD -> AsmFragment(" asl $variable+${index * 2 + 1} | rol $variable+${index * 2}", 8)
Opcode.SHR_UWORD -> AsmFragment(" lsr $variable+${index * 2 + 1} | ror $variable+${index * 2}", 8)
Opcode.SHR_SWORD -> AsmFragment(" lda $variable+${index * 2 + 1} | asl a | ror $variable+${index * 2 + 1} | ror $variable+${index * 2}", 8)
Opcode.ROL_BYTE -> AsmFragment(" rol $variable+$index", 8)
Opcode.ROR_BYTE -> AsmFragment(" ror $variable+$index", 8)
Opcode.ROL_WORD -> AsmFragment(" rol $variable+${index * 2 + 1} | rol $variable+${index * 2}", 8)
Opcode.ROR_WORD -> AsmFragment(" ror $variable+${index * 2 + 1} | ror $variable+${index * 2}", 8)
Opcode.ROL2_BYTE -> AsmFragment(" lda $variable+$index | cmp #\$80 | rol $variable+$index", 8)
Opcode.ROR2_BYTE -> AsmFragment(" lda $variable+$index | lsr a | bcc + | ora #\$80 |+ | sta $variable+$index", 10)
Opcode.ROL2_WORD -> AsmFragment(" asl $variable+${index * 2 + 1} | rol $variable+${index * 2} | bcc + | inc $variable+${index * 2 + 1} |+", 20)
Opcode.ROR2_WORD -> AsmFragment(" lsr $variable+${index * 2 + 1} | ror $variable+${index * 2} | bcc + | lda $variable+${index * 2 + 1} | ora #\$80 | sta $variable+${index * 2 + 1} |+", 30)
Opcode.INC_INDEXED_VAR_B, Opcode.INC_INDEXED_VAR_UB -> AsmFragment(" inc $variable+$index", 2)
Opcode.DEC_INDEXED_VAR_B, Opcode.DEC_INDEXED_VAR_UB -> AsmFragment(" dec $variable+$index", 5)
Opcode.INC_INDEXED_VAR_W, Opcode.INC_INDEXED_VAR_UW -> AsmFragment(" inc $variable+${index * 2} | bne + | inc $variable+${index * 2 + 1} |+")
Opcode.DEC_INDEXED_VAR_W, Opcode.DEC_INDEXED_VAR_UW -> AsmFragment(" lda $variable+${index * 2} | bne + | dec $variable+${index * 2 + 1} |+ | dec $variable+${index * 2}")
Opcode.INC_INDEXED_VAR_FLOAT -> AsmFragment(
"""
lda #<($variable+${index * MachineDefinition.Mflpt5.MemorySize})
ldy #>($variable+${index * MachineDefinition.Mflpt5.MemorySize})
jsr c64flt.inc_var_f
""")
Opcode.DEC_INDEXED_VAR_FLOAT -> AsmFragment(
"""
lda #<($variable+${index * MachineDefinition.Mflpt5.MemorySize})
ldy #>($variable+${index * MachineDefinition.Mflpt5.MemorySize})
jsr c64flt.dec_var_f
""")
else -> null
}
}
private fun sameIndexedVarOperation(variable: String, indexVar: String, ins: Instruction): AsmFragment? {
// an in place operation that consists of a push-value / op / push-index-var / pop-into-indexed-var
val saveX = " stx ${MachineDefinition.C64Zeropage.SCRATCH_B1} |"
val restoreX = " | ldx ${MachineDefinition.C64Zeropage.SCRATCH_B1}"
val loadXWord: String
val loadX: String
when(indexVar) {
"X" -> {
loadX = ""
loadXWord = " txa | asl a | tax |"
}
"Y" -> {
loadX = " tya | tax |"
loadXWord = " tya | asl a | tax |"
}
"A" -> {
loadX = " tax |"
loadXWord = " asl a | tax |"
}
else -> {
// the indexvar is a real variable, not a register
loadX = " ldx $indexVar |"
loadXWord = " lda $indexVar | asl a | tax |"
}
}
return when (ins.opcode) {
Opcode.SHL_BYTE -> AsmFragment(" txa | $loadX asl $variable,x | tax", 10)
Opcode.SHR_UBYTE -> AsmFragment(" txa | $loadX lsr $variable,x | tax", 10)
Opcode.SHR_SBYTE -> AsmFragment("$saveX $loadX lda $variable,x | asl a | ror $variable,x $restoreX", 10)
Opcode.SHL_WORD -> AsmFragment("$saveX $loadXWord asl $variable,x | rol $variable+1,x $restoreX", 10)
Opcode.SHR_UWORD -> AsmFragment("$saveX $loadXWord lsr $variable+1,x | ror $variable,x $restoreX", 10)
Opcode.SHR_SWORD -> AsmFragment("$saveX $loadXWord lda $variable+1,x | asl a | ror $variable+1,x | ror $variable,x $restoreX", 10)
Opcode.ROL_BYTE -> AsmFragment(" txa | $loadX rol $variable,x | tax", 10)
Opcode.ROR_BYTE -> AsmFragment(" txa | $loadX ror $variable,x | tax", 10)
Opcode.ROL_WORD -> AsmFragment("$saveX $loadXWord rol $variable,x | rol $variable+1,x $restoreX", 10)
Opcode.ROR_WORD -> AsmFragment("$saveX $loadXWord ror $variable+1,x | ror $variable,x $restoreX", 10)
Opcode.ROL2_BYTE -> AsmFragment("$saveX $loadX lda $variable,x | cmp #\$80 | rol $variable,x $restoreX", 10)
Opcode.ROR2_BYTE -> AsmFragment("$saveX $loadX lda $variable,x | lsr a | bcc + | ora #\$80 |+ | sta $variable,x $restoreX", 10)
Opcode.ROL2_WORD -> AsmFragment(" txa | $loadXWord asl $variable,x | rol $variable+1,x | bcc + | inc $variable,x |+ | tax", 30)
Opcode.ROR2_WORD -> AsmFragment("$saveX $loadXWord lsr $variable+1,x | ror $variable,x | bcc + | lda $variable+1,x | ora #\$80 | sta $variable+1,x |+ $restoreX", 30)
Opcode.INC_INDEXED_VAR_B, Opcode.INC_INDEXED_VAR_UB -> AsmFragment(" txa | $loadX inc $variable,x | tax", 10)
Opcode.DEC_INDEXED_VAR_B, Opcode.DEC_INDEXED_VAR_UB -> AsmFragment(" txa | $loadX dec $variable,x | tax", 10)
Opcode.INC_INDEXED_VAR_W, Opcode.INC_INDEXED_VAR_UW -> AsmFragment("$saveX $loadXWord inc $variable,x | bne + | inc $variable+1,x |+ $restoreX", 10)
Opcode.DEC_INDEXED_VAR_W, Opcode.DEC_INDEXED_VAR_UW -> AsmFragment("$saveX $loadXWord lda $variable,x | bne + | dec $variable+1,x |+ | dec $variable,x $restoreX", 10)
Opcode.INC_INDEXED_VAR_FLOAT -> AsmFragment(" lda #<$variable | ldy #>$variable | $saveX $loadX jsr c64flt.inc_indexed_var_f $restoreX")
Opcode.DEC_INDEXED_VAR_FLOAT -> AsmFragment(" lda #<$variable | ldy #>$variable | $saveX $loadX jsr c64flt.dec_indexed_var_f $restoreX")
else -> null
}
}
private fun sameMemOperation(address: Int, ins: Instruction): AsmFragment? {
// an in place operation that consists of push-mem / op / pop-mem
val addr = address.toHex()
val addrHi = (address+1).toHex()
return when(ins.opcode) {
Opcode.SHL_BYTE -> AsmFragment(" asl $addr", 10)
Opcode.SHR_UBYTE -> AsmFragment(" lsr $addr", 10)
Opcode.SHR_SBYTE -> AsmFragment(" lda $addr | asl a | ror $addr", 10)
Opcode.SHL_WORD -> AsmFragment(" asl $addr | rol $addrHi", 10)
Opcode.SHR_UWORD -> AsmFragment(" lsr $addrHi | ror $addr", 10)
Opcode.SHR_SWORD -> AsmFragment(" lda $addrHi | asl a | ror $addrHi | ror $addr", 10)
Opcode.ROL_BYTE -> AsmFragment(" rol $addr", 10)
Opcode.ROR_BYTE -> AsmFragment(" ror $addr", 10)
Opcode.ROL_WORD -> AsmFragment(" rol $addr | rol $addrHi", 10)
Opcode.ROR_WORD -> AsmFragment(" ror $addrHi | ror $addr", 10)
Opcode.ROL2_BYTE -> AsmFragment(" lda $addr | cmp #\$80 | rol $addr", 10)
Opcode.ROR2_BYTE -> AsmFragment(" lda $addr | lsr a | bcc + | ora #\$80 |+ | sta $addr", 10)
Opcode.ROL2_WORD -> AsmFragment(" lda $addr | cmp #\$80 | rol $addr | rol $addrHi", 10)
Opcode.ROR2_WORD -> AsmFragment(" lsr $addrHi | ror $addr | bcc + | lda $addrHi | ora #$80 | sta $addrHi |+", 20)
else -> null
}
}
private fun sameVarOperation(variable: String, ins: Instruction): AsmFragment? {
// an in place operation that consists of a push-var / op / pop-var
return when(ins.opcode) {
Opcode.SHL_BYTE -> {
when (variable) {
"A" -> AsmFragment(" asl a", 10)
"X" -> AsmFragment(" txa | asl a | tax", 10)
"Y" -> AsmFragment(" tya | asl a | tay", 10)
else -> AsmFragment(" asl $variable", 10)
}
}
Opcode.SHR_UBYTE -> {
when (variable) {
"A" -> AsmFragment(" lsr a", 10)
"X" -> AsmFragment(" txa | lsr a | tax", 10)
"Y" -> AsmFragment(" tya | lsr a | tay", 10)
else -> AsmFragment(" lsr $variable", 10)
}
}
Opcode.SHR_SBYTE -> {
// arithmetic shift right (keep sign bit)
when (variable) {
"A" -> AsmFragment(" cmp #$80 | ror a", 10)
"X" -> AsmFragment(" txa | cmp #$80 | ror a | tax", 10)
"Y" -> AsmFragment(" tya | cmp #$80 | ror a | tay", 10)
else -> AsmFragment(" lda $variable | asl a | ror $variable", 10)
}
}
Opcode.SHL_WORD -> {
AsmFragment(" asl $variable | rol $variable+1", 10)
}
Opcode.SHR_UWORD -> {
AsmFragment(" lsr $variable+1 | ror $variable", 10)
}
Opcode.SHR_SWORD -> {
// arithmetic shift right (keep sign bit)
AsmFragment(" lda $variable+1 | asl a | ror $variable+1 | ror $variable", 10)
}
Opcode.ROL_BYTE -> {
when (variable) {
"A" -> AsmFragment(" rol a", 10)
"X" -> AsmFragment(" txa | rol a | tax", 10)
"Y" -> AsmFragment(" tya | rol a | tay", 10)
else -> AsmFragment(" rol $variable", 10)
}
}
Opcode.ROR_BYTE -> {
when (variable) {
"A" -> AsmFragment(" ror a", 10)
"X" -> AsmFragment(" txa | ror a | tax", 10)
"Y" -> AsmFragment(" tya | ror a | tay", 10)
else -> AsmFragment(" ror $variable", 10)
}
}
Opcode.ROL_WORD -> {
AsmFragment(" rol $variable | rol $variable+1", 10)
}
Opcode.ROR_WORD -> {
AsmFragment(" ror $variable+1 | ror $variable", 10)
}
Opcode.ROL2_BYTE -> { // 8-bit rol
when (variable) {
"A" -> AsmFragment(" cmp #\$80 | rol a", 10)
"X" -> AsmFragment(" txa | cmp #\$80 | rol a | tax", 10)
"Y" -> AsmFragment(" tya | cmp #\$80 | rol a | tay", 10)
else -> AsmFragment(" lda $variable | cmp #\$80 | rol $variable", 10)
}
}
Opcode.ROR2_BYTE -> { // 8-bit ror
when (variable) {
"A" -> AsmFragment(" lsr a | bcc + | ora #\$80 |+", 10)
"X" -> AsmFragment(" txa | lsr a | bcc + | ora #\$80 |+ | tax", 10)
"Y" -> AsmFragment(" tya | lsr a | bcc + | ora #\$80 |+ | tay", 10)
else -> AsmFragment(" lda $variable | lsr a | bcc + | ora #\$80 |+ | sta $variable", 10)
}
}
Opcode.ROL2_WORD -> {
AsmFragment(" lda $variable | cmp #\$80 | rol $variable | rol $variable+1", 10)
}
Opcode.ROR2_WORD -> {
AsmFragment(" lsr $variable+1 | ror $variable | bcc + | lda $variable+1 | ora #\$80 | sta $variable+1 |+", 30)
}
else -> null
}
}
private class AsmFragment(val asm: String, var segmentSize: Int=0)
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,559 @@
package compiler.target.c64.codegen
import prog8.compiler.CompilerException
import prog8.compiler.intermediate.Instruction
import prog8.compiler.intermediate.IntermediateProgram
import prog8.compiler.intermediate.LabelInstr
import prog8.compiler.intermediate.Opcode
import prog8.compiler.target.c64.MachineDefinition.C64Zeropage
import prog8.compiler.target.c64.MachineDefinition.ESTACK_HI_HEX
import prog8.compiler.target.c64.MachineDefinition.ESTACK_HI_PLUS1_HEX
import prog8.compiler.target.c64.MachineDefinition.ESTACK_LO_HEX
import prog8.compiler.target.c64.MachineDefinition.ESTACK_LO_PLUS1_HEX
import prog8.compiler.target.c64.MachineDefinition.ESTACK_LO_PLUS2_HEX
import prog8.compiler.toHex
import prog8.vm.stackvm.Syscall
import prog8.vm.stackvm.syscallsForStackVm
// note: see https://wiki.nesdev.com/w/index.php/6502_assembly_optimisations
private var breakpointCounter = 0
internal fun simpleInstr2Asm(ins: Instruction, block: IntermediateProgram.ProgramBlock): String? {
// a label 'instruction' is simply translated into a asm label
if(ins is LabelInstr) {
val labelresult =
if(ins.name.startsWith("${block.name}."))
ins.name.substring(block.name.length+1)
else
ins.name
return if(ins.asmProc) labelresult+"\t\t.proc" else labelresult
}
// simple opcodes that are translated directly into one or a few asm instructions
return when(ins.opcode) {
Opcode.LINE -> " ;\tsrc line: ${ins.callLabel}"
Opcode.NOP -> " nop" // shouldn't be present anymore though
Opcode.START_PROCDEF -> "" // is done as part of a label
Opcode.END_PROCDEF -> " .pend"
Opcode.TERMINATE -> " brk"
Opcode.SEC -> " sec"
Opcode.CLC -> " clc"
Opcode.SEI -> " sei"
Opcode.CLI -> " cli"
Opcode.CARRY_TO_A -> " lda #0 | adc #0"
Opcode.JUMP -> {
if(ins.callLabel!=null)
" jmp ${ins.callLabel}"
else
" jmp ${hexVal(ins)}"
}
Opcode.CALL -> {
if(ins.callLabel!=null)
" jsr ${ins.callLabel}"
else
" jsr ${hexVal(ins)}"
}
Opcode.RETURN -> " rts"
Opcode.RSAVE -> {
// save cpu status flag and all registers A, X, Y.
// see http://6502.org/tutorials/register_preservation.html
" php | sta ${C64Zeropage.SCRATCH_REG} | pha | txa | pha | tya | pha | lda ${C64Zeropage.SCRATCH_REG}"
}
Opcode.RRESTORE -> {
// restore all registers and cpu status flag
" pla | tay | pla | tax | pla | plp"
}
Opcode.RSAVEX -> " sta ${C64Zeropage.SCRATCH_REG} | txa | pha | lda ${C64Zeropage.SCRATCH_REG}"
Opcode.RRESTOREX -> " sta ${C64Zeropage.SCRATCH_REG} | pla | tax | lda ${C64Zeropage.SCRATCH_REG}"
Opcode.DISCARD_BYTE -> " inx"
Opcode.DISCARD_WORD -> " inx"
Opcode.DISCARD_FLOAT -> " inx | inx | inx"
Opcode.DUP_B -> {
" lda $ESTACK_LO_PLUS1_HEX,x | sta $ESTACK_LO_HEX,x | dex | ;DUP_B "
}
Opcode.DUP_W -> {
" lda $ESTACK_LO_PLUS1_HEX,x | sta $ESTACK_LO_HEX,x | lda $ESTACK_HI_PLUS1_HEX,x | sta $ESTACK_HI_HEX,x | dex "
}
Opcode.CMP_B, Opcode.CMP_UB -> {
" inx | lda $ESTACK_LO_HEX,x | cmp #${ins.arg!!.integerValue().toHex()} | ;CMP_B "
}
Opcode.CMP_W, Opcode.CMP_UW -> {
"""
inx
lda $ESTACK_HI_HEX,x
cmp #>${ins.arg!!.integerValue().toHex()}
bne +
lda $ESTACK_LO_HEX,x
cmp #<${ins.arg.integerValue().toHex()}
; bne + not necessary?
; lda #0 not necessary?
+
"""
}
Opcode.INLINE_ASSEMBLY -> "@inline@" + (ins.callLabel2 ?: "") // All of the inline assembly is stored in the calllabel2 property. the '@inline@' is a special marker to accept it.
Opcode.INCLUDE_FILE -> {
val offset = if(ins.arg==null) "" else ", ${ins.arg.integerValue()}"
val length = if(ins.arg2==null) "" else ", ${ins.arg2.integerValue()}"
" .binary \"${ins.callLabel}\" $offset $length"
}
Opcode.SYSCALL -> {
if (ins.arg!!.numericValue() in syscallsForStackVm.map { it.callNr })
throw CompilerException("cannot translate vm syscalls to real assembly calls - use *real* subroutine calls instead. Syscall ${ins.arg.numericValue()}")
val call = Syscall.values().find { it.callNr==ins.arg.numericValue() }
when(call) {
Syscall.FUNC_SIN,
Syscall.FUNC_COS,
Syscall.FUNC_ABS,
Syscall.FUNC_TAN,
Syscall.FUNC_ATAN,
Syscall.FUNC_LN,
Syscall.FUNC_LOG2,
Syscall.FUNC_SQRT,
Syscall.FUNC_RAD,
Syscall.FUNC_DEG,
Syscall.FUNC_ROUND,
Syscall.FUNC_FLOOR,
Syscall.FUNC_CEIL,
Syscall.FUNC_RNDF,
Syscall.FUNC_ANY_F,
Syscall.FUNC_ALL_F,
Syscall.FUNC_MAX_F,
Syscall.FUNC_MIN_F,
Syscall.FUNC_SUM_F -> " jsr c64flt.${call.name.toLowerCase()}"
null -> ""
else -> " jsr prog8_lib.${call.name.toLowerCase()}"
}
}
Opcode.BREAKPOINT -> {
breakpointCounter++
"_prog8_breakpoint_$breakpointCounter\tnop"
}
Opcode.PUSH_BYTE -> {
" lda #${hexVal(ins)} | sta $ESTACK_LO_HEX,x | dex"
}
Opcode.PUSH_WORD -> {
val value = hexVal(ins)
" lda #<$value | sta $ESTACK_LO_HEX,x | lda #>$value | sta $ESTACK_HI_HEX,x | dex"
}
Opcode.PUSH_FLOAT -> {
val floatConst = getFloatConst(ins.arg!!)
" lda #<$floatConst | ldy #>$floatConst | jsr c64flt.push_float"
}
Opcode.PUSH_VAR_BYTE -> {
when(ins.callLabel) {
"X" -> throw CompilerException("makes no sense to push X, it's used as a stack pointer itself. You should probably not use the X register (or only in trivial assignments)")
"A" -> " sta $ESTACK_LO_HEX,x | dex"
"Y" -> " tya | sta $ESTACK_LO_HEX,x | dex"
else -> " lda ${ins.callLabel} | sta $ESTACK_LO_HEX,x | dex"
}
}
Opcode.PUSH_VAR_WORD -> {
" lda ${ins.callLabel} | sta $ESTACK_LO_HEX,x | lda ${ins.callLabel}+1 | sta $ESTACK_HI_HEX,x | dex"
}
Opcode.PUSH_VAR_FLOAT -> " lda #<${ins.callLabel} | ldy #>${ins.callLabel}| jsr c64flt.push_float"
Opcode.PUSH_MEM_B, Opcode.PUSH_MEM_UB -> {
"""
lda ${hexVal(ins)}
sta $ESTACK_LO_HEX,x
dex
"""
}
Opcode.PUSH_MEM_W, Opcode.PUSH_MEM_UW -> {
"""
lda ${hexVal(ins)}
sta $ESTACK_LO_HEX,x
lda ${hexValPlusOne(ins)}
sta $ESTACK_HI_HEX,x
dex
"""
}
Opcode.PUSH_MEM_FLOAT -> {
" lda #<${hexVal(ins)} | ldy #>${hexVal(ins)}| jsr c64flt.push_float"
}
Opcode.PUSH_MEMREAD -> {
"""
lda $ESTACK_LO_PLUS1_HEX,x
sta (+) +1
lda $ESTACK_HI_PLUS1_HEX,x
sta (+) +2
+ lda 65535 ; modified
sta $ESTACK_LO_PLUS1_HEX,x
"""
}
Opcode.PUSH_REGAY_WORD -> {
" sta $ESTACK_LO_HEX,x | tya | sta $ESTACK_HI_HEX,x | dex "
}
Opcode.PUSH_ADDR_HEAPVAR -> {
" lda #<${ins.callLabel} | sta $ESTACK_LO_HEX,x | lda #>${ins.callLabel} | sta $ESTACK_HI_HEX,x | dex"
}
Opcode.POP_REGAX_WORD -> throw AssemblyError("cannot load X register from stack because it's used as the stack pointer itself")
Opcode.POP_REGXY_WORD -> throw AssemblyError("cannot load X register from stack because it's used as the stack pointer itself")
Opcode.POP_REGAY_WORD -> {
" inx | lda $ESTACK_LO_HEX,x | ldy $ESTACK_HI_HEX,x "
}
Opcode.READ_INDEXED_VAR_BYTE -> {
"""
ldy $ESTACK_LO_PLUS1_HEX,x
lda ${ins.callLabel},y
sta $ESTACK_LO_PLUS1_HEX,x
"""
}
Opcode.READ_INDEXED_VAR_WORD -> {
"""
lda $ESTACK_LO_PLUS1_HEX,x
asl a
tay
lda ${ins.callLabel},y
sta $ESTACK_LO_PLUS1_HEX,x
lda ${ins.callLabel}+1,y
sta $ESTACK_HI_PLUS1_HEX,x
"""
}
Opcode.READ_INDEXED_VAR_FLOAT -> {
"""
lda #<${ins.callLabel}
ldy #>${ins.callLabel}
jsr c64flt.push_float_from_indexed_var
"""
}
Opcode.WRITE_INDEXED_VAR_BYTE -> {
"""
inx
ldy $ESTACK_LO_HEX,x
inx
lda $ESTACK_LO_HEX,x
sta ${ins.callLabel},y
"""
}
Opcode.WRITE_INDEXED_VAR_WORD -> {
"""
inx
lda $ESTACK_LO_HEX,x
asl a
tay
inx
lda $ESTACK_LO_HEX,x
sta ${ins.callLabel},y
lda $ESTACK_HI_HEX,x
sta ${ins.callLabel}+1,y
"""
}
Opcode.WRITE_INDEXED_VAR_FLOAT -> {
"""
lda #<${ins.callLabel}
ldy #>${ins.callLabel}
jsr c64flt.pop_float_to_indexed_var
"""
}
Opcode.POP_MEM_BYTE -> {
"""
inx
lda $ESTACK_LO_HEX,x
sta ${hexVal(ins)}
"""
}
Opcode.POP_MEM_WORD -> {
"""
inx
lda $ESTACK_LO_HEX,x
sta ${hexVal(ins)}
lda $ESTACK_HI_HEX,x
sta ${hexValPlusOne(ins)}
"""
}
Opcode.POP_MEM_FLOAT -> {
" lda ${hexVal(ins)} | ldy ${hexValPlusOne(ins)} | jsr c64flt.pop_float"
}
Opcode.POP_MEMWRITE -> {
"""
inx
lda $ESTACK_LO_HEX,x
sta (+) +1
lda $ESTACK_HI_HEX,x
sta (+) +2
inx
lda $ESTACK_LO_HEX,x
+ sta 65535 ; modified
"""
}
Opcode.POP_VAR_BYTE -> {
when (ins.callLabel) {
"X" -> throw CompilerException("makes no sense to pop X, it's used as a stack pointer itself")
"A" -> " inx | lda $ESTACK_LO_HEX,x"
"Y" -> " inx | ldy $ESTACK_LO_HEX,x"
else -> " inx | lda $ESTACK_LO_HEX,x | sta ${ins.callLabel}"
}
}
Opcode.POP_VAR_WORD -> {
" inx | lda $ESTACK_LO_HEX,x | ldy $ESTACK_HI_HEX,x | sta ${ins.callLabel} | sty ${ins.callLabel}+1"
}
Opcode.POP_VAR_FLOAT -> {
" lda #<${ins.callLabel} | ldy #>${ins.callLabel} | jsr c64flt.pop_float"
}
Opcode.INC_VAR_UB, Opcode.INC_VAR_B -> {
when (ins.callLabel) {
"A" -> " clc | adc #1"
"X" -> " inx"
"Y" -> " iny"
else -> " inc ${ins.callLabel}"
}
}
Opcode.INC_VAR_UW, Opcode.INC_VAR_W -> {
" inc ${ins.callLabel} | bne + | inc ${ins.callLabel}+1 |+"
}
Opcode.INC_VAR_F -> {
"""
lda #<${ins.callLabel}
ldy #>${ins.callLabel}
jsr c64flt.inc_var_f
"""
}
Opcode.POP_INC_MEMORY -> {
"""
inx
lda $ESTACK_LO_HEX,x
sta (+) +1
lda $ESTACK_HI_HEX,x
sta (+) +2
+ inc 65535 ; modified
"""
}
Opcode.POP_DEC_MEMORY -> {
"""
inx
lda $ESTACK_LO_HEX,x
sta (+) +1
lda $ESTACK_HI_HEX,x
sta (+) +2
+ dec 65535 ; modified
"""
}
Opcode.DEC_VAR_UB, Opcode.DEC_VAR_B -> {
when (ins.callLabel) {
"A" -> " sec | sbc #1"
"X" -> " dex"
"Y" -> " dey"
else -> " dec ${ins.callLabel}"
}
}
Opcode.DEC_VAR_UW, Opcode.DEC_VAR_W -> {
" lda ${ins.callLabel} | bne + | dec ${ins.callLabel}+1 |+ | dec ${ins.callLabel}"
}
Opcode.DEC_VAR_F -> {
"""
lda #<${ins.callLabel}
ldy #>${ins.callLabel}
jsr c64flt.dec_var_f
"""
}
Opcode.INC_MEMORY -> " inc ${hexVal(ins)}"
Opcode.DEC_MEMORY -> " dec ${hexVal(ins)}"
Opcode.INC_INDEXED_VAR_B, Opcode.INC_INDEXED_VAR_UB -> " inx | txa | pha | lda $ESTACK_LO_HEX,x | tax | inc ${ins.callLabel},x | pla | tax"
Opcode.DEC_INDEXED_VAR_B, Opcode.DEC_INDEXED_VAR_UB -> " inx | txa | pha | lda $ESTACK_LO_HEX,x | tax | dec ${ins.callLabel},x | pla | tax"
Opcode.NEG_B -> " jsr prog8_lib.neg_b"
Opcode.NEG_W -> " jsr prog8_lib.neg_w"
Opcode.NEG_F -> " jsr c64flt.neg_f"
Opcode.ABS_B -> " jsr prog8_lib.abs_b"
Opcode.ABS_W -> " jsr prog8_lib.abs_w"
Opcode.ABS_F -> " jsr c64flt.abs_f"
Opcode.POW_F -> " jsr c64flt.pow_f"
Opcode.INV_BYTE -> {
"""
lda $ESTACK_LO_PLUS1_HEX,x
eor #255
sta $ESTACK_LO_PLUS1_HEX,x
"""
}
Opcode.INV_WORD -> " jsr prog8_lib.inv_word"
Opcode.NOT_BYTE -> " jsr prog8_lib.not_byte"
Opcode.NOT_WORD -> " jsr prog8_lib.not_word"
Opcode.BCS -> {
val label = ins.callLabel ?: hexVal(ins)
" bcs $label"
}
Opcode.BCC -> {
val label = ins.callLabel ?: hexVal(ins)
" bcc $label"
}
Opcode.BNEG -> {
val label = ins.callLabel ?: hexVal(ins)
" bmi $label"
}
Opcode.BPOS -> {
val label = ins.callLabel ?: hexVal(ins)
" bpl $label"
}
Opcode.BVC -> {
val label = ins.callLabel ?: hexVal(ins)
" bvc $label"
}
Opcode.BVS -> {
val label = ins.callLabel ?: hexVal(ins)
" bvs $label"
}
Opcode.BZ -> {
val label = ins.callLabel ?: hexVal(ins)
" beq $label"
}
Opcode.BNZ -> {
val label = ins.callLabel ?: hexVal(ins)
" bne $label"
}
Opcode.JZ -> {
val label = ins.callLabel ?: hexVal(ins)
"""
inx
lda $ESTACK_LO_HEX,x
beq $label
"""
}
Opcode.JZW -> {
val label = ins.callLabel ?: hexVal(ins)
"""
inx
lda $ESTACK_LO_HEX,x
beq $label
lda $ESTACK_HI_HEX,x
beq $label
"""
}
Opcode.JNZ -> {
val label = ins.callLabel ?: hexVal(ins)
"""
inx
lda $ESTACK_LO_HEX,x
bne $label
"""
}
Opcode.JNZW -> {
val label = ins.callLabel ?: hexVal(ins)
"""
inx
lda $ESTACK_LO_HEX,x
bne $label
lda $ESTACK_HI_HEX,x
bne $label
"""
}
Opcode.CAST_B_TO_UB -> "" // is a no-op, just carry on with the byte as-is
Opcode.CAST_UB_TO_B -> "" // is a no-op, just carry on with the byte as-is
Opcode.CAST_W_TO_UW -> "" // is a no-op, just carry on with the word as-is
Opcode.CAST_UW_TO_W -> "" // is a no-op, just carry on with the word as-is
Opcode.CAST_W_TO_UB -> "" // is a no-op, just carry on with the lsb of the word as-is
Opcode.CAST_W_TO_B -> "" // is a no-op, just carry on with the lsb of the word as-is
Opcode.CAST_UW_TO_UB -> "" // is a no-op, just carry on with the lsb of the uword as-is
Opcode.CAST_UW_TO_B -> "" // is a no-op, just carry on with the lsb of the uword as-is
Opcode.CAST_UB_TO_F -> " jsr c64flt.stack_ub2float"
Opcode.CAST_B_TO_F -> " jsr c64flt.stack_b2float"
Opcode.CAST_UW_TO_F -> " jsr c64flt.stack_uw2float"
Opcode.CAST_W_TO_F -> " jsr c64flt.stack_w2float"
Opcode.CAST_F_TO_UB -> " jsr c64flt.stack_float2ub"
Opcode.CAST_F_TO_B -> " jsr c64flt.stack_float2b"
Opcode.CAST_F_TO_UW -> " jsr c64flt.stack_float2uw"
Opcode.CAST_F_TO_W -> " jsr c64flt.stack_float2w"
Opcode.CAST_UB_TO_UW, Opcode.CAST_UB_TO_W -> " lda #0 | sta $ESTACK_HI_PLUS1_HEX,x" // clear the msb
Opcode.CAST_B_TO_UW, Opcode.CAST_B_TO_W -> " lda $ESTACK_LO_PLUS1_HEX,x | ${signExtendA("$ESTACK_HI_PLUS1_HEX,x")}" // sign extend the lsb
Opcode.MSB -> " lda $ESTACK_HI_PLUS1_HEX,x | sta $ESTACK_LO_PLUS1_HEX,x"
Opcode.MKWORD -> " inx | lda $ESTACK_LO_HEX,x | sta $ESTACK_HI_PLUS1_HEX,x "
Opcode.ADD_UB, Opcode.ADD_B -> { // TODO inline better (pattern with more opcodes)
"""
lda $ESTACK_LO_PLUS2_HEX,x
clc
adc $ESTACK_LO_PLUS1_HEX,x
inx
sta $ESTACK_LO_PLUS1_HEX,x
"""
}
Opcode.SUB_UB, Opcode.SUB_B -> { // TODO inline better (pattern with more opcodes)
"""
lda $ESTACK_LO_PLUS2_HEX,x
sec
sbc $ESTACK_LO_PLUS1_HEX,x
inx
sta $ESTACK_LO_PLUS1_HEX,x
"""
}
Opcode.ADD_W, Opcode.ADD_UW -> " jsr prog8_lib.add_w"
Opcode.SUB_W, Opcode.SUB_UW -> " jsr prog8_lib.sub_w"
Opcode.MUL_B, Opcode.MUL_UB -> " jsr prog8_lib.mul_byte"
Opcode.MUL_W, Opcode.MUL_UW -> " jsr prog8_lib.mul_word"
Opcode.MUL_F -> " jsr c64flt.mul_f"
Opcode.ADD_F -> " jsr c64flt.add_f"
Opcode.SUB_F -> " jsr c64flt.sub_f"
Opcode.DIV_F -> " jsr c64flt.div_f"
Opcode.IDIV_UB -> " jsr prog8_lib.idiv_ub"
Opcode.IDIV_B -> " jsr prog8_lib.idiv_b"
Opcode.IDIV_W -> " jsr prog8_lib.idiv_w"
Opcode.IDIV_UW -> " jsr prog8_lib.idiv_uw"
Opcode.AND_BYTE -> " jsr prog8_lib.and_b"
Opcode.OR_BYTE -> " jsr prog8_lib.or_b"
Opcode.XOR_BYTE -> " jsr prog8_lib.xor_b"
Opcode.AND_WORD -> " jsr prog8_lib.and_w"
Opcode.OR_WORD -> " jsr prog8_lib.or_w"
Opcode.XOR_WORD -> " jsr prog8_lib.xor_w"
Opcode.BITAND_BYTE -> " jsr prog8_lib.bitand_b"
Opcode.BITOR_BYTE -> " jsr prog8_lib.bitor_b"
Opcode.BITXOR_BYTE -> " jsr prog8_lib.bitxor_b"
Opcode.BITAND_WORD -> " jsr prog8_lib.bitand_w"
Opcode.BITOR_WORD -> " jsr prog8_lib.bitor_w"
Opcode.BITXOR_WORD -> " jsr prog8_lib.bitxor_w"
Opcode.REMAINDER_UB -> " jsr prog8_lib.remainder_ub"
Opcode.REMAINDER_UW -> " jsr prog8_lib.remainder_uw"
Opcode.GREATER_B -> " jsr prog8_lib.greater_b"
Opcode.GREATER_UB -> " jsr prog8_lib.greater_ub"
Opcode.GREATER_W -> " jsr prog8_lib.greater_w"
Opcode.GREATER_UW -> " jsr prog8_lib.greater_uw"
Opcode.GREATER_F -> " jsr c64flt.greater_f"
Opcode.GREATEREQ_B -> " jsr prog8_lib.greatereq_b"
Opcode.GREATEREQ_UB -> " jsr prog8_lib.greatereq_ub"
Opcode.GREATEREQ_W -> " jsr prog8_lib.greatereq_w"
Opcode.GREATEREQ_UW -> " jsr prog8_lib.greatereq_uw"
Opcode.GREATEREQ_F -> " jsr c64flt.greatereq_f"
Opcode.EQUAL_BYTE -> " jsr prog8_lib.equal_b"
Opcode.EQUAL_WORD -> " jsr prog8_lib.equal_w"
Opcode.EQUAL_F -> " jsr c64flt.equal_f"
Opcode.NOTEQUAL_BYTE -> " jsr prog8_lib.notequal_b"
Opcode.NOTEQUAL_WORD -> " jsr prog8_lib.notequal_w"
Opcode.NOTEQUAL_F -> " jsr c64flt.notequal_f"
Opcode.LESS_UB -> " jsr prog8_lib.less_ub"
Opcode.LESS_B -> " jsr prog8_lib.less_b"
Opcode.LESS_UW -> " jsr prog8_lib.less_uw"
Opcode.LESS_W -> " jsr prog8_lib.less_w"
Opcode.LESS_F -> " jsr c64flt.less_f"
Opcode.LESSEQ_UB -> " jsr prog8_lib.lesseq_ub"
Opcode.LESSEQ_B -> " jsr prog8_lib.lesseq_b"
Opcode.LESSEQ_UW -> " jsr prog8_lib.lesseq_uw"
Opcode.LESSEQ_W -> " jsr prog8_lib.lesseq_w"
Opcode.LESSEQ_F -> " jsr c64flt.lesseq_f"
Opcode.SHIFTEDL_BYTE -> " asl $ESTACK_LO_PLUS1_HEX,x"
Opcode.SHIFTEDL_WORD -> " asl $ESTACK_LO_PLUS1_HEX,x | rol $ESTACK_HI_PLUS1_HEX,x"
Opcode.SHIFTEDR_SBYTE -> " lda $ESTACK_LO_PLUS1_HEX,x | asl a | ror $ESTACK_LO_PLUS1_HEX,x"
Opcode.SHIFTEDR_UBYTE -> " lsr $ESTACK_LO_PLUS1_HEX,x"
Opcode.SHIFTEDR_SWORD -> " lda $ESTACK_HI_PLUS1_HEX,x | asl a | ror $ESTACK_HI_PLUS1_HEX,x | ror $ESTACK_LO_PLUS1_HEX,x"
Opcode.SHIFTEDR_UWORD -> " lsr $ESTACK_HI_PLUS1_HEX,x | ror $ESTACK_LO_PLUS1_HEX,x"
else -> null
}
}

View File

@ -1,6 +1,7 @@
package prog8
package prog8.vm.stackvm
import prog8.stackvm.*
import prog8.printSoftwareHeader
import prog8.vm.astvm.ScreenDialog
import java.awt.EventQueue
import javax.swing.Timer
import kotlin.system.exitProcess
@ -19,7 +20,7 @@ fun stackVmMain(args: Array<String>) {
val program = Program.load(args.first())
val vm = StackVm(traceOutputFile = null)
val dialog = ScreenDialog()
val dialog = ScreenDialog("StackVM")
vm.load(program, dialog.canvas)
EventQueue.invokeLater {
dialog.pack()

View File

@ -1,19 +1,26 @@
package prog8.stackvm
package prog8.vm.stackvm
import prog8.ast.*
import prog8.ast.antlr.unescape
import prog8.ast.base.*
import prog8.ast.expressions.AddressOf
import prog8.ast.expressions.IdentifierReference
import prog8.compiler.HeapValues
import prog8.compiler.IntegerOrAddressOf
import prog8.compiler.intermediate.*
import prog8.compiler.intermediate.Instruction
import prog8.compiler.intermediate.LabelInstr
import prog8.compiler.intermediate.Opcode
import prog8.compiler.intermediate.opcodesWithVarArgument
import prog8.vm.RuntimeValue
import java.io.File
import java.util.*
import java.util.regex.Pattern
class Program (val name: String,
val program: MutableList<Instruction>,
val variables: Map<String, Value>,
val variables: Map<String, RuntimeValue>,
val memoryPointers: Map<String, Pair<Int, DataType>>,
val labels: Map<String, Int>,
val memory: Map<Int, List<Value>>,
val memory: Map<Int, List<RuntimeValue>>,
val heap: HeapValues)
{
init {
@ -26,10 +33,10 @@ class Program (val name: String,
companion object {
fun load(filename: String): Program {
val lines = File(filename).readLines().withIndex().iterator()
val memory = mutableMapOf<Int, List<Value>>()
val memory = mutableMapOf<Int, List<RuntimeValue>>()
val heap = HeapValues()
val program = mutableListOf<Instruction>()
val variables = mutableMapOf<String, Value>()
val variables = mutableMapOf<String, RuntimeValue>()
val memoryPointers = mutableMapOf<String, Pair<Int, DataType>>()
val labels = mutableMapOf<String, Int>()
@ -51,7 +58,7 @@ class Program (val name: String,
private fun loadBlock(lines: Iterator<IndexedValue<String>>,
heap: HeapValues,
program: MutableList<Instruction>,
variables: MutableMap<String, Value>,
variables: MutableMap<String, RuntimeValue>,
memoryPointers: MutableMap<String, Pair<Int, DataType>>,
labels: MutableMap<String, Int>)
{
@ -88,7 +95,7 @@ class Program (val name: String,
}
heapvalues.sortedBy { it.first }.forEach {
when(it.second) {
DataType.STR, DataType.STR_S -> heap.addString(it.second, unescape(it.third.substring(1, it.third.length-1), Position("<stackvmsource>", 0, 0, 0)))
DataType.STR, DataType.STR_S -> heap.addString(it.second, unescape(it.third.substring(1, it.third.length - 1), Position("<stackvmsource>", 0, 0, 0)))
DataType.ARRAY_UB, DataType.ARRAY_B,
DataType.ARRAY_UW, DataType.ARRAY_W -> {
val numbers = it.third.substring(1, it.third.length-1).split(',')
@ -97,8 +104,8 @@ class Program (val name: String,
if(num.startsWith("&")) {
// it's AddressOf
val scopedname = num.substring(1)
val iref = IdentifierReference(scopedname.split('.'), Position("<intermediate>", 0,0,0))
val addrOf = AddressOf(iref, Position("<intermediate>", 0,0,0))
val iref = IdentifierReference(scopedname.split('.'), Position("<intermediate>", 0, 0, 0))
val addrOf = AddressOf(iref, Position("<intermediate>", 0, 0, 0))
addrOf.scopedname=scopedname
IntegerOrAddressOf(null, addrOf)
} else {
@ -122,7 +129,7 @@ class Program (val name: String,
val instructions = mutableListOf<Instruction>()
val labels = mutableMapOf<String, Instruction>()
val splitpattern = Pattern.compile("\\s+")
val nextInstructionLabels = Stack<String>() // more than one label can occur on the same line
val nextInstructionLabels = Stack<String>() // more than one label can occur on the isSameAs line
while(true) {
val (lineNr, line) = lines.next()
@ -143,7 +150,7 @@ class Program (val name: String,
Opcode.BZ, Opcode.BNZ, Opcode.BCS, Opcode.BCC,
Opcode.JZ, Opcode.JNZ, Opcode.JZW, Opcode.JNZW -> {
if(args!!.startsWith('$')) {
Instruction(opcode, Value(DataType.UWORD, args.substring(1).toInt(16)))
Instruction(opcode, RuntimeValue(DataType.UWORD, args.substring(1).toInt(16)))
} else {
Instruction(opcode, callLabel = args)
}
@ -158,15 +165,15 @@ class Program (val name: String,
Opcode.SYSCALL -> {
if(args!! in syscallNames) {
val call = Syscall.valueOf(args)
Instruction(opcode, Value(DataType.UBYTE, call.callNr))
Instruction(opcode, RuntimeValue(DataType.UBYTE, call.callNr))
} else {
val args2 = args.replace('.', '_')
if(args2 in syscallNames) {
val call = Syscall.valueOf(args2)
Instruction(opcode, Value(DataType.UBYTE, call.callNr))
Instruction(opcode, RuntimeValue(DataType.UBYTE, call.callNr))
} else {
// the syscall is not yet implemented. emit a stub.
Instruction(Opcode.SYSCALL, Value(DataType.UBYTE, Syscall.SYSCALLSTUB.callNr), callLabel = args2)
Instruction(Opcode.SYSCALL, RuntimeValue(DataType.UBYTE, Syscall.SYSCALLSTUB.callNr), callLabel = args2)
}
}
}
@ -190,7 +197,7 @@ class Program (val name: String,
}
}
private fun getArgValue(args: String?, heap: HeapValues): Value? {
private fun getArgValue(args: String?, heap: HeapValues): RuntimeValue? {
if(args==null)
return null
if(args[0]=='"' && args[args.length-1]=='"') {
@ -198,21 +205,21 @@ class Program (val name: String,
}
val (type, valueStr) = args.split(':')
return when(type) {
"b" -> Value(DataType.BYTE, valueStr.toShort(16))
"ub" -> Value(DataType.UBYTE, valueStr.toShort(16))
"w" -> Value(DataType.WORD, valueStr.toInt(16))
"uw" -> Value(DataType.UWORD, valueStr.toInt(16))
"f" -> Value(DataType.FLOAT, valueStr.toDouble())
"b" -> RuntimeValue(DataType.BYTE, valueStr.toShort(16))
"ub" -> RuntimeValue(DataType.UBYTE, valueStr.toShort(16))
"w" -> RuntimeValue(DataType.WORD, valueStr.toInt(16))
"uw" -> RuntimeValue(DataType.UWORD, valueStr.toInt(16))
"f" -> RuntimeValue(DataType.FLOAT, valueStr.toDouble())
"heap" -> {
val heapId = valueStr.toInt()
Value(heap.get(heapId).type, heapId)
RuntimeValue(heap.get(heapId).type, heapId = heapId)
}
else -> throw VmExecutionException("invalid datatype $type")
}
}
private fun loadVars(lines: Iterator<IndexedValue<String>>,
vars: MutableMap<String, Value>) {
vars: MutableMap<String, RuntimeValue>) {
val splitpattern = Pattern.compile("\\s+")
while(true) {
val (_, line) = lines.next()
@ -221,29 +228,28 @@ class Program (val name: String,
val (name, typeStr, valueStr) = line.split(splitpattern, limit = 3)
if(valueStr[0] !='"' && ':' !in valueStr)
throw VmExecutionException("missing value type character")
val type = DataType.valueOf(typeStr.toUpperCase())
val value = when(type) {
DataType.UBYTE -> Value(DataType.UBYTE, valueStr.substring(3).toShort(16))
DataType.BYTE -> Value(DataType.BYTE, valueStr.substring(2).toShort(16))
DataType.UWORD -> Value(DataType.UWORD, valueStr.substring(3).toInt(16))
DataType.WORD -> Value(DataType.WORD, valueStr.substring(2).toInt(16))
DataType.FLOAT -> Value(DataType.FLOAT, valueStr.substring(2).toDouble())
val value = when(val type = DataType.valueOf(typeStr.toUpperCase())) {
DataType.UBYTE -> RuntimeValue(DataType.UBYTE, valueStr.substring(3).substringBefore(' ').toShort(16))// TODO process ZP and struct info?
DataType.BYTE -> RuntimeValue(DataType.BYTE, valueStr.substring(2).substringBefore(' ').toShort(16))// TODO process ZP and struct info?
DataType.UWORD -> RuntimeValue(DataType.UWORD, valueStr.substring(3).substringBefore(' ').toInt(16))// TODO process ZP and struct info?
DataType.WORD -> RuntimeValue(DataType.WORD, valueStr.substring(2).substringBefore(' ').toInt(16))// TODO process ZP and struct info?
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, valueStr.substring(2).substringBefore(' ').toDouble())// TODO process ZP and struct info?
in StringDatatypes -> {
if(valueStr.startsWith('"') && valueStr.endsWith('"'))
throw VmExecutionException("encountered a var with a string value, but all string values should already have been moved into the heap")
else if(!valueStr.startsWith("heap:"))
throw VmExecutionException("invalid string value, should be a heap reference")
else {
val heapId = valueStr.substring(5).toInt()
Value(type, heapId)
val heapId = valueStr.substring(5).substringBefore(' ').toInt() // TODO process ZP and struct info?
RuntimeValue(type, heapId = heapId)
}
}
in ArrayDatatypes -> {
if(!valueStr.startsWith("heap:"))
throw VmExecutionException("invalid array value, should be a heap reference")
else {
val heapId = valueStr.substring(5).toInt()
Value(type, heapId)
val heapId = valueStr.substring(5).substringBefore(' ').toInt() // TODO process ZP and struct info?
RuntimeValue(type, heapId = heapId)
}
}
else -> throw VmExecutionException("weird datatype")
@ -269,7 +275,7 @@ class Program (val name: String,
}
}
private fun loadMemory(lines: Iterator<IndexedValue<String>>, memory: MutableMap<Int, List<Value>>): Map<Int, List<Value>> {
private fun loadMemory(lines: Iterator<IndexedValue<String>>, memory: MutableMap<Int, List<RuntimeValue>>): Map<Int, List<RuntimeValue>> {
while(true) {
val (lineNr, line) = lines.next()
if(line=="%end_memory")
@ -280,11 +286,11 @@ class Program (val name: String,
TODO("memory init with char/string")
} else {
val valueStrings = rest.split(' ')
val values = mutableListOf<Value>()
val values = mutableListOf<RuntimeValue>()
valueStrings.forEach {
when(it.length) {
2 -> values.add(Value(DataType.UBYTE, it.toShort(16)))
4 -> values.add(Value(DataType.UWORD, it.toInt(16)))
2 -> values.add(RuntimeValue(DataType.UBYTE, it.toShort(16)))
4 -> values.add(RuntimeValue(DataType.UWORD, it.toInt(16)))
else -> throw VmExecutionException("invalid value at line $lineNr+1")
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,3 +1,6 @@
[![saythanks](https://img.shields.io/badge/say-thanks-ff69b4.svg)](https://saythanks.io/to/irmen)
[![Build Status](https://travis-ci.org/irmen/prog8.svg?branch=master)](https://travis-ci.org/irmen/prog8)
Prog8 - Structured Programming Language for 8-bit 6502/6510 microprocessors
===========================================================================
@ -11,36 +14,50 @@ as used in many home computers from that era. It is a medium to low level progra
which aims to provide many conveniences over raw assembly code (even when using a macro assembler):
- reduction of source code length
- easier program understanding (because it's higher level, and more terse)
- option to automatically run the compiled program in the Vice emulator
- easier program understanding (because it's higher level, and way more compact)
- modularity, symbol scoping, subroutines
- subroutines have enforced input- and output parameter definitions
- various data types other than just bytes (16-bit words, floats, strings, 16-bit register pairs)
- various data types other than just bytes (16-bit words, floats, strings)
- automatic variable allocations, automatic string variables and string sharing
- constant folding in expressions (compile-time evaluation)
- conditional branches
- when statement to provide a 'jump table' alternative to if/elseif chains
- structs to group together sets of variables and manipulate them at once
- automatic type conversions
- floating point operations
- floating point operations (uses the C64 Basic ROM routines for this)
- abstracting away low level aspects such as ZeroPage handling, program startup, explicit memory addresses
- various code optimizations (code structure, logical and numerical expressions, unused code removal...)
- inline assembly allows you to have full control when every cycle or byte matters
Rapid edit-compile-run-debug cycle:
- use modern PC to work on
- quick compilation times (around a second, and less than 0.1 seconds when using the continuous compilation mode)
- option to automatically run the program in the Vice emulator
- breakpoints, that let the Vice emulator drop into the monitor if execution hits them
- source code labels automatically loaded in Vice emulator so it can show them in disassembly
- conditional gotos
- various code optimizations (code structure, logical and numerical expressions, ...)
- the compiler includes a virtual machine that can execute compiled code directy on the
host system without having to actually convert it to assembly to run on a real 6502.
This allows for very quick experimentation and debugging
It is mainly targeted at the Commodore-64 machine at this time.
Contributions to add support for other 8-bit (or other?!) machines are welcome.
Documentation is online at https://prog8.readthedocs.io/
Documentation/manual
--------------------
See https://prog8.readthedocs.io/
Required tools:
---------------
Required tools
--------------
[64tass](https://sourceforge.net/projects/tass64/) - cross assembler. Install this on your shell path.
A recent .exe version of this tool for Windows can be obtained from my [clone](https://github.com/irmen/64tass/releases) of this project.
For other platforms it is very easy to compile it yourself (make ; make install).
A **Java runtime (jre or jdk), version 8 or newer** is required to run the packaged compiler.
If you want to build it from source, you'll need a Kotlin 1.3 SDK as well (or for instance,
A **Java runtime (jre or jdk), version 8 or newer** is required to run a prepackaged version of the compiler.
If you want to build it from source, you'll need a Java SDK + Kotlin 1.3.x SDK (or for instance,
IntelliJ IDEA with the Kotlin plugin).
It's handy to have a C-64 emulator or a real C-64 to run the programs on. The compiler assumes the presence
@ -55,7 +72,7 @@ This code calculates prime numbers using the Sieve of Eratosthenes algorithm::
%import c64utils
%zeropage basicsafe
~ main {
main {
ubyte[256] sieve
ubyte candidate_prime = 2

View File

@ -1,20 +1,36 @@
plugins {
id "org.jetbrains.kotlin.jvm" version "1.3.30"
id 'application'
buildscript {
dependencies {
classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlinVersion"
}
}
plugins {
// id "org.jetbrains.kotlin.jvm" version $kotlinVersion
id 'application'
id 'org.jetbrains.dokka' version "0.9.18"
id 'com.github.johnrengelman.shadow' version '5.1.0'
id 'java'
}
apply plugin: "kotlin"
apply plugin: "java"
repositories {
mavenLocal()
mavenCentral()
jcenter()
}
def kotlinVersion = '1.3.30'
sourceCompatibility = 1.8
def prog8version = rootProject.file('compiler/res/version.txt').text.trim()
dependencies {
implementation project(':parser')
implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk8:$kotlinVersion"
implementation "org.jetbrains.kotlin:kotlin-reflect:$kotlinVersion"
runtime "org.jetbrains.kotlin:kotlin-reflect:$kotlinVersion"
// implementation "org.jetbrains.kotlin:kotlin-reflect:$kotlinVersion"
// runtime "org.jetbrains.kotlin:kotlin-reflect:$kotlinVersion"
runtime 'org.antlr:antlr4-runtime:4.7.2'
runtime project(':parser')
@ -28,6 +44,8 @@ dependencies {
compileKotlin {
kotlinOptions {
jvmTarget = "1.8"
verbose = true
// freeCompilerArgs += "-XXLanguage:+NewInference"
}
}
@ -47,41 +65,27 @@ sourceSets {
}
}
startScripts.enabled = true
application {
mainClassName = 'prog8.CompilerMainKt'
applicationName = 'p8compile'
}
task p8vmScript(type: CreateStartScripts) {
mainClassName = "prog8.StackVmMainKt"
applicationName = "p8vm"
outputDir = new File(project.buildDir, 'scripts')
classpath = jar.outputs.files + project.configurations.runtime
artifacts {
archives shadowJar
}
applicationDistribution.into("bin") {
from(p8vmScript)
fileMode = 0755
// To create a fat-jar use the 'create_compiler_jar' script for now
// @todo investigate https://imperceptiblethoughts.com/shadow/introduction/
shadowJar {
baseName = 'prog8compiler'
version = prog8version
// minimize()
}
task fatJar(type: Jar) {
manifest {
attributes 'Main-Class': 'prog8.CompilerMainKt'
}
archiveBaseName = 'prog8compiler'
destinationDirectory = rootProject.projectDir
from {
project.configurations.runtime.collect { it.isDirectory() ? it : zipTree(it) }
}
with jar
}
// build.finalizedBy(fatJar)
// Java target version
sourceCompatibility = 1.8
test {
// Enable JUnit 5 (Gradle 4.6+).
@ -95,3 +99,9 @@ test {
events "passed", "skipped", "failed"
}
}
dokka {
outputFormat = 'html'
outputDirectory = "$buildDir/kdoc"
}

18
compiler/compiler.iml Normal file
View File

@ -0,0 +1,18 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="JAVA_MODULE" version="4">
<component name="NewModuleRootManager" inherit-compiler-output="true">
<exclude-output />
<content url="file://$MODULE_DIR$">
<sourceFolder url="file://$MODULE_DIR$/res" type="java-resource" />
<sourceFolder url="file://$MODULE_DIR$/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/test" isTestSource="true" />
<excludeFolder url="file://$MODULE_DIR$/build" />
</content>
<orderEntry type="jdk" jdkName="1.8" jdkType="JavaSDK" />
<orderEntry type="sourceFolder" forTests="false" />
<orderEntry type="library" name="KotlinJavaRuntime" level="project" />
<orderEntry type="library" name="antlr-runtime-4.7.2" level="project" />
<orderEntry type="module" module-name="parser" />
<orderEntry type="library" name="unittest-libs" level="project" />
</component>
</module>

View File

@ -7,7 +7,7 @@
%option enable_floats
~ c64flt {
c64flt {
; ---- this block contains C-64 floating point related functions ----
const float PI = 3.141592653589793
@ -41,25 +41,25 @@
; note: for subtraction and division, the left operand is in fac2, the right operand in fac1.
; checked functions below:
asmsub MOVFM (uword mflpt @ AY) -> clobbers(A,Y) -> () = $bba2 ; load mflpt value from memory in A/Y into fac1
asmsub FREADMEM () -> clobbers(A,Y) -> () = $bba6 ; load mflpt value from memory in $22/$23 into fac1
asmsub CONUPK (uword mflpt @ AY) -> clobbers(A,Y) -> () = $ba8c ; load mflpt value from memory in A/Y into fac2
asmsub FAREADMEM () -> clobbers(A,Y) -> () = $ba90 ; load mflpt value from memory in $22/$23 into fac2
asmsub MOVFA () -> clobbers(A,X) -> () = $bbfc ; copy fac2 to fac1
asmsub MOVAF () -> clobbers(A,X) -> () = $bc0c ; copy fac1 to fac2 (rounded)
asmsub MOVEF () -> clobbers(A,X) -> () = $bc0f ; copy fac1 to fac2
asmsub MOVMF (uword mflpt @ XY) -> clobbers(A,Y) -> () = $bbd4 ; store fac1 to memory X/Y as 5-byte mflpt
asmsub MOVFM (uword mflpt @ AY) clobbers(A,Y) = $bba2 ; load mflpt value from memory in A/Y into fac1
asmsub FREADMEM () clobbers(A,Y) = $bba6 ; load mflpt value from memory in $22/$23 into fac1
asmsub CONUPK (uword mflpt @ AY) clobbers(A,Y) = $ba8c ; load mflpt value from memory in A/Y into fac2
asmsub FAREADMEM () clobbers(A,Y) = $ba90 ; load mflpt value from memory in $22/$23 into fac2
asmsub MOVFA () clobbers(A,X) = $bbfc ; copy fac2 to fac1
asmsub MOVAF () clobbers(A,X) = $bc0c ; copy fac1 to fac2 (rounded)
asmsub MOVEF () clobbers(A,X) = $bc0f ; copy fac1 to fac2
asmsub MOVMF (uword mflpt @ XY) clobbers(A,Y) = $bbd4 ; store fac1 to memory X/Y as 5-byte mflpt
; fac1-> signed word in Y/A (might throw ILLEGAL QUANTITY)
; (tip: use c64flt.FTOSWRDAY to get A/Y output; lo/hi switched to normal little endian order)
asmsub FTOSWORDYA () -> clobbers(X) -> (ubyte @ Y, ubyte @ A) = $b1aa
asmsub FTOSWORDYA () clobbers(X) -> ubyte @ Y, ubyte @ A = $b1aa ; note: calls AYINT.
; fac1 -> unsigned word in Y/A (might throw ILLEGAL QUANTITY) (result also in $14/15)
; (tip: use c64flt.GETADRAY to get A/Y output; lo/hi switched to normal little endian order)
asmsub GETADR () -> clobbers(X) -> (ubyte @ Y, ubyte @ A) = $b7f7
asmsub GETADR () clobbers(X) -> ubyte @ Y, ubyte @ A = $b7f7
asmsub QINT () -> clobbers(A,X,Y) -> () = $bc9b ; fac1 -> 4-byte signed integer in 98-101 ($62-$65), with the MSB FIRST.
asmsub AYINT () -> clobbers(A,X,Y) -> () = $b1bf ; fac1-> signed word in 100-101 ($64-$65) MSB FIRST. (might throw ILLEGAL QUANTITY)
asmsub QINT () clobbers(A,X,Y) = $bc9b ; fac1 -> 4-byte signed integer in 98-101 ($62-$65), with the MSB FIRST.
asmsub AYINT () clobbers(A,X,Y) = $b1bf ; fac1-> signed word in 100-101 ($64-$65) MSB FIRST. (might throw ILLEGAL QUANTITY)
; GIVAYF: signed word in Y/A (note different lsb/msb order) -> float in fac1
; (tip: use c64flt.GIVAYFAY to use A/Y input; lo/hi switched to normal order)
@ -67,50 +67,50 @@ asmsub AYINT () -> clobbers(A,X,Y) -> () = $b1bf ; fac1-> signed word in 100
; there is also c64flt.FREADS32 that reads from 98-101 ($62-$65) MSB FIRST
; there is also c64flt.FREADUS32 that reads from 98-101 ($62-$65) MSB FIRST
; there is also c64flt.FREADS24AXY that reads signed int24 into fac1 from A/X/Y (lo/mid/hi bytes)
asmsub GIVAYF (ubyte lo @ Y, ubyte hi @ A) -> clobbers(A,X,Y) -> () = $b391
asmsub GIVAYF (ubyte lo @ Y, ubyte hi @ A) clobbers(A,X,Y) = $b391
asmsub FREADUY (ubyte value @ Y) -> clobbers(A,X,Y) -> () = $b3a2 ; 8 bit unsigned Y -> float in fac1
asmsub FREADSA (byte value @ A) -> clobbers(A,X,Y) -> () = $bc3c ; 8 bit signed A -> float in fac1
asmsub FREADSTR (ubyte length @ A) -> clobbers(A,X,Y) -> () = $b7b5 ; str -> fac1, $22/23 must point to string, A=string length
asmsub FPRINTLN () -> clobbers(A,X,Y) -> () = $aabc ; print string of fac1, on one line (= with newline) destroys fac1. (consider FOUT + STROUT as well)
asmsub FOUT () -> clobbers(X) -> (uword @ AY) = $bddd ; fac1 -> string, address returned in AY ($0100)
asmsub FREADUY (ubyte value @ Y) clobbers(A,X,Y) = $b3a2 ; 8 bit unsigned Y -> float in fac1
asmsub FREADSA (byte value @ A) clobbers(A,X,Y) = $bc3c ; 8 bit signed A -> float in fac1
asmsub FREADSTR (ubyte length @ A) clobbers(A,X,Y) = $b7b5 ; str -> fac1, $22/23 must point to string, A=string length
asmsub FPRINTLN () clobbers(A,X,Y) = $aabc ; print string of fac1, on one line (= with newline) destroys fac1. (consider FOUT + STROUT as well)
asmsub FOUT () clobbers(X) -> uword @ AY = $bddd ; fac1 -> string, address returned in AY ($0100)
asmsub FADDH () -> clobbers(A,X,Y) -> () = $b849 ; fac1 += 0.5, for rounding- call this before INT
asmsub MUL10 () -> clobbers(A,X,Y) -> () = $bae2 ; fac1 *= 10
asmsub DIV10 () -> clobbers(A,X,Y) -> () = $bafe ; fac1 /= 10 , CAUTION: result is always positive!
asmsub FCOMP (uword mflpt @ AY) -> clobbers(X,Y) -> (ubyte @ A) = $bc5b ; A = compare fac1 to mflpt in A/Y, 0=equal 1=fac1 is greater, 255=fac1 is less than
asmsub FADDH () clobbers(A,X,Y) = $b849 ; fac1 += 0.5, for rounding- call this before INT
asmsub MUL10 () clobbers(A,X,Y) = $bae2 ; fac1 *= 10
asmsub DIV10 () clobbers(A,X,Y) = $bafe ; fac1 /= 10 , CAUTION: result is always positive!
asmsub FCOMP (uword mflpt @ AY) clobbers(X,Y) -> ubyte @ A = $bc5b ; A = compare fac1 to mflpt in A/Y, 0=equal 1=fac1 is greater, 255=fac1 is less than
asmsub FADDT () -> clobbers(A,X,Y) -> () = $b86a ; fac1 += fac2
asmsub FADD (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $b867 ; fac1 += mflpt value from A/Y
asmsub FSUBT () -> clobbers(A,X,Y) -> () = $b853 ; fac1 = fac2-fac1 mind the order of the operands
asmsub FSUB (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $b850 ; fac1 = mflpt from A/Y - fac1
asmsub FMULTT () -> clobbers(A,X,Y) -> () = $ba2b ; fac1 *= fac2
asmsub FMULT (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $ba28 ; fac1 *= mflpt value from A/Y
asmsub FDIVT () -> clobbers(A,X,Y) -> () = $bb12 ; fac1 = fac2/fac1 (remainder in fac2) mind the order of the operands
asmsub FDIV (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $bb0f ; fac1 = mflpt in A/Y / fac1 (remainder in fac2)
asmsub FPWRT () -> clobbers(A,X,Y) -> () = $bf7b ; fac1 = fac2 ** fac1
asmsub FPWR (uword mflpt @ AY) -> clobbers(A,X,Y) -> () = $bf78 ; fac1 = fac2 ** mflpt from A/Y
asmsub FADDT () clobbers(A,X,Y) = $b86a ; fac1 += fac2
asmsub FADD (uword mflpt @ AY) clobbers(A,X,Y) = $b867 ; fac1 += mflpt value from A/Y
asmsub FSUBT () clobbers(A,X,Y) = $b853 ; fac1 = fac2-fac1 mind the order of the operands
asmsub FSUB (uword mflpt @ AY) clobbers(A,X,Y) = $b850 ; fac1 = mflpt from A/Y - fac1
asmsub FMULTT () clobbers(A,X,Y) = $ba2b ; fac1 *= fac2
asmsub FMULT (uword mflpt @ AY) clobbers(A,X,Y) = $ba28 ; fac1 *= mflpt value from A/Y
asmsub FDIVT () clobbers(A,X,Y) = $bb12 ; fac1 = fac2/fac1 (remainder in fac2) mind the order of the operands
asmsub FDIV (uword mflpt @ AY) clobbers(A,X,Y) = $bb0f ; fac1 = mflpt in A/Y / fac1 (remainder in fac2)
asmsub FPWRT () clobbers(A,X,Y) = $bf7b ; fac1 = fac2 ** fac1
asmsub FPWR (uword mflpt @ AY) clobbers(A,X,Y) = $bf78 ; fac1 = fac2 ** mflpt from A/Y
asmsub NOTOP () -> clobbers(A,X,Y) -> () = $aed4 ; fac1 = NOT(fac1)
asmsub INT () -> clobbers(A,X,Y) -> () = $bccc ; INT() truncates, use FADDH first to round instead of trunc
asmsub LOG () -> clobbers(A,X,Y) -> () = $b9ea ; fac1 = LN(fac1) (natural log)
asmsub SGN () -> clobbers(A,X,Y) -> () = $bc39 ; fac1 = SGN(fac1), result of SIGN (-1, 0 or 1)
asmsub SIGN () -> clobbers() -> (ubyte @ A) = $bc2b ; SIGN(fac1) to A, $ff, $0, $1 for negative, zero, positive
asmsub ABS () -> clobbers() -> () = $bc58 ; fac1 = ABS(fac1)
asmsub SQR () -> clobbers(A,X,Y) -> () = $bf71 ; fac1 = SQRT(fac1)
asmsub SQRA () -> clobbers(A,X,Y) -> () = $bf74 ; fac1 = SQRT(fac2)
asmsub EXP () -> clobbers(A,X,Y) -> () = $bfed ; fac1 = EXP(fac1) (e ** fac1)
asmsub NEGOP () -> clobbers(A) -> () = $bfb4 ; switch the sign of fac1
asmsub RND () -> clobbers(A,X,Y) -> () = $e097 ; fac1 = RND(fac1) float random number generator
asmsub COS () -> clobbers(A,X,Y) -> () = $e264 ; fac1 = COS(fac1)
asmsub SIN () -> clobbers(A,X,Y) -> () = $e26b ; fac1 = SIN(fac1)
asmsub TAN () -> clobbers(A,X,Y) -> () = $e2b4 ; fac1 = TAN(fac1)
asmsub ATN () -> clobbers(A,X,Y) -> () = $e30e ; fac1 = ATN(fac1)
asmsub NOTOP () clobbers(A,X,Y) = $aed4 ; fac1 = NOT(fac1)
asmsub INT () clobbers(A,X,Y) = $bccc ; INT() truncates, use FADDH first to round instead of trunc
asmsub LOG () clobbers(A,X,Y) = $b9ea ; fac1 = LN(fac1) (natural log)
asmsub SGN () clobbers(A,X,Y) = $bc39 ; fac1 = SGN(fac1), result of SIGN (-1, 0 or 1)
asmsub SIGN () -> ubyte @ A = $bc2b ; SIGN(fac1) to A, $ff, $0, $1 for negative, zero, positive
asmsub ABS () = $bc58 ; fac1 = ABS(fac1)
asmsub SQR () clobbers(A,X,Y) = $bf71 ; fac1 = SQRT(fac1)
asmsub SQRA () clobbers(A,X,Y) = $bf74 ; fac1 = SQRT(fac2)
asmsub EXP () clobbers(A,X,Y) = $bfed ; fac1 = EXP(fac1) (e ** fac1)
asmsub NEGOP () clobbers(A) = $bfb4 ; switch the sign of fac1
asmsub RND () clobbers(A,X,Y) = $e097 ; fac1 = RND(fac1) float random number generator
asmsub COS () clobbers(A,X,Y) = $e264 ; fac1 = COS(fac1)
asmsub SIN () clobbers(A,X,Y) = $e26b ; fac1 = SIN(fac1)
asmsub TAN () clobbers(A,X,Y) = $e2b4 ; fac1 = TAN(fac1)
asmsub ATN () clobbers(A,X,Y) = $e30e ; fac1 = ATN(fac1)
asmsub FREADS32 () -> clobbers(A,X,Y) -> () {
asmsub FREADS32 () clobbers(A,X,Y) {
; ---- fac1 = signed int32 from $62-$65 big endian (MSB FIRST)
%asm {{
lda $62
@ -122,7 +122,7 @@ asmsub FREADS32 () -> clobbers(A,X,Y) -> () {
}}
}
asmsub FREADUS32 () -> clobbers(A,X,Y) -> () {
asmsub FREADUS32 () clobbers(A,X,Y) {
; ---- fac1 = uint32 from $62-$65 big endian (MSB FIRST)
%asm {{
sec
@ -132,7 +132,7 @@ asmsub FREADUS32 () -> clobbers(A,X,Y) -> () {
}}
}
asmsub FREADS24AXY (ubyte lo @ A, ubyte mid @ X, ubyte hi @ Y) -> clobbers(A,X,Y) -> () {
asmsub FREADS24AXY (ubyte lo @ A, ubyte mid @ X, ubyte hi @ Y) clobbers(A,X,Y) {
; ---- fac1 = signed int24 (A/X/Y contain lo/mid/hi bytes)
; note: there is no FREADU24AXY (unsigned), use FREADUS32 instead.
%asm {{
@ -149,7 +149,7 @@ asmsub FREADS24AXY (ubyte lo @ A, ubyte mid @ X, ubyte hi @ Y) -> clobbers(A,X
}}
}
asmsub GIVUAYFAY (uword value @ AY) -> clobbers(A,X,Y) -> () {
asmsub GIVUAYFAY (uword value @ AY) clobbers(A,X,Y) {
; ---- unsigned 16 bit word in A/Y (lo/hi) to fac1
%asm {{
sty $62
@ -160,7 +160,7 @@ asmsub GIVUAYFAY (uword value @ AY) -> clobbers(A,X,Y) -> () {
}}
}
asmsub GIVAYFAY (uword value @ AY) -> clobbers(A,X,Y) -> () {
asmsub GIVAYFAY (uword value @ AY) clobbers(A,X,Y) {
; ---- signed 16 bit word in A/Y (lo/hi) to float in fac1
%asm {{
sta c64.SCRATCH_ZPREG
@ -170,7 +170,7 @@ asmsub GIVAYFAY (uword value @ AY) -> clobbers(A,X,Y) -> () {
}}
}
asmsub FTOSWRDAY () -> clobbers(X) -> (uword @ AY) {
asmsub FTOSWRDAY () clobbers(X) -> uword @ AY {
; ---- fac1 to signed word in A/Y
%asm {{
jsr FTOSWORDYA ; note the inverse Y/A order
@ -181,7 +181,7 @@ asmsub FTOSWRDAY () -> clobbers(X) -> (uword @ AY) {
}}
}
asmsub GETADRAY () -> clobbers(X) -> (uword @ AY) {
asmsub GETADRAY () clobbers(X) -> uword @ AY {
; ---- fac1 to unsigned word in A/Y
%asm {{
jsr GETADR ; this uses the inverse order, Y/A
@ -196,8 +196,8 @@ sub print_f (float value) {
; ---- prints the floating point value (without a newline) using basic rom routines.
%asm {{
stx c64.SCRATCH_ZPREGX
lda #<print_f_value
ldy #>print_f_value
lda #<value
ldy #>value
jsr MOVFM ; load float into fac1
jsr FOUT ; fac1 to string in A/Y
jsr c64.STROUT ; print string in A/Y
@ -310,7 +310,7 @@ stack_uw2float .proc
jmp push_fac1_as_result
.pend
stack_float2w .proc
stack_float2w .proc ; also used for float2b
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr AYINT
@ -323,7 +323,7 @@ stack_float2w .proc
rts
.pend
stack_float2uw .proc
stack_float2uw .proc ; also used for float2ub
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr GETADR

View File

@ -6,7 +6,7 @@
; indent format: TABS, size=8
~ c64 {
c64 {
const uword ESTACK_LO = $ce00 ; evaluation stack (lsb)
const uword ESTACK_HI = $cf00 ; evaluation stack (msb)
&ubyte SCRATCH_ZPB1 = $02 ; scratch byte 1 in ZP
@ -21,7 +21,7 @@
&ubyte TIME_LO = $a2 ; .. lo byte. Updated by IRQ every 1/60 sec
&ubyte STKEY = $91 ; various keyboard statuses (updated by IRQ)
&ubyte SFDX = $cb ; current key pressed (matrix value) (updated by IRQ)
&ubyte COLOR = $0286 ; cursor color
&ubyte HIBASE = $0288 ; screen base address / 256 (hi-byte of screen memory address)
&uword CINV = $0314 ; IRQ vector
@ -63,8 +63,8 @@
&ubyte SP6Y = $d00d
&ubyte SP7X = $d00e
&ubyte SP7Y = $d00f
&ubyte[16] SPXY = $d000 ; the 8 sprite X and Y registers as an array.
&uword[8] SPXYW = $d000 ; the 8 sprite X and Y registers as a combined xy word array.
&ubyte[16] SPXY = $d000 ; the 8 sprite X and Y registers as an array.
&uword[8] SPXYW = $d000 ; the 8 sprite X and Y registers as a combined xy word array.
&ubyte MSIGX = $d010
&ubyte SCROLY = $d011
@ -76,7 +76,7 @@
&ubyte YXPAND = $d017
&ubyte VMCSB = $d018
&ubyte VICIRQ = $d019
&ubyte IREQMASK = $d01a
&ubyte IREQMASK = $d01a
&ubyte SPBGPR = $d01b
&ubyte SPMC = $d01c
&ubyte XXPAND = $d01d
@ -98,7 +98,7 @@
&ubyte SP5COL = $d02c
&ubyte SP6COL = $d02d
&ubyte SP7COL = $d02e
&ubyte[8] SPCOL = $d027
&ubyte[8] SPCOL = $d027
; ---- end of VIC-II registers ----
@ -107,8 +107,8 @@
&ubyte CIA1PRA = $DC00 ; CIA 1 DRA, keyboard column drive (and joystick control port #2)
&ubyte CIA1PRB = $DC01 ; CIA 1 DRB, keyboard row port (and joystick control port #1)
&ubyte CIA1DDRA = $DC02 ; CIA 1 DDRA, keyboard column
&ubyte CIA1DDRB = $DC03 ; CIA 1 DDRB, keyboard row
&ubyte CIA1DDRA = $DC02 ; CIA 1 DDRA, keyboard column
&ubyte CIA1DDRB = $DC03 ; CIA 1 DDRB, keyboard row
&ubyte CIA1TAL = $DC04 ; CIA 1 timer A low byte
&ubyte CIA1TAH = $DC05 ; CIA 1 timer A high byte
&ubyte CIA1TBL = $DC06 ; CIA 1 timer B low byte
@ -124,8 +124,8 @@
&ubyte CIA2PRA = $DD00 ; CIA 2 DRA, serial port and video address
&ubyte CIA2PRB = $DD01 ; CIA 2 DRB, RS232 port / USERPORT
&ubyte CIA2DDRA = $DD02 ; CIA 2 DDRA, serial port and video address
&ubyte CIA2DDRB = $DD03 ; CIA 2 DDRB, RS232 port / USERPORT
&ubyte CIA2DDRA = $DD02 ; CIA 2 DDRA, serial port and video address
&ubyte CIA2DDRB = $DD03 ; CIA 2 DDRB, RS232 port / USERPORT
&ubyte CIA2TAL = $DD04 ; CIA 2 timer A low byte
&ubyte CIA2TAH = $DD05 ; CIA 2 timer A high byte
&ubyte CIA2TBL = $DD06 ; CIA 2 timer B low byte
@ -186,8 +186,8 @@
; ---- C64 basic routines ----
asmsub CLEARSCR () -> clobbers(A,X,Y) -> () = $E544 ; clear the screen
asmsub HOMECRSR () -> clobbers(A,X,Y) -> () = $E566 ; cursor to top left of screen
asmsub CLEARSCR () clobbers(A,X,Y) = $E544 ; clear the screen
asmsub HOMECRSR () clobbers(A,X,Y) = $E566 ; cursor to top left of screen
; ---- end of C64 basic routines ----
@ -195,48 +195,48 @@ asmsub HOMECRSR () -> clobbers(A,X,Y) -> () = $E566 ; cursor to top left of sc
; ---- C64 kernal routines ----
asmsub STROUT (uword strptr @ AY) -> clobbers(A, X, Y) -> () = $AB1E ; print null-terminated string (use c64scr.print instead)
asmsub IRQDFRT () -> clobbers(A,X,Y) -> () = $EA31 ; default IRQ routine
asmsub IRQDFEND () -> clobbers(A,X,Y) -> () = $EA81 ; default IRQ end/cleanup
asmsub CINT () -> clobbers(A,X,Y) -> () = $FF81 ; (alias: SCINIT) initialize screen editor and video chip
asmsub IOINIT () -> clobbers(A, X) -> () = $FF84 ; initialize I/O devices (CIA, SID, IRQ)
asmsub RAMTAS () -> clobbers(A,X,Y) -> () = $FF87 ; initialize RAM, tape buffer, screen
asmsub RESTOR () -> clobbers(A,X,Y) -> () = $FF8A ; restore default I/O vectors
asmsub VECTOR (ubyte dir @ Pc, uword userptr @ XY) -> clobbers(A,Y) -> () = $FF8D ; read/set I/O vector table
asmsub SETMSG (ubyte value @ A) -> clobbers() -> () = $FF90 ; set Kernal message control flag
asmsub SECOND (ubyte address @ A) -> clobbers(A) -> () = $FF93 ; (alias: LSTNSA) send secondary address after LISTEN
asmsub TKSA (ubyte address @ A) -> clobbers(A) -> () = $FF96 ; (alias: TALKSA) send secondary address after TALK
asmsub MEMTOP (ubyte dir @ Pc, uword address @ XY) -> clobbers() -> (uword @ XY) = $FF99 ; read/set top of memory pointer
asmsub MEMBOT (ubyte dir @ Pc, uword address @ XY) -> clobbers() -> (uword @ XY) = $FF9C ; read/set bottom of memory pointer
asmsub SCNKEY () -> clobbers(A,X,Y) -> () = $FF9F ; scan the keyboard
asmsub SETTMO (ubyte timeout @ A) -> clobbers() -> () = $FFA2 ; set time-out flag for IEEE bus
asmsub ACPTR () -> clobbers() -> (ubyte @ A) = $FFA5 ; (alias: IECIN) input byte from serial bus
asmsub CIOUT (ubyte databyte @ A) -> clobbers() -> () = $FFA8 ; (alias: IECOUT) output byte to serial bus
asmsub UNTLK () -> clobbers(A) -> () = $FFAB ; command serial bus device to UNTALK
asmsub UNLSN () -> clobbers(A) -> () = $FFAE ; command serial bus device to UNLISTEN
asmsub LISTEN (ubyte device @ A) -> clobbers(A) -> () = $FFB1 ; command serial bus device to LISTEN
asmsub TALK (ubyte device @ A) -> clobbers(A) -> () = $FFB4 ; command serial bus device to TALK
asmsub READST () -> clobbers() -> (ubyte @ A) = $FFB7 ; read I/O status word
asmsub SETLFS (ubyte logical @ A, ubyte device @ X, ubyte address @ Y) -> clobbers() -> () = $FFBA ; set logical file parameters
asmsub SETNAM (ubyte namelen @ A, str filename @ XY) -> clobbers() -> () = $FFBD ; set filename parameters
asmsub OPEN () -> clobbers(A,X,Y) -> () = $FFC0 ; (via 794 ($31A)) open a logical file
asmsub CLOSE (ubyte logical @ A) -> clobbers(A,X,Y) -> () = $FFC3 ; (via 796 ($31C)) close a logical file
asmsub CHKIN (ubyte logical @ X) -> clobbers(A,X) -> () = $FFC6 ; (via 798 ($31E)) define an input channel
asmsub CHKOUT (ubyte logical @ X) -> clobbers(A,X) -> () = $FFC9 ; (via 800 ($320)) define an output channel
asmsub CLRCHN () -> clobbers(A,X) -> () = $FFCC ; (via 802 ($322)) restore default devices
asmsub CHRIN () -> clobbers(Y) -> (ubyte @ A) = $FFCF ; (via 804 ($324)) input a character (for keyboard, read a whole line from the screen) A=byte read.
asmsub CHROUT (ubyte char @ A) -> clobbers() -> () = $FFD2 ; (via 806 ($326)) output a character
asmsub LOAD (ubyte verify @ A, uword address @ XY) -> clobbers() -> (ubyte @Pc, ubyte @ A, ubyte @ X, ubyte @ Y) = $FFD5 ; (via 816 ($330)) load from device
asmsub SAVE (ubyte zp_startaddr @ A, uword endaddr @ XY) -> clobbers() -> (ubyte @ Pc, ubyte @ A) = $FFD8 ; (via 818 ($332)) save to a device
asmsub SETTIM (ubyte low @ A, ubyte middle @ X, ubyte high @ Y) -> clobbers() -> () = $FFDB ; set the software clock
asmsub RDTIM () -> clobbers() -> (ubyte @ A, ubyte @ X, ubyte @ Y) = $FFDE ; read the software clock
asmsub STOP () -> clobbers(A,X) -> (ubyte @ Pz, ubyte @ Pc) = $FFE1 ; (via 808 ($328)) check the STOP key
asmsub GETIN () -> clobbers(X,Y) -> (ubyte @ A) = $FFE4 ; (via 810 ($32A)) get a character
asmsub CLALL () -> clobbers(A,X) -> () = $FFE7 ; (via 812 ($32C)) close all files
asmsub UDTIM () -> clobbers(A,X) -> () = $FFEA ; update the software clock
asmsub SCREEN () -> clobbers() -> (ubyte @ X, ubyte @ Y) = $FFED ; read number of screen rows and columns
asmsub PLOT (ubyte dir @ Pc, ubyte col @ Y, ubyte row @ X) -> clobbers() -> (ubyte @ X, ubyte @ Y) = $FFF0 ; read/set position of cursor on screen. Use c64scr.plot for a 'safe' wrapper that preserves X.
asmsub IOBASE () -> clobbers() -> (uword @ XY) = $FFF3 ; read base address of I/O devices
asmsub STROUT (uword strptr @ AY) clobbers(A, X, Y) = $AB1E ; print null-terminated string (use c64scr.print instead)
asmsub IRQDFRT () clobbers(A,X,Y) = $EA31 ; default IRQ routine
asmsub IRQDFEND () clobbers(A,X,Y) = $EA81 ; default IRQ end/cleanup
asmsub CINT () clobbers(A,X,Y) = $FF81 ; (alias: SCINIT) initialize screen editor and video chip
asmsub IOINIT () clobbers(A, X) = $FF84 ; initialize I/O devices (CIA, SID, IRQ)
asmsub RAMTAS () clobbers(A,X,Y) = $FF87 ; initialize RAM, tape buffer, screen
asmsub RESTOR () clobbers(A,X,Y) = $FF8A ; restore default I/O vectors
asmsub VECTOR (uword userptr @ XY, ubyte dir @ Pc) clobbers(A,Y) = $FF8D ; read/set I/O vector table
asmsub SETMSG (ubyte value @ A) = $FF90 ; set Kernal message control flag
asmsub SECOND (ubyte address @ A) clobbers(A) = $FF93 ; (alias: LSTNSA) send secondary address after LISTEN
asmsub TKSA (ubyte address @ A) clobbers(A) = $FF96 ; (alias: TALKSA) send secondary address after TALK
asmsub MEMTOP (uword address @ XY, ubyte dir @ Pc) -> uword @ XY = $FF99 ; read/set top of memory pointer
asmsub MEMBOT (uword address @ XY, ubyte dir @ Pc) -> uword @ XY = $FF9C ; read/set bottom of memory pointer
asmsub SCNKEY () clobbers(A,X,Y) = $FF9F ; scan the keyboard
asmsub SETTMO (ubyte timeout @ A) = $FFA2 ; set time-out flag for IEEE bus
asmsub ACPTR () -> ubyte @ A = $FFA5 ; (alias: IECIN) input byte from serial bus
asmsub CIOUT (ubyte databyte @ A) = $FFA8 ; (alias: IECOUT) output byte to serial bus
asmsub UNTLK () clobbers(A) = $FFAB ; command serial bus device to UNTALK
asmsub UNLSN () clobbers(A) = $FFAE ; command serial bus device to UNLISTEN
asmsub LISTEN (ubyte device @ A) clobbers(A) = $FFB1 ; command serial bus device to LISTEN
asmsub TALK (ubyte device @ A) clobbers(A) = $FFB4 ; command serial bus device to TALK
asmsub READST () -> ubyte @ A = $FFB7 ; read I/O status word
asmsub SETLFS (ubyte logical @ A, ubyte device @ X, ubyte address @ Y) = $FFBA ; set logical file parameters
asmsub SETNAM (ubyte namelen @ A, str filename @ XY) = $FFBD ; set filename parameters
asmsub OPEN () clobbers(A,X,Y) = $FFC0 ; (via 794 ($31A)) open a logical file
asmsub CLOSE (ubyte logical @ A) clobbers(A,X,Y) = $FFC3 ; (via 796 ($31C)) close a logical file
asmsub CHKIN (ubyte logical @ X) clobbers(A,X) = $FFC6 ; (via 798 ($31E)) define an input channel
asmsub CHKOUT (ubyte logical @ X) clobbers(A,X) = $FFC9 ; (via 800 ($320)) define an output channel
asmsub CLRCHN () clobbers(A,X) = $FFCC ; (via 802 ($322)) restore default devices
asmsub CHRIN () clobbers(Y) -> ubyte @ A = $FFCF ; (via 804 ($324)) input a character (for keyboard, read a whole line from the screen) A=byte read.
asmsub CHROUT (ubyte char @ A) = $FFD2 ; (via 806 ($326)) output a character
asmsub LOAD (ubyte verify @ A, uword address @ XY) -> ubyte @Pc, ubyte @ A, ubyte @ X, ubyte @ Y = $FFD5 ; (via 816 ($330)) load from device
asmsub SAVE (ubyte zp_startaddr @ A, uword endaddr @ XY) -> ubyte @ Pc, ubyte @ A = $FFD8 ; (via 818 ($332)) save to a device
asmsub SETTIM (ubyte low @ A, ubyte middle @ X, ubyte high @ Y) = $FFDB ; set the software clock
asmsub RDTIM () -> ubyte @ A, ubyte @ X, ubyte @ Y = $FFDE ; read the software clock
asmsub STOP () clobbers(A,X) -> ubyte @ Pz, ubyte @ Pc = $FFE1 ; (via 808 ($328)) check the STOP key
asmsub GETIN () clobbers(X,Y) -> ubyte @ A = $FFE4 ; (via 810 ($32A)) get a character
asmsub CLALL () clobbers(A,X) = $FFE7 ; (via 812 ($32C)) close all files
asmsub UDTIM () clobbers(A,X) = $FFEA ; update the software clock
asmsub SCREEN () -> ubyte @ X, ubyte @ Y = $FFED ; read number of screen rows and columns
asmsub PLOT (ubyte col @ Y, ubyte row @ X, ubyte dir @ Pc) -> ubyte @ X, ubyte @ Y = $FFF0 ; read/set position of cursor on screen. Use c64scr.plot for a 'safe' wrapper that preserves X.
asmsub IOBASE () -> uword @ XY = $FFF3 ; read base address of I/O devices
; ---- end of C64 kernal routines ----

View File

@ -9,7 +9,7 @@
%import c64lib
~ c64utils {
c64utils {
const uword ESTACK_LO = $ce00
const uword ESTACK_HI = $cf00
@ -17,7 +17,7 @@
; ----- utility functions ----
asmsub ubyte2decimal (ubyte value @ A) -> clobbers() -> (ubyte @ Y, ubyte @ X, ubyte @ A) {
asmsub ubyte2decimal (ubyte value @ A) -> ubyte @ Y, ubyte @ X, ubyte @ A {
; ---- A to decimal string in Y/X/A (100s in Y, 10s in X, 1s in A)
%asm {{
ldy #$2f
@ -34,7 +34,7 @@ asmsub ubyte2decimal (ubyte value @ A) -> clobbers() -> (ubyte @ Y, ubyte @ X,
}}
}
asmsub byte2decimal (ubyte value @ A) -> clobbers() -> (ubyte @ Y, ubyte @ X, ubyte @ A) {
asmsub byte2decimal (ubyte value @ A) -> ubyte @ Y, ubyte @ X, ubyte @ A {
; ---- A (signed byte) to decimal string in Y/X/A (100s in Y, 10s in X, 1s in A)
; note: the '-' is not part of the conversion here if it's a negative number
%asm {{
@ -47,7 +47,7 @@ asmsub byte2decimal (ubyte value @ A) -> clobbers() -> (ubyte @ Y, ubyte @ X,
}}
}
asmsub ubyte2hex (ubyte value @ A) -> clobbers() -> (ubyte @ A, ubyte @ Y) {
asmsub ubyte2hex (ubyte value @ A) -> ubyte @ A, ubyte @ Y {
; ---- A to hex string in AY (first hex char in A, second hex char in Y)
%asm {{
stx c64.SCRATCH_ZPREGX
@ -70,7 +70,7 @@ _hex_digits .text "0123456789abcdef" ; can probably be reused for other stuff as
}
asmsub uword2hex (uword value @ AY) -> clobbers(A,Y) -> () {
asmsub uword2hex (uword value @ AY) clobbers(A,Y) {
; ---- convert 16 bit uword in A/Y into 4-character hexadecimal string 'uword2hex.output' (0-terminated)
%asm {{
sta c64.SCRATCH_ZPREG
@ -87,7 +87,7 @@ output .text "0000", $00 ; 0-terminated output buffer (to make printing ea
}}
}
asmsub uword2bcd (uword value @ AY) -> clobbers(A,Y) -> () {
asmsub uword2bcd (uword value @ AY) clobbers(A,Y) {
; Convert an 16 bit binary value to BCD
;
; This function converts a 16 bit binary value in A/Y into a 24 bit BCD. It
@ -134,7 +134,7 @@ bcdbuff .byte 0,0,0
}
asmsub uword2decimal (uword value @ AY) -> clobbers(A) -> (ubyte @ Y) {
asmsub uword2decimal (uword value @ AY) clobbers(A) -> ubyte @ Y {
; ---- convert 16 bit uword in A/Y into 0-terminated decimal string into memory 'uword2decimal.output'
; returns length of resulting string in Y
%asm {{
@ -173,7 +173,7 @@ output .text "00000", $00 ; 0 terminated
}
asmsub str2uword(str string @ AY) -> clobbers() -> (uword @ AY) {
asmsub str2uword(str string @ AY) -> uword @ AY {
; -- returns the unsigned word value of the string number argument in AY
; the number may NOT be preceded by a + sign and may NOT contain spaces
; (any non-digit character will terminate the number string that is parsed)
@ -228,7 +228,7 @@ _result_times_10 ; (W*4 + W)*2
}
asmsub str2word(str string @ AY) -> clobbers() -> (word @ AY) {
asmsub str2word(str string @ AY) -> word @ AY {
; -- returns the signed word value of the string number argument in AY
; the number may be preceded by a + or - sign but may NOT contain spaces
; (any non-digit character will terminate the number string that is parsed)
@ -284,7 +284,7 @@ _negative .byte 0
}
asmsub set_irqvec_excl() -> clobbers(A) -> () {
asmsub set_irqvec_excl() clobbers(A) {
%asm {{
sei
lda #<_irq_handler
@ -303,7 +303,7 @@ _irq_handler jsr set_irqvec._irq_handler_init
}}
}
asmsub set_irqvec() -> clobbers(A) -> () {
asmsub set_irqvec() clobbers(A) {
%asm {{
sei
lda #<_irq_handler
@ -373,7 +373,7 @@ IRQ_SCRATCH_ZPWORD2 .word 0
}
asmsub restore_irqvec() -> clobbers() -> () {
asmsub restore_irqvec() {
%asm {{
sei
lda #<c64.IRQDFRT
@ -390,7 +390,7 @@ asmsub restore_irqvec() -> clobbers() -> () {
}
asmsub set_rasterirq(uword rasterpos @ AY) -> clobbers(A) -> () {
asmsub set_rasterirq(uword rasterpos @ AY) clobbers(A) {
%asm {{
sei
jsr _setup_raster_irq
@ -431,7 +431,7 @@ _setup_raster_irq
}}
}
asmsub set_rasterirq_excl(uword rasterpos @ AY) -> clobbers(A) -> () {
asmsub set_rasterirq_excl(uword rasterpos @ AY) clobbers(A) {
%asm {{
sei
jsr set_rasterirq._setup_raster_irq
@ -461,11 +461,11 @@ _raster_irq_handler
~ c64scr {
c64scr {
; ---- this block contains (character) Screen and text I/O related functions ----
asmsub clear_screen (ubyte char @ A, ubyte color @ Y) -> clobbers(A) -> () {
asmsub clear_screen (ubyte char @ A, ubyte color @ Y) clobbers(A) {
; ---- clear the character screen with the given fill character and character color.
; (assumes screen and color matrix are at their default addresses)
@ -481,7 +481,7 @@ asmsub clear_screen (ubyte char @ A, ubyte color @ Y) -> clobbers(A) -> () {
}
asmsub clear_screenchars (ubyte char @ A) -> clobbers(Y) -> () {
asmsub clear_screenchars (ubyte char @ A) clobbers(Y) {
; ---- clear the character screen with the given fill character (leaves colors)
; (assumes screen matrix is at the default address)
%asm {{
@ -501,7 +501,7 @@ _loop sta c64.Screen,y
}}
}
asmsub clear_screencolors (ubyte color @ A) -> clobbers(Y) -> () {
asmsub clear_screencolors (ubyte color @ A) clobbers(Y) {
; ---- clear the character screen colors with the given color (leaves characters).
; (assumes color matrix is at the default address)
%asm {{
@ -522,7 +522,7 @@ _loop sta c64.Colors,y
}
asmsub scroll_left_full (ubyte alsocolors @ Pc) -> clobbers(A, Y) -> () {
asmsub scroll_left_full (ubyte alsocolors @ Pc) clobbers(A, Y) {
; ---- scroll the whole screen 1 character to the left
; contents of the rightmost column are unchanged, you should clear/refill this yourself
; Carry flag determines if screen color data must be scrolled too
@ -583,7 +583,7 @@ _scroll_screen ; scroll the screen memory
}
asmsub scroll_right_full (ubyte alsocolors @ Pc) -> clobbers(A) -> () {
asmsub scroll_right_full (ubyte alsocolors @ Pc) clobbers(A) {
; ---- scroll the whole screen 1 character to the right
; contents of the leftmost column are unchanged, you should clear/refill this yourself
; Carry flag determines if screen color data must be scrolled too
@ -636,7 +636,7 @@ _scroll_screen ; scroll the screen memory
}
asmsub scroll_up_full (ubyte alsocolors @ Pc) -> clobbers(A) -> () {
asmsub scroll_up_full (ubyte alsocolors @ Pc) clobbers(A) {
; ---- scroll the whole screen 1 character up
; contents of the bottom row are unchanged, you should refill/clear this yourself
; Carry flag determines if screen color data must be scrolled too
@ -689,7 +689,7 @@ _scroll_screen ; scroll the screen memory
}
asmsub scroll_down_full (ubyte alsocolors @ Pc) -> clobbers(A) -> () {
asmsub scroll_down_full (ubyte alsocolors @ Pc) clobbers(A) {
; ---- scroll the whole screen 1 character down
; contents of the top row are unchanged, you should refill/clear this yourself
; Carry flag determines if screen color data must be scrolled too
@ -743,7 +743,7 @@ _scroll_screen ; scroll the screen memory
asmsub print (str text @ AY) -> clobbers(A,Y) -> () {
asmsub print (str text @ AY) clobbers(A,Y) {
; ---- print null terminated string from A/Y
; note: the compiler contains an optimization that will replace
; a call to this subroutine with a string argument of just one char,
@ -762,7 +762,7 @@ asmsub print (str text @ AY) -> clobbers(A,Y) -> () {
}
asmsub print_ub0 (ubyte value @ A) -> clobbers(A,Y) -> () {
asmsub print_ub0 (ubyte value @ A) clobbers(A,Y) {
; ---- print the ubyte in A in decimal form, with left padding 0s (3 positions total)
%asm {{
stx c64.SCRATCH_ZPREGX
@ -780,7 +780,7 @@ asmsub print_ub0 (ubyte value @ A) -> clobbers(A,Y) -> () {
}
asmsub print_ub (ubyte value @ A) -> clobbers(A,Y) -> () {
asmsub print_ub (ubyte value @ A) clobbers(A,Y) {
; ---- print the ubyte in A in decimal form, without left padding 0s
%asm {{
stx c64.SCRATCH_ZPREGX
@ -803,7 +803,7 @@ _end pla
}}
}
asmsub print_b (byte value @ A) -> clobbers(A,Y) -> () {
asmsub print_b (byte value @ A) clobbers(A,Y) {
; ---- print the byte in A in decimal form, without left padding 0s
%asm {{
stx c64.SCRATCH_ZPREGX
@ -821,7 +821,7 @@ asmsub print_b (byte value @ A) -> clobbers(A,Y) -> () {
}
asmsub print_ubhex (ubyte prefix @ Pc, ubyte value @ A) -> clobbers(A,Y) -> () {
asmsub print_ubhex (ubyte value @ A, ubyte prefix @ Pc) clobbers(A,Y) {
; ---- print the ubyte in A in hex form (if Carry is set, a radix prefix '$' is printed as well)
%asm {{
stx c64.SCRATCH_ZPREGX
@ -840,7 +840,7 @@ asmsub print_ubhex (ubyte prefix @ Pc, ubyte value @ A) -> clobbers(A,Y) -> ()
}
asmsub print_ubbin (ubyte prefix @ Pc, ubyte value @ A) -> clobbers(A,Y) ->() {
asmsub print_ubbin (ubyte value @ A, ubyte prefix @ Pc) clobbers(A,Y) {
; ---- print the ubyte in A in binary form (if Carry is set, a radix prefix '%' is printed as well)
%asm {{
stx c64.SCRATCH_ZPREGX
@ -862,7 +862,7 @@ asmsub print_ubbin (ubyte prefix @ Pc, ubyte value @ A) -> clobbers(A,Y) ->()
}
asmsub print_uwbin (ubyte prefix @ Pc, uword value @ AY) -> clobbers(A,Y) ->() {
asmsub print_uwbin (uword value @ AY, ubyte prefix @ Pc) clobbers(A,Y) {
; ---- print the uword in A/Y in binary form (if Carry is set, a radix prefix '%' is printed as well)
%asm {{
pha
@ -875,7 +875,7 @@ asmsub print_uwbin (ubyte prefix @ Pc, uword value @ AY) -> clobbers(A,Y) ->()
}
asmsub print_uwhex (ubyte prefix @ Pc, uword value @ AY) -> clobbers(A,Y) -> () {
asmsub print_uwhex (uword value @ AY, ubyte prefix @ Pc) clobbers(A,Y) {
; ---- print the uword in A/Y in hexadecimal form (4 digits)
; (if Carry is set, a radix prefix '$' is printed as well)
%asm {{
@ -889,7 +889,7 @@ asmsub print_uwhex (ubyte prefix @ Pc, uword value @ AY) -> clobbers(A,Y) -> ()
}
asmsub print_uw0 (uword value @ AY) -> clobbers(A,Y) -> () {
asmsub print_uw0 (uword value @ AY) clobbers(A,Y) {
; ---- print the uword in A/Y in decimal form, with left padding 0s (5 positions total)
%asm {{
jsr c64utils.uword2decimal
@ -904,7 +904,7 @@ asmsub print_uw0 (uword value @ AY) -> clobbers(A,Y) -> () {
}
asmsub print_uw (uword value @ AY) -> clobbers(A,Y) -> () {
asmsub print_uw (uword value @ AY) clobbers(A,Y) {
; ---- print the uword in A/Y in decimal form, without left padding 0s
%asm {{
jsr c64utils.uword2decimal
@ -936,7 +936,7 @@ _pr_decimal
}}
}
asmsub print_w (word value @ AY) -> clobbers(A,Y) -> () {
asmsub print_w (word value @ AY) clobbers(A,Y) {
; ---- print the (signed) word in A/Y in decimal form, without left padding 0's
%asm {{
cpy #0
@ -957,7 +957,7 @@ asmsub print_w (word value @ AY) -> clobbers(A,Y) -> () {
}}
}
asmsub input_chars (uword buffer @ AY) -> clobbers(A) -> (ubyte @ Y) {
asmsub input_chars (uword buffer @ AY) clobbers(A) -> ubyte @ Y {
; ---- Input a string (max. 80 chars) from the keyboard. Returns length in Y. (string is terminated with a 0 byte as well)
; It assumes the keyboard is selected as I/O channel!
@ -978,7 +978,7 @@ asmsub input_chars (uword buffer @ AY) -> clobbers(A) -> (ubyte @ Y) {
}}
}
asmsub setchr (ubyte col @Y, ubyte row @A) -> clobbers(A) -> () {
asmsub setchr (ubyte col @Y, ubyte row @A) clobbers(A) {
; ---- set the character in SCRATCH_ZPB1 on the screen matrix at the given position
%asm {{
sty c64.SCRATCH_ZPREG
@ -1000,7 +1000,7 @@ _screenrows .word $0400 + range(0, 1000, 40)
}}
}
asmsub getchr (ubyte col @Y, ubyte row @A) -> clobbers(Y) -> (ubyte @ A) {
asmsub getchr (ubyte col @Y, ubyte row @A) clobbers(Y) -> ubyte @ A {
; ---- get the character in the screen matrix at the given location
%asm {{
sty c64.SCRATCH_ZPB1
@ -1019,7 +1019,7 @@ _mod lda $ffff ; modified
}}
}
asmsub setclr (ubyte col @Y, ubyte row @A) -> clobbers(A) -> () {
asmsub setclr (ubyte col @Y, ubyte row @A) clobbers(A) {
; ---- set the color in SCRATCH_ZPB1 on the screen matrix at the given position
%asm {{
sty c64.SCRATCH_ZPREG
@ -1041,7 +1041,7 @@ _colorrows .word $d800 + range(0, 1000, 40)
}}
}
asmsub getclr (ubyte col @Y, ubyte row @A) -> clobbers(Y) -> (ubyte @ A) {
asmsub getclr (ubyte col @Y, ubyte row @A) clobbers(Y) -> ubyte @ A {
; ---- get the color in the screen color matrix at the given location
%asm {{
sty c64.SCRATCH_ZPB1
@ -1063,7 +1063,7 @@ _mod lda $ffff ; modified
sub setcc (ubyte column, ubyte row, ubyte char, ubyte color) {
; ---- set char+color at the given position on the screen
%asm {{
lda setcc_row
lda row
asl a
tay
lda setchr._screenrows+1,y
@ -1072,21 +1072,21 @@ sub setcc (ubyte column, ubyte row, ubyte char, ubyte color) {
sta _colormod+2
lda setchr._screenrows,y
clc
adc setcc_column
adc column
sta _charmod+1
sta _colormod+1
bcc +
inc _charmod+2
inc _colormod+2
+ lda setcc_char
+ lda char
_charmod sta $ffff ; modified
lda setcc_color
lda color
_colormod sta $ffff ; modified
rts
}}
}
asmsub plot (ubyte col @ Y, ubyte row @ A) -> clobbers(A) -> () {
asmsub plot (ubyte col @ Y, ubyte row @ A) clobbers(A) {
; ---- safe wrapper around PLOT kernel routine, to save the X register.
%asm {{
stx c64.SCRATCH_ZPREGX

View File

@ -6,6 +6,6 @@
%import c64lib
~ math {
math {
%asminclude "library:math.asm", ""
}

View File

@ -35,6 +35,17 @@ init_system .proc
rts
.pend
read_byte_from_address .proc
; -- read the byte from the memory address on the top of the stack, return in A (stack remains unchanged)
lda c64.ESTACK_LO+1,x
ldy c64.ESTACK_HI+1,x
sta (+) +1
sty (+) +2
+ lda $ffff ; modified
rts
.pend
add_a_to_zpword .proc
; -- add ubyte in A to the uword in c64.SCRATCH_ZPWORD1

View File

@ -6,6 +6,6 @@
%import c64lib
~ prog8_lib {
prog8_lib {
%asminclude "library:prog8lib.asm", ""
}

View File

@ -1 +1 @@
1.7
1.50

View File

@ -1,31 +1,20 @@
package prog8
import prog8.ast.*
import prog8.compiler.*
import prog8.compiler.target.c64.AsmGen
import prog8.compiler.target.c64.C64Zeropage
import prog8.optimizing.constantFold
import prog8.optimizing.optimizeStatements
import prog8.optimizing.simplifyExpressions
import prog8.ast.base.AstException
import prog8.compiler.CompilationResult
import prog8.compiler.compileProgram
import prog8.parser.ParsingFailedError
import prog8.parser.importModule
import java.io.File
import java.io.PrintStream
import java.lang.Exception
import prog8.vm.astvm.AstVm
import java.nio.file.FileSystems
import java.nio.file.Path
import java.nio.file.Paths
import java.nio.file.StandardWatchEventKinds
import java.util.*
import kotlin.system.exitProcess
import kotlin.system.measureTimeMillis
fun main(args: Array<String>) {
// check if the user wants to launch the VM instead
if("-vm" in args) {
val newArgs = args.toMutableList()
newArgs.remove("-vm")
return stackVmMain(newArgs.toTypedArray())
}
printSoftwareHeader("compiler")
if (args.isEmpty())
@ -33,10 +22,9 @@ fun main(args: Array<String>) {
compileMain(args)
}
fun printSoftwareHeader(what: String) {
internal fun printSoftwareHeader(what: String) {
val buildVersion = object {}.javaClass.getResource("/version.txt").readText().trim()
println("\nProg8 $what by Irmen de Jong (irmen@razorvine.net)")
println("Version: $buildVersion")
println("\nProg8 $what v$buildVersion by Irmen de Jong (irmen@razorvine.net)")
println("This software is licensed under the GNU GPL 3.0, see https://www.gnu.org/licenses/gpl.html\n")
}
@ -44,185 +32,110 @@ fun printSoftwareHeader(what: String) {
private fun compileMain(args: Array<String>) {
var emulatorToStart = ""
var moduleFile = ""
var writeVmCode = false
var writeAssembly = true
var optimize = true
var optimizeInlining = true
var launchAstVm = false
var watchMode = false
for (arg in args) {
if(arg=="-emu")
emulatorToStart = "x64"
else if(arg=="-emu2")
emulatorToStart = "x64sc"
else if(arg=="-writevm")
writeVmCode = true
else if(arg=="-noasm")
writeAssembly = false
else if(arg=="-noopt")
optimize = false
else if(arg=="-nooptinline")
optimizeInlining = false
else if(arg=="-avm")
launchAstVm = true
else if(arg=="-watch")
watchMode = true
else if(!arg.startsWith("-"))
moduleFile = arg
else
usage()
}
if(moduleFile.isBlank())
usage()
val filepath = Paths.get(moduleFile).normalize()
var programname = "?"
if(watchMode) {
if(moduleFile.isBlank())
usage()
try {
val totalTime = measureTimeMillis {
// import main module and process additional imports
println("Parsing...")
val moduleAst = importModule(filepath)
moduleAst.linkParents()
var namespace = moduleAst.definingScope()
val watchservice = FileSystems.getDefault().newWatchService()
// determine special compiler options
while(true) {
val filepath = Paths.get(moduleFile).normalize()
println("Continuous watch mode active. Main module: $filepath")
val compilerOptions = determineCompilationOptions(moduleAst)
if (compilerOptions.launcher == LauncherType.BASIC && compilerOptions.output != OutputType.PRG)
throw ParsingFailedError("${moduleAst.position} BASIC launcher requires output type PRG.")
// perform initial syntax checks and constant folding
println("Syntax check...")
val heap = HeapValues()
val time1= measureTimeMillis {
moduleAst.checkIdentifiers(namespace)
}
//println(" time1: $time1")
val time2 = measureTimeMillis {
moduleAst.constantFold(namespace, heap)
}
//println(" time2: $time2")
val time3 = measureTimeMillis {
moduleAst.reorderStatements(namespace,heap) // reorder statements to please the compiler later
}
//println(" time3: $time3")
val time4 = measureTimeMillis {
moduleAst.checkValid(namespace, compilerOptions, heap) // check if tree is valid
}
//println(" time4: $time4")
moduleAst.checkIdentifiers(namespace)
if(optimize) {
// optimize the parse tree
println("Optimizing...")
while (true) {
// keep optimizing expressions and statements until no more steps remain
val optsDone1 = moduleAst.simplifyExpressions(namespace, heap)
val optsDone2 = moduleAst.optimizeStatements(namespace, heap)
if (optsDone1 + optsDone2 == 0)
break
try {
val compilationResult = compileProgram(filepath, optimize, optimizeInlining, writeAssembly)
println("Imported files (now watching:)")
for (importedFile in compilationResult.importedFiles) {
print(" ")
println(importedFile)
importedFile.parent.register(watchservice, StandardWatchEventKinds.ENTRY_MODIFY)
}
}
namespace = moduleAst.definingScope() // create it again, it could have changed in the meantime
moduleAst.checkValid(namespace, compilerOptions, heap) // check if final tree is valid
moduleAst.checkRecursion(namespace) // check if there are recursive subroutine calls
// namespace.debugPrint()
// compile the syntax tree into stackvmProg form, and optimize that
val compiler = Compiler(moduleAst, namespace, heap)
val intermediate = compiler.compile(compilerOptions)
if(optimize)
intermediate.optimize()
if(writeVmCode) {
val stackVmFilename = intermediate.name + ".vm.txt"
val stackvmFile = PrintStream(File(stackVmFilename), "utf-8")
intermediate.writeCode(stackvmFile)
stackvmFile.close()
println("StackVM program code written to '$stackVmFilename'")
}
if(writeAssembly) {
val zeropage = C64Zeropage(compilerOptions)
intermediate.allocateZeropage(zeropage)
val assembly = AsmGen(compilerOptions, intermediate, heap, zeropage).compileToAssembly(optimize)
assembly.assemble(compilerOptions)
programname = assembly.name
println("${Date()}: Waiting for file changes.")
val event = watchservice.take()
for(changed in event.pollEvents()) {
val changedPath = changed.context() as Path
println(" change detected: ${changedPath}")
}
event.reset()
println("\u001b[H\u001b[2J") // clear the screen
} catch (x: Exception) {
throw x
}
}
println("\nTotal compilation+assemble time: ${totalTime / 1000.0} sec.")
} catch (px: ParsingFailedError) {
System.err.print("\u001b[91m") // bright red
System.err.println(px.message)
System.err.print("\u001b[0m") // reset
exitProcess(1)
} catch (ax: AstException) {
System.err.print("\u001b[91m") // bright red
System.err.println(ax.toString())
System.err.print("\u001b[0m") // reset
exitProcess(1)
} catch (x: Exception) {
print("\u001b[91m") // bright red
println("\n* internal error *")
print("\u001b[0m") // reset
System.out.flush()
throw x
} catch (x: NotImplementedError) {
print("\u001b[91m") // bright red
println("\n* internal error: missing feature/code *")
print("\u001b[0m") // reset
System.out.flush()
throw x
}
} else {
if(moduleFile.isBlank())
usage()
if(emulatorToStart.isNotEmpty()) {
println("\nStarting C-64 emulator $emulatorToStart...")
val cmdline = listOf(emulatorToStart, "-silent", "-moncommands", "$programname.vice-mon-list",
"-autostartprgmode", "1", "-autostart-warp", "-autostart", programname+".prg")
val process = ProcessBuilder(cmdline).inheritIO().start()
process.waitFor()
val filepath = Paths.get(moduleFile).normalize()
val compilationResult: CompilationResult
try {
compilationResult = compileProgram(filepath, optimize, optimizeInlining, writeAssembly)
if(!compilationResult.success)
exitProcess(1)
} catch (x: ParsingFailedError) {
exitProcess(1)
} catch (x: AstException) {
exitProcess(1)
}
if (launchAstVm) {
println("\nLaunching AST-based vm...")
val vm = AstVm(compilationResult.programAst)
vm.run()
}
if (emulatorToStart.isNotEmpty()) {
if (compilationResult.programName.isEmpty())
println("\nCan't start emulator because no program was assembled.")
else {
println("\nStarting C-64 emulator $emulatorToStart...")
val cmdline = listOf(emulatorToStart, "-silent", "-moncommands", "${compilationResult.programName}.vice-mon-list",
"-autostartprgmode", "1", "-autostart-warp", "-autostart", compilationResult.programName + ".prg")
val process = ProcessBuilder(cmdline).inheritIO().start()
process.waitFor()
}
}
}
}
fun determineCompilationOptions(moduleAst: Module): CompilationOptions {
val options = moduleAst.statements.filter { it is Directive && it.directive == "%option" }.flatMap { (it as Directive).args }.toSet()
val outputType = (moduleAst.statements.singleOrNull { it is Directive && it.directive == "%output" }
as? Directive)?.args?.single()?.name?.toUpperCase()
val launcherType = (moduleAst.statements.singleOrNull { it is Directive && it.directive == "%launcher" }
as? Directive)?.args?.single()?.name?.toUpperCase()
moduleAst.loadAddress = (moduleAst.statements.singleOrNull { it is Directive && it.directive == "%address" }
as? Directive)?.args?.single()?.int ?: 0
val zpoption: String? = (moduleAst.statements.singleOrNull { it is Directive && it.directive == "%zeropage" }
as? Directive)?.args?.single()?.name?.toUpperCase()
val floatsEnabled = options.any { it.name == "enable_floats" }
val zpType: ZeropageType =
if (zpoption == null)
if(floatsEnabled) ZeropageType.FLOATSAFE else ZeropageType.KERNALSAFE
else
try {
ZeropageType.valueOf(zpoption)
} catch (x: IllegalArgumentException) {
ZeropageType.KERNALSAFE
// error will be printed by the astchecker
}
val zpReserved = moduleAst.statements
.asSequence()
.filter { it is Directive && it.directive == "%zpreserved" }
.map { (it as Directive).args }
.map { it[0].int!!..it[1].int!! }
.toList()
return CompilationOptions(
if (outputType == null) OutputType.PRG else OutputType.valueOf(outputType),
if (launcherType == null) LauncherType.BASIC else LauncherType.valueOf(launcherType),
zpType, zpReserved, floatsEnabled
)
}
private fun usage() {
System.err.println("Missing argument(s):")
System.err.println(" [-emu] auto-start the 'x64' C-64 emulator after successful compilation")
System.err.println(" [-emu2] auto-start the 'x64sc' C-64 emulator after successful compilation")
System.err.println(" [-writevm] write intermediate vm code to a file as well")
System.err.println(" [-noasm] don't create assembly code")
System.err.println(" [-vm] launch the prog8 virtual machine instead of the compiler")
System.err.println(" [-noopt] don't perform optimizations")
System.err.println(" modulefile main module file to compile")
System.err.println(" [-noasm] don't create assembly code")
System.err.println(" [-noopt] don't perform any optimizations")
System.err.println(" [-nooptinline] don't perform subroutine inlining optimizations")
System.err.println(" [-emu] auto-start the 'x64' C-64 emulator after successful compilation")
System.err.println(" [-emu2] auto-start the 'x64sc' C-64 emulator after successful compilation")
System.err.println(" [-avm] launch the prog8 ast-based virtual machine after compilation")
System.err.println(" [-watch] continuous compilation mode (watches for file changes)")
System.err.println(" modulefile main module file to compile")
exitProcess(1)
}

File diff suppressed because it is too large Load Diff

View File

@ -1,242 +0,0 @@
package prog8.ast
import prog8.functions.BuiltinFunctions
/**
* Checks the validity of all identifiers (no conflicts)
* Also makes sure that subroutine's parameters also become local variable decls in the subroutine's scope.
* Finally, it also makes sure the datatype of all Var decls and sub Return values is set correctly.
*/
fun Module.checkIdentifiers(namespace: INameScope) {
val checker = AstIdentifiersChecker(namespace)
this.process(checker)
// add any anonymous variables for heap values that are used,
// and replace an iterable literalvalue by identifierref to new local variable
for (variable in checker.anonymousVariablesFromHeap.values) {
val scope = variable.first.definingScope()
scope.statements.add(variable.second)
val parent = variable.first.parent
when {
parent is Assignment && parent.value === variable.first -> {
val idref = IdentifierReference(listOf("$autoHeapValuePrefix${variable.first.heapId}"), variable.first.position)
idref.linkParents(parent)
parent.value = idref
}
parent is IFunctionCall -> {
val parameterPos = parent.arglist.indexOf(variable.first)
val idref = IdentifierReference(listOf("$autoHeapValuePrefix${variable.first.heapId}"), variable.first.position)
idref.linkParents(parent)
parent.arglist[parameterPos] = idref
}
parent is ForLoop -> {
val idref = IdentifierReference(listOf("$autoHeapValuePrefix${variable.first.heapId}"), variable.first.position)
idref.linkParents(parent)
parent.iterable = idref
}
else -> TODO("replace literalvalue by identifierref: $variable (in $parent)")
}
variable.second.linkParents(scope as Node)
}
printErrors(checker.result(), name)
}
private class AstIdentifiersChecker(private val namespace: INameScope) : IAstProcessor {
private val checkResult: MutableList<AstException> = mutableListOf()
var blocks: MutableMap<String, Block> = mutableMapOf()
private set
fun result(): List<AstException> {
return checkResult
}
private fun nameError(name: String, position: Position, existing: IStatement) {
checkResult.add(NameError("name conflict '$name', also defined in ${existing.position.file} line ${existing.position.line}", position))
}
override fun process(block: Block): IStatement {
val existing = blocks[block.name]
if(existing!=null)
nameError(block.name, block.position, existing)
else
blocks[block.name] = block
return super.process(block)
}
override fun process(functionCall: FunctionCall): IExpression {
if(functionCall.target.nameInSource.size==1 && functionCall.target.nameInSource[0]=="lsb") {
// lsb(...) is just an alias for type cast to ubyte, so replace with "... as ubyte"
val typecast = TypecastExpression(functionCall.arglist.single(), DataType.UBYTE, functionCall.position)
typecast.linkParents(functionCall.parent)
return super.process(typecast)
}
return super.process(functionCall)
}
override fun process(decl: VarDecl): IStatement {
// first, check if there are datatype errors on the vardecl
decl.datatypeErrors.forEach { checkResult.add(it) }
// now check the identifier
if(decl.name in BuiltinFunctions)
// the builtin functions can't be redefined
checkResult.add(NameError("builtin function cannot be redefined", decl.position))
val existing = namespace.lookup(listOf(decl.name), decl)
if (existing != null && existing !== decl)
nameError(decl.name, decl.position, existing)
return super.process(decl)
}
override fun process(subroutine: Subroutine): IStatement {
if(subroutine.name in BuiltinFunctions) {
// the builtin functions can't be redefined
checkResult.add(NameError("builtin function cannot be redefined", subroutine.position))
} else {
if (subroutine.parameters.any { it.name in BuiltinFunctions })
checkResult.add(NameError("builtin function name cannot be used as parameter", subroutine.position))
val existing = namespace.lookup(listOf(subroutine.name), subroutine)
if (existing != null && existing !== subroutine)
nameError(subroutine.name, subroutine.position, existing)
// check that there are no local variables that redefine the subroutine's parameters
val allDefinedNames = subroutine.allLabelsAndVariables()
val paramNames = subroutine.parameters.map { it.name }.toSet()
val paramsToCheck = paramNames.intersect(allDefinedNames)
for(name in paramsToCheck) {
val thing = subroutine.getLabelOrVariable(name)!!
if(thing.position != subroutine.position)
nameError(name, thing.position, subroutine)
}
// inject subroutine params as local variables (if they're not there yet) (for non-kernel subroutines and non-asm parameters)
// NOTE:
// - numeric types BYTE and WORD and FLOAT are passed by value;
// - strings, arrays, matrices are passed by reference (their 16-bit address is passed as an uword parameter)
// - do NOT do this is the statement can be transformed into an asm subroutine later!
if(subroutine.asmAddress==null && !subroutine.canBeAsmSubroutine) {
if(subroutine.asmParameterRegisters.isEmpty()) {
subroutine.parameters
.filter { it.name !in allDefinedNames }
.forEach {
val vardecl = VarDecl(VarDeclType.VAR, it.type, false, null, false, it.name, null, subroutine.position)
vardecl.linkParents(subroutine)
subroutine.statements.add(0, vardecl)
}
}
}
}
return super.process(subroutine)
}
override fun process(label: Label): IStatement {
if(label.name in BuiltinFunctions) {
// the builtin functions can't be redefined
checkResult.add(NameError("builtin function cannot be redefined", label.position))
} else {
val existing = namespace.lookup(listOf(label.name), label)
if (existing != null && existing !== label)
nameError(label.name, label.position, existing)
}
return super.process(label)
}
override fun process(forLoop: ForLoop): IStatement {
// If the for loop has a decltype, it means to declare the loopvar inside the loop body
// rather than reusing an already declared loopvar from an outer scope.
// For loops that loop over an interable variable (instead of a range of numbers) get an
// additional interation count variable in their scope.
if(forLoop.loopRegister!=null) {
if(forLoop.decltype!=null)
checkResult.add(SyntaxError("register loop variables cannot be explicitly declared with a datatype", forLoop.position))
if(forLoop.loopRegister == Register.X)
printWarning("writing to the X register is dangerous, because it's used as an internal pointer", forLoop.position)
} else if(forLoop.loopVar!=null) {
val varName = forLoop.loopVar.nameInSource.last()
if(forLoop.decltype!=null) {
val existing = if(forLoop.body.isEmpty()) null else forLoop.body.lookup(forLoop.loopVar.nameInSource, forLoop.body.statements.first())
if(existing==null) {
// create the local scoped for loop variable itself
val vardecl = VarDecl(VarDeclType.VAR, forLoop.decltype, true, null, false, varName, null, forLoop.loopVar.position)
vardecl.linkParents(forLoop.body)
forLoop.body.statements.add(0, vardecl)
forLoop.loopVar.parent = forLoop.body // loopvar 'is defined in the body'
}
}
if(forLoop.iterable !is RangeExpr) {
val existing = if(forLoop.body.isEmpty()) null else forLoop.body.lookup(listOf(ForLoop.iteratorLoopcounterVarname), forLoop.body.statements.first())
if(existing==null) {
// create loop iteration counter variable (without value, to avoid an assignment)
val vardecl = VarDecl(VarDeclType.VAR, DataType.UBYTE, true, null, false, ForLoop.iteratorLoopcounterVarname, null, forLoop.loopVar.position)
vardecl.linkParents(forLoop.body)
forLoop.body.statements.add(0, vardecl)
forLoop.loopVar.parent = forLoop.body // loopvar 'is defined in the body'
}
}
}
return super.process(forLoop)
}
override fun process(assignTarget: AssignTarget): AssignTarget {
if(assignTarget.register==Register.X)
printWarning("writing to the X register is dangerous, because it's used as an internal pointer", assignTarget.position)
return super.process(assignTarget)
}
override fun process(returnStmt: Return): IStatement {
if(returnStmt.values.isNotEmpty()) {
// possibly adjust any literal values returned, into the desired returning data type
val subroutine = returnStmt.definingSubroutine()!!
if(subroutine.returntypes.size!=returnStmt.values.size)
return returnStmt // mismatch in number of return values, error will be printed later.
val newValues = mutableListOf<IExpression>()
for(returnvalue in returnStmt.values.zip(subroutine.returntypes)) {
val lval = returnvalue.first as? LiteralValue
if(lval!=null) {
val adjusted = lval.intoDatatype(returnvalue.second)
if(adjusted!=null && adjusted !== lval)
newValues.add(adjusted)
else
newValues.add(lval)
}
else
newValues.add(returnvalue.first)
}
returnStmt.values = newValues
}
return super.process(returnStmt)
}
internal val anonymousVariablesFromHeap = mutableMapOf<String, Pair<LiteralValue, VarDecl>>()
override fun process(literalValue: LiteralValue): LiteralValue {
if(literalValue.heapId!=null && literalValue.parent !is VarDecl) {
// a literal value that's not declared as a variable, which refers to something on the heap.
// we need to introduce an auto-generated variable for this to be able to refer to the value!
val variable = VarDecl(VarDeclType.VAR, literalValue.type, false, null, false, "$autoHeapValuePrefix${literalValue.heapId}", literalValue, literalValue.position)
anonymousVariablesFromHeap[variable.name] = Pair(literalValue, variable)
}
return super.process(literalValue)
}
override fun process(addressOf: AddressOf): IExpression {
// register the scoped name of the referenced identifier
val variable= addressOf.identifier.targetVarDecl(namespace) ?: return addressOf
addressOf.scopedname = variable.scopedname
return super.process(addressOf)
}
}
internal const val autoHeapValuePrefix = "auto_heap_value_"

View File

@ -1,120 +0,0 @@
package prog8.ast
/**
* Checks for the occurrence of recursive subroutine calls
*/
fun Module.checkRecursion(namespace: INameScope) {
val checker = AstRecursionChecker(namespace)
this.process(checker)
printErrors(checker.result(), name)
}
private class DirectedGraph<VT> {
private val graph = mutableMapOf<VT, MutableSet<VT>>()
private var uniqueVertices = mutableSetOf<VT>()
val numVertices : Int
get() = uniqueVertices.size
fun add(from: VT, to: VT) {
var targets = graph[from]
if(targets==null) {
targets = mutableSetOf()
graph[from] = targets
}
targets.add(to)
uniqueVertices.add(from)
uniqueVertices.add(to)
}
fun print() {
println("#vertices: $numVertices")
graph.forEach { from, to ->
println("$from CALLS:")
to.forEach { println(" $it") }
}
val cycle = checkForCycle()
if(cycle.isNotEmpty()) {
println("CYCLIC! $cycle")
}
}
fun checkForCycle(): MutableList<VT> {
val visited = uniqueVertices.associate { it to false }.toMutableMap()
val recStack = uniqueVertices.associate { it to false }.toMutableMap()
val cycle = mutableListOf<VT>()
for(node in uniqueVertices) {
if(isCyclicUntil(node, visited, recStack, cycle))
return cycle
}
return mutableListOf()
}
private fun isCyclicUntil(node: VT,
visited: MutableMap<VT, Boolean>,
recStack: MutableMap<VT, Boolean>,
cycleNodes: MutableList<VT>): Boolean {
if(recStack[node]==true) return true
if(visited[node]==true) return false
// mark current node as visited and add to recursion stack
visited[node] = true
recStack[node] = true
// recurse for all neighbours
val neighbors = graph[node]
if(neighbors!=null) {
for (neighbour in neighbors) {
if (isCyclicUntil(neighbour, visited, recStack, cycleNodes)) {
cycleNodes.add(node)
return true
}
}
}
// pop node from recursion stack
recStack[node] = false
return false
}
}
private class AstRecursionChecker(private val namespace: INameScope) : IAstProcessor {
private val callGraph = DirectedGraph<INameScope>()
fun result(): List<AstException> {
val cycle = callGraph.checkForCycle()
if(cycle.isEmpty())
return emptyList()
val chain = cycle.joinToString(" <-- ") { "${it.name} at ${it.position}" }
return listOf(AstException("Program contains recursive subroutine calls, this is not supported. Recursive chain:\n (a subroutine call in) $chain"))
}
override fun process(functionCallStatement: FunctionCallStatement): IStatement {
val scope = functionCallStatement.definingScope()
val targetStatement = functionCallStatement.target.targetStatement(namespace)
if(targetStatement!=null) {
val targetScope = when (targetStatement) {
is Subroutine -> targetStatement
else -> targetStatement.definingScope()
}
callGraph.add(scope, targetScope)
}
return super.process(functionCallStatement)
}
override fun process(functionCall: FunctionCall): IExpression {
val scope = functionCall.definingScope()
val targetStatement = functionCall.target.targetStatement(namespace)
if(targetStatement!=null) {
val targetScope = when (targetStatement) {
is Subroutine -> targetStatement
else -> targetStatement.definingScope()
}
callGraph.add(scope, targetScope)
}
return super.process(functionCall)
}
}

View File

@ -0,0 +1,456 @@
package prog8.ast
import prog8.ast.antlr.escape
import prog8.ast.base.DataType
import prog8.ast.base.NumericDatatypes
import prog8.ast.base.StringDatatypes
import prog8.ast.base.VarDeclType
import prog8.ast.expressions.*
import prog8.ast.processing.IAstVisitor
import prog8.ast.statements.*
import prog8.compiler.toHex
class AstToSourceCode(val output: (text: String) -> Unit, val program: Program): IAstVisitor {
private var scopelevel = 0
private fun indent(s: String) = " ".repeat(scopelevel) + s
private fun outputln(text: String) = output(text + "\n")
private fun outputlni(s: Any) = outputln(indent(s.toString()))
private fun outputi(s: Any) = output(indent(s.toString()))
override fun visit(program: Program) {
outputln("============= PROGRAM ${program.name} (FROM AST) ===============")
super.visit(program)
outputln("============= END PROGRAM ${program.name} (FROM AST) ===========")
}
override fun visit(module: Module) {
if(!module.isLibraryModule) {
outputln("; ----------- module: ${module.name} -----------")
super.visit(module)
}
else outputln("; library module skipped: ${module.name}")
}
override fun visit(block: Block) {
val addr = if(block.address!=null) block.address.toHex() else ""
outputln("~ ${block.name} $addr {")
scopelevel++
for(stmt in block.statements) {
outputi("")
stmt.accept(this)
output("\n")
}
scopelevel--
outputln("}\n")
}
override fun visit(expr: PrefixExpression) {
if(expr.operator.any { it.isLetter() })
output(" ${expr.operator} ")
else
output(expr.operator)
expr.expression.accept(this)
}
override fun visit(expr: BinaryExpression) {
expr.left.accept(this)
if(expr.operator.any { it.isLetter() })
output(" ${expr.operator} ")
else
output(expr.operator)
expr.right.accept(this)
}
override fun visit(directive: Directive) {
output("${directive.directive} ")
for(arg in directive.args) {
when {
arg.int!=null -> output(arg.int.toString())
arg.name!=null -> output(arg.name)
arg.str!=null -> output("\"${arg.str}\"")
}
if(arg!==directive.args.last())
output(",")
}
output("\n")
}
private fun datatypeString(dt: DataType): String {
return when(dt) {
in NumericDatatypes -> dt.toString().toLowerCase()
in StringDatatypes -> dt.toString().toLowerCase()
DataType.ARRAY_UB -> "ubyte["
DataType.ARRAY_B -> "byte["
DataType.ARRAY_UW -> "uword["
DataType.ARRAY_W -> "word["
DataType.ARRAY_F -> "float["
DataType.STRUCT -> "" // the name of the struct is enough
else -> "?????2"
}
}
override fun visit(structDecl: StructDecl) {
outputln("struct ${structDecl.name} {")
scopelevel++
for(decl in structDecl.statements) {
outputi("")
decl.accept(this)
output("\n")
}
scopelevel--
outputlni("}")
}
override fun visit(decl: VarDecl) {
when(decl.type) {
VarDeclType.VAR -> {}
VarDeclType.CONST -> output("const ")
VarDeclType.MEMORY -> output("&")
}
output(decl.struct?.name ?: "")
output(datatypeString(decl.datatype))
if(decl.arraysize!=null) {
decl.arraysize!!.index.accept(this)
}
if(decl.isArray)
output("]")
if(decl.zeropage == ZeropageWish.REQUIRE_ZEROPAGE || decl.zeropage==ZeropageWish.PREFER_ZEROPAGE)
output(" @zp")
output(" ${decl.name} ")
if(decl.value!=null) {
output("= ")
decl.value?.accept(this)
}
}
override fun visit(subroutine: Subroutine) {
output("\n")
if(subroutine.isAsmSubroutine) {
outputi("asmsub ${subroutine.name} (")
for(param in subroutine.parameters.zip(subroutine.asmParameterRegisters)) {
val reg =
when {
true==param.second.stack -> "stack"
param.second.registerOrPair!=null -> param.second.registerOrPair.toString()
param.second.statusflag!=null -> param.second.statusflag.toString()
else -> "?????1"
}
output("${datatypeString(param.first.type)} ${param.first.name} @$reg")
if(param.first!==subroutine.parameters.last())
output(", ")
}
}
else {
outputi("sub ${subroutine.name} (")
for(param in subroutine.parameters) {
output("${datatypeString(param.type)} ${param.name}")
if(param!==subroutine.parameters.last())
output(", ")
}
}
output(") ")
if(subroutine.asmClobbers.isNotEmpty()) {
output("-> clobbers (")
val regs = subroutine.asmClobbers.toList().sorted()
for(r in regs) {
output(r.toString())
if(r!==regs.last())
output(",")
}
output(") ")
}
if(subroutine.returntypes.any()) {
val rt = subroutine.returntypes.single()
output("-> ${datatypeString(rt)} ")
}
if(subroutine.asmAddress!=null)
outputln("= ${subroutine.asmAddress.toHex()}")
else {
outputln("{ ")
scopelevel++
outputStatements(subroutine.statements)
scopelevel--
outputi("}")
}
}
private fun outputStatements(statements: List<Statement>) {
for(stmt in statements) {
if(stmt is VarDecl && stmt.autogeneratedDontRemove)
continue // skip autogenerated decls (to avoid generating a newline)
outputi("")
stmt.accept(this)
output("\n")
}
}
override fun visit(functionCall: FunctionCall) {
printout(functionCall as IFunctionCall)
}
override fun visit(functionCallStatement: FunctionCallStatement) {
printout(functionCallStatement as IFunctionCall)
}
private fun printout(call: IFunctionCall) {
call.target.accept(this)
output("(")
for(arg in call.arglist) {
arg.accept(this)
if(arg!==call.arglist.last())
output(", ")
}
output(")")
}
override fun visit(identifier: IdentifierReference) {
output(identifier.nameInSource.joinToString("."))
}
override fun visit(jump: Jump) {
output("goto ")
when {
jump.address!=null -> output(jump.address.toHex())
jump.generatedLabel!=null -> output(jump.generatedLabel)
jump.identifier!=null -> jump.identifier.accept(this)
}
}
override fun visit(ifStatement: IfStatement) {
output("if ")
ifStatement.condition.accept(this)
output(" ")
ifStatement.truepart.accept(this)
if(ifStatement.elsepart.statements.isNotEmpty()) {
output(" else ")
ifStatement.elsepart.accept(this)
}
}
override fun visit(branchStatement: BranchStatement) {
output("if_${branchStatement.condition.toString().toLowerCase()} ")
branchStatement.truepart.accept(this)
if(branchStatement.elsepart.statements.isNotEmpty()) {
output(" else ")
branchStatement.elsepart.accept(this)
}
}
override fun visit(range: RangeExpr) {
range.from.accept(this)
output(" to ")
range.to.accept(this)
output(" step ")
range.step.accept(this)
output(" ")
}
override fun visit(label: Label) {
output("\n")
output("${label.name}:")
}
override fun visit(numLiteral: NumericLiteralValue) {
output(numLiteral.number.toString())
}
override fun visit(refLiteral: ReferenceLiteralValue) {
when {
refLiteral.isString -> output("\"${escape(refLiteral.str!!)}\"")
refLiteral.isArray -> {
if(refLiteral.array!=null) {
outputListMembers(refLiteral.array.asSequence(), '[', ']')
}
}
}
}
private fun outputListMembers(array: Sequence<Expression>, openchar: Char, closechar: Char) {
var counter = 0
output(openchar.toString())
scopelevel++
for (v in array) {
v.accept(this)
if (v !== array.last())
output(", ")
counter++
if (counter > 16) {
outputln("")
outputi("")
counter = 0
}
}
scopelevel--
output(closechar.toString())
}
override fun visit(assignment: Assignment) {
if(assignment is VariableInitializationAssignment) {
val targetVar = assignment.target.identifier?.targetVarDecl(program.namespace)
if(targetVar?.struct != null) {
// skip STRUCT init assignments
return
}
}
assignment.target.accept(this)
if (assignment.aug_op != null)
output(" ${assignment.aug_op} ")
else
output(" = ")
assignment.value.accept(this)
}
override fun visit(postIncrDecr: PostIncrDecr) {
postIncrDecr.target.accept(this)
output(postIncrDecr.operator)
}
override fun visit(contStmt: Continue) {
output("continue")
}
override fun visit(breakStmt: Break) {
output("break")
}
override fun visit(forLoop: ForLoop) {
output("for ")
if(forLoop.decltype!=null) {
output(datatypeString(forLoop.decltype))
if (forLoop.zeropage==ZeropageWish.REQUIRE_ZEROPAGE || forLoop.zeropage==ZeropageWish.PREFER_ZEROPAGE)
output(" @zp ")
else
output(" ")
}
if(forLoop.loopRegister!=null)
output(forLoop.loopRegister.toString())
else
forLoop.loopVar!!.accept(this)
output(" in ")
forLoop.iterable.accept(this)
output(" ")
forLoop.body.accept(this)
}
override fun visit(whileLoop: WhileLoop) {
output("while ")
whileLoop.condition.accept(this)
output(" ")
whileLoop.body.accept(this)
}
override fun visit(repeatLoop: RepeatLoop) {
output("repeat ")
repeatLoop.body.accept(this)
output(" until ")
repeatLoop.untilCondition.accept(this)
}
override fun visit(returnStmt: Return) {
output("return ")
returnStmt.value?.accept(this)
}
override fun visit(arrayIndexedExpression: ArrayIndexedExpression) {
arrayIndexedExpression.identifier.accept(this)
output("[")
arrayIndexedExpression.arrayspec.index.accept(this)
output("]")
}
override fun visit(assignTarget: AssignTarget) {
if(assignTarget.register!=null)
output(assignTarget.register.toString())
else {
assignTarget.memoryAddress?.accept(this)
assignTarget.identifier?.accept(this)
}
assignTarget.arrayindexed?.accept(this)
}
override fun visit(scope: AnonymousScope) {
outputln("{")
scopelevel++
outputStatements(scope.statements)
scopelevel--
outputi("}")
}
override fun visit(typecast: TypecastExpression) {
output("(")
typecast.expression.accept(this)
output(" as ${datatypeString(typecast.type)}) ")
}
override fun visit(memread: DirectMemoryRead) {
output("@(")
memread.addressExpression.accept(this)
output(")")
}
override fun visit(memwrite: DirectMemoryWrite) {
output("@(")
memwrite.addressExpression.accept(this)
output(")")
}
override fun visit(addressOf: AddressOf) {
output("&")
addressOf.identifier.accept(this)
}
override fun visit(inlineAssembly: InlineAssembly) {
outputlni("%asm {{")
outputln(inlineAssembly.assembly)
outputlni("}}")
}
override fun visit(registerExpr: RegisterExpr) {
output(registerExpr.register.toString())
}
override fun visit(builtinFunctionStatementPlaceholder: BuiltinFunctionStatementPlaceholder) {
output(builtinFunctionStatementPlaceholder.name)
}
override fun visit(whenStatement: WhenStatement) {
output("when ")
whenStatement.condition.accept(this)
outputln(" {")
scopelevel++
whenStatement.choices.forEach { it.accept(this) }
scopelevel--
outputlni("}")
}
override fun visit(whenChoice: WhenChoice) {
val choiceValues = whenChoice.values
if(choiceValues==null)
outputi("else -> ")
else {
outputi("")
for(value in choiceValues) {
value.accept(this)
if(value !== choiceValues.last())
output(",")
}
output(" -> ")
}
if(whenChoice.statements.statements.size==1)
whenChoice.statements.statements.single().accept(this)
else
whenChoice.statements.accept(this)
outputln("")
}
override fun visit(structLv: StructLiteralValue) {
outputListMembers(structLv.values.asSequence(), '{', '}')
}
override fun visit(nopStatement: NopStatement) {
output("; NOP @ ${nopStatement.position} $nopStatement")
}
}

View File

@ -0,0 +1,263 @@
package prog8.ast
import prog8.ast.base.*
import prog8.ast.expressions.Expression
import prog8.ast.expressions.IdentifierReference
import prog8.ast.statements.*
import prog8.compiler.HeapValues
import prog8.functions.BuiltinFunctions
import java.nio.file.Path
interface Node {
val position: Position
var parent: Node // will be linked correctly later (late init)
fun linkParents(parent: Node)
fun definingModule(): Module {
if(this is Module)
return this
return findParentNode<Module>(this)!!
}
fun definingSubroutine(): Subroutine? = findParentNode<Subroutine>(this)
fun definingScope(): INameScope {
val scope = findParentNode<INameScope>(this)
if(scope!=null) {
return scope
}
if(this is Label && this.name.startsWith("builtin::")) {
return BuiltinFunctionScopePlaceholder
}
if(this is GlobalNamespace)
return this
throw FatalAstException("scope missing from $this")
}
}
interface IFunctionCall {
var target: IdentifierReference
var arglist: MutableList<Expression>
}
interface INameScope {
val name: String
val position: Position
val statements: MutableList<Statement>
val parent: Node
fun linkParents(parent: Node)
fun subScopes(): Map<String, INameScope> {
val subscopes = mutableMapOf<String, INameScope>()
for(stmt in statements) {
when(stmt) {
// NOTE: if other nodes are introduced that are a scope, or contain subscopes, they must be added here!
is ForLoop -> subscopes[stmt.body.name] = stmt.body
is RepeatLoop -> subscopes[stmt.body.name] = stmt.body
is WhileLoop -> subscopes[stmt.body.name] = stmt.body
is BranchStatement -> {
subscopes[stmt.truepart.name] = stmt.truepart
if(stmt.elsepart.containsCodeOrVars())
subscopes[stmt.elsepart.name] = stmt.elsepart
}
is IfStatement -> {
subscopes[stmt.truepart.name] = stmt.truepart
if(stmt.elsepart.containsCodeOrVars())
subscopes[stmt.elsepart.name] = stmt.elsepart
}
is WhenStatement -> {
stmt.choices.forEach { subscopes[it.statements.name] = it.statements }
}
is INameScope -> subscopes[stmt.name] = stmt
else -> {}
}
}
return subscopes
}
fun getLabelOrVariable(name: String): Statement? {
// this is called A LOT and could perhaps be optimized a bit more,
// but adding a memoization cache didn't make much of a practical runtime difference
for (stmt in statements) {
if (stmt is VarDecl && stmt.name==name) return stmt
if (stmt is Label && stmt.name==name) return stmt
if (stmt is AnonymousScope) {
val sub = stmt.getLabelOrVariable(name)
if(sub!=null)
return sub
}
}
return null
}
fun allDefinedSymbols(): List<Pair<String, Statement>> {
return statements.mapNotNull {
when (it) {
is Label -> it.name to it
is VarDecl -> it.name to it
is Subroutine -> it.name to it
is Block -> it.name to it
else -> null
}
}
}
fun lookup(scopedName: List<String>, localContext: Node) : Statement? {
if(scopedName.size>1) {
// a scoped name can a) refer to a member of a struct, or b) refer to a name in another module.
// try the struct first.
val thing = lookup(scopedName.dropLast(1), localContext) as? VarDecl
val struct = thing?.struct
if (struct != null) {
if(struct.statements.any { (it as VarDecl).name == scopedName.last()}) {
// return ref to the mangled name variable
val mangled = mangledStructMemberName(thing.name, scopedName.last())
return thing.definingScope().getLabelOrVariable(mangled)
}
}
// it's a qualified name, look it up from the root of the module's namespace (consider all modules in the program)
for(module in localContext.definingModule().program.modules) {
var scope: INameScope? = module
for(name in scopedName.dropLast(1)) {
scope = scope?.subScopes()?.get(name)
if(scope==null)
break
}
if(scope!=null) {
val result = scope.getLabelOrVariable(scopedName.last())
if(result!=null)
return result
return scope.subScopes()[scopedName.last()] as Statement?
}
}
return null
} else {
// unqualified name, find the scope the localContext is in, look in that first
var statementScope = localContext
while(statementScope !is ParentSentinel) {
val localScope = statementScope.definingScope()
val result = localScope.getLabelOrVariable(scopedName[0])
if (result != null)
return result
val subscope = localScope.subScopes()[scopedName[0]] as Statement?
if (subscope != null)
return subscope
// not found in this scope, look one higher up
statementScope = statementScope.parent
}
return null
}
}
fun containsCodeOrVars() = statements.any { it !is Directive || it.directive == "%asminclude" || it.directive == "%asm"}
fun containsNoCodeNorVars() = !containsCodeOrVars()
fun remove(stmt: Statement) {
if(!statements.remove(stmt))
throw FatalAstException("stmt to remove wasn't found in scope")
}
}
/*********** Everything starts from here, the Program; zero or more modules *************/
class Program(val name: String, val modules: MutableList<Module>) {
val namespace = GlobalNamespace(modules)
val heap = HeapValues()
val definedLoadAddress: Int
get() = modules.first().loadAddress
var actualLoadAddress: Int = 0
fun entrypoint(): Subroutine? {
val mainBlocks = modules.flatMap { it.statements }.filter { b -> b is Block && b.name=="main" }.map { it as Block }
if(mainBlocks.size > 1)
throw FatalAstException("more than one 'main' block")
return if(mainBlocks.isEmpty()) {
null
} else {
mainBlocks[0].subScopes()["start"] as Subroutine?
}
}
fun allBlocks(): List<Block> = modules.flatMap { it.statements.filterIsInstance<Block>() }
}
class Module(override val name: String,
override var statements: MutableList<Statement>,
override val position: Position,
val isLibraryModule: Boolean,
val source: Path) : Node, INameScope {
override lateinit var parent: Node
lateinit var program: Program
val importedBy = mutableListOf<Module>()
val imports = mutableSetOf<Module>()
var loadAddress: Int = 0 // can be set with the %address directive
override fun linkParents(parent: Node) {
this.parent = parent
statements.forEach {it.linkParents(this)}
}
override fun definingScope(): INameScope = program.namespace
override fun toString() = "Module(name=$name, pos=$position, lib=$isLibraryModule)"
}
class GlobalNamespace(val modules: List<Module>): Node, INameScope {
override val name = "<<<global>>>"
override val position = Position("<<<global>>>", 0, 0, 0)
override val statements = mutableListOf<Statement>()
override var parent: Node = ParentSentinel
override fun linkParents(parent: Node) {
modules.forEach { it.linkParents(this) }
}
override fun lookup(scopedName: List<String>, localContext: Node): Statement? {
if (scopedName.size == 1 && scopedName[0] in BuiltinFunctions) {
// builtin functions always exist, return a dummy localContext for them
val builtinPlaceholder = Label("builtin::${scopedName.last()}", localContext.position)
builtinPlaceholder.parent = ParentSentinel
return builtinPlaceholder
}
if(scopedName.size>1) {
// a scoped name can a) refer to a member of a struct, or b) refer to a name in another module.
// try the struct first.
val thing = lookup(scopedName.dropLast(1), localContext) as? VarDecl
val struct = thing?.struct
if (struct != null) {
if(struct.statements.any { (it as VarDecl).name == scopedName.last()}) {
// return ref to the mangled name variable
val mangled = mangledStructMemberName(thing.name, scopedName.last())
return thing.definingScope().getLabelOrVariable(mangled)
}
}
}
val stmt = localContext.definingModule().lookup(scopedName, localContext)
return when (stmt) {
is Label, is VarDecl, is Block, is Subroutine -> stmt
null -> null
else -> throw NameError("wrong identifier target: $stmt", stmt.position)
}
}
}
object BuiltinFunctionScopePlaceholder : INameScope {
override val name = "<<builtin-functions-scope-placeholder>>"
override val position = Position("<<placeholder>>", 0, 0, 0)
override var statements = mutableListOf<Statement>()
override var parent: Node = ParentSentinel
override fun linkParents(parent: Node) {}
}
// prefix for struct member variables
internal fun mangledStructMemberName(varName: String, memberName: String) = "prog8struct_${varName}_$memberName"

View File

@ -1,326 +0,0 @@
package prog8.ast
import prog8.compiler.HeapValues
fun Module.reorderStatements(namespace: INameScope, heap: HeapValues) {
val initvalueCreator = VarInitValueAndAddressOfCreator(namespace)
this.process(initvalueCreator)
val checker = StatementReorderer(namespace, heap)
this.process(checker)
}
const val initvarsSubName="prog8_init_vars" // the name of the subroutine that should be called for every block to initialize its variables
private class StatementReorderer(private val namespace: INameScope, private val heap: HeapValues): IAstProcessor {
// Reorders the statements in a way the compiler needs.
// - 'main' block must be the very first statement UNLESS it has an address set.
// - blocks are ordered by address, where blocks without address are put at the end.
// - in every scope:
// -- the directives '%output', '%launcher', '%zeropage', '%zpreserved', '%address' and '%option' will come first.
// -- all vardecls then follow.
// -- the remaining statements then follow in their original order.
//
// - the 'start' subroutine in the 'main' block will be moved to the top immediately following the directives.
// - all other subroutines will be moved to the end of their block.
private val directivesToMove = setOf("%output", "%launcher", "%zeropage", "%zpreserved", "%address", "%option")
override fun process(module: Module) {
super.process(module)
val (blocks, other) = module.statements.partition { it is Block }
module.statements = other.asSequence().plus(blocks.sortedBy { (it as Block).address ?: Int.MAX_VALUE }).toMutableList()
// make sure user-defined blocks come BEFORE library blocks, and move the "main" block to the top of everything
val nonLibraryBlocks = module.statements.withIndex()
.filter { it.value is Block && !(it.value as Block).isInLibrary }
.map { it.index to it.value }
.reversed()
for(nonLibBlock in nonLibraryBlocks)
module.statements.removeAt(nonLibBlock.first)
for(nonLibBlock in nonLibraryBlocks)
module.statements.add(0, nonLibBlock.second)
val mainBlock = module.statements.single { it is Block && it.name=="main" }
if((mainBlock as Block).address==null) {
module.statements.remove(mainBlock)
module.statements.add(0, mainBlock)
}
val varDecls = module.statements.filterIsInstance<VarDecl>()
module.statements.removeAll(varDecls)
module.statements.addAll(0, varDecls)
val directives = module.statements.filter {it is Directive && it.directive in directivesToMove}
module.statements.removeAll(directives)
module.statements.addAll(0, directives)
sortConstantAssignments(module.statements)
}
override fun process(block: Block): IStatement {
val subroutines = block.statements.filterIsInstance<Subroutine>()
var numSubroutinesAtEnd = 0
// move all subroutines to the end of the block
for (subroutine in subroutines) {
if(subroutine.name!="start" || block.name!="main") {
block.statements.remove(subroutine)
block.statements.add(subroutine)
}
numSubroutinesAtEnd++
}
// move the "start" subroutine to the top
if(block.name=="main") {
block.statements.singleOrNull { it is Subroutine && it.name == "start" } ?.let {
block.statements.remove(it)
block.statements.add(0, it)
numSubroutinesAtEnd--
}
}
// make sure there is a 'return' in front of the first subroutine
// (if it isn't the first statement in the block itself, and isn't the program's entrypoint)
if(numSubroutinesAtEnd>0 && block.statements.size > (numSubroutinesAtEnd+1)) {
val firstSub = block.statements[block.statements.size - numSubroutinesAtEnd] as Subroutine
if(firstSub.name != "start" && block.name != "main") {
val stmtBeforeFirstSub = block.statements[block.statements.size - numSubroutinesAtEnd - 1]
if (stmtBeforeFirstSub !is Return
&& stmtBeforeFirstSub !is Jump
&& stmtBeforeFirstSub !is Subroutine
&& stmtBeforeFirstSub !is BuiltinFunctionStatementPlaceholder) {
val ret = Return(emptyList(), stmtBeforeFirstSub.position)
ret.linkParents(block)
block.statements.add(block.statements.size - numSubroutinesAtEnd, ret)
}
}
}
val varDecls = block.statements.filter { it is VarDecl }
block.statements.removeAll(varDecls)
block.statements.addAll(0, varDecls)
val directives = block.statements.filter {it is Directive && it.directive in directivesToMove}
block.statements.removeAll(directives)
block.statements.addAll(0, directives)
sortConstantAssignments(block.statements)
val varInits = block.statements.withIndex().filter { it.value is VariableInitializationAssignment }
if(varInits.isNotEmpty()) {
val statements = varInits.map{it.value}.toMutableList()
val varInitSub = Subroutine(initvarsSubName, emptyList(), emptyList(), emptyList(), emptyList(),
emptySet(), null, false, statements, block.position)
varInitSub.linkParents(block)
block.statements.add(varInitSub)
// remove the varinits from the block's statements
for(index in varInits.map{it.index}.reversed())
block.statements.removeAt(index)
}
return super.process(block)
}
override fun process(subroutine: Subroutine): IStatement {
super.process(subroutine)
sortConstantAssignments(subroutine.statements)
val varDecls = subroutine.statements.filterIsInstance<VarDecl>()
subroutine.statements.removeAll(varDecls)
subroutine.statements.addAll(0, varDecls)
val directives = subroutine.statements.filter {it is Directive && it.directive in directivesToMove}
subroutine.statements.removeAll(directives)
subroutine.statements.addAll(0, directives)
if(subroutine.returntypes.isEmpty()) {
// add the implicit return statement at the end (if it's not there yet), but only if it's not a kernel routine.
// and if an assembly block doesn't contain a rts/rti
if(subroutine.asmAddress==null && subroutine.amountOfRtsInAsm()==0) {
if (subroutine.statements.lastOrNull {it !is VarDecl} !is Return) {
val returnStmt = Return(emptyList(), subroutine.position)
returnStmt.linkParents(subroutine)
subroutine.statements.add(returnStmt)
}
}
}
return subroutine
}
override fun process(scope: AnonymousScope): AnonymousScope {
scope.statements = scope.statements.map { it.process(this)}.toMutableList()
sortConstantAssignments(scope.statements)
return scope
}
override fun process(decl: VarDecl): IStatement {
if(decl.arraysize==null) {
val array = decl.value as? LiteralValue
if(array!=null && array.isArray) {
val size = heap.get(array.heapId!!).arraysize
decl.arraysize = ArrayIndex(LiteralValue.optimalInteger(size, decl.position), decl.position)
}
}
return super.process(decl)
}
private fun sortConstantAssignments(statements: MutableList<IStatement>) {
// sort assignments by datatype and value, so multiple initializations with the same value can be optimized (to load the value just once)
val result = mutableListOf<IStatement>()
val stmtIter = statements.iterator()
for(stmt in stmtIter) {
if(stmt is Assignment && !stmt.targets.any { it.isMemoryMapped(namespace) }) {
val constval = stmt.value.constValue(namespace, heap)
if(constval!=null) {
val (sorted, trailing) = sortConstantAssignmentSequence(stmt, stmtIter)
result.addAll(sorted)
if(trailing!=null)
result.add(trailing)
}
else
result.add(stmt)
}
else
result.add(stmt)
}
statements.clear()
statements.addAll(result)
}
private fun sortConstantAssignmentSequence(first: Assignment, stmtIter: MutableIterator<IStatement>): Pair<List<Assignment>, IStatement?> {
val sequence= mutableListOf(first)
var trailing: IStatement? = null
while(stmtIter.hasNext()) {
val next = stmtIter.next()
if(next is Assignment) {
val constValue = next.value.constValue(namespace, heap)
if(constValue==null) {
trailing = next
break
}
sequence.add(next)
}
else {
trailing=next
break
}
}
val sorted = sequence.sortedWith(compareBy({it.value.resultingDatatype(namespace, heap)}, {it.singleTarget?.shortString(true)}))
return Pair(sorted, trailing)
}
}
private class VarInitValueAndAddressOfCreator(private val namespace: INameScope): IAstProcessor {
// Replace the var decl with an assignment and add a new vardecl with the default constant value.
// This makes sure the variables get reset to the intended value on a next run of the program.
// Variable decls without a value don't get this treatment, which means they retain the last
// value they had when restarting the program.
// This is done in a separate step because it interferes with the namespace lookup of symbols
// in other ast processors.
// Also takes care to insert AddressOf (&) expression where required (string params to a UWORD function param etc).
private val vardeclsToAdd = mutableMapOf<INameScope, MutableMap<String, VarDecl>>()
override fun process(module: Module) {
super.process(module)
// add any new vardecls to the various scopes
for(decl in vardeclsToAdd)
for(d in decl.value) {
d.value.linkParents(decl.key as Node)
decl.key.statements.add(0, d.value)
}
}
override fun process(decl: VarDecl): IStatement {
super.process(decl)
if(decl.type!=VarDeclType.VAR || decl.value==null)
return decl
if(decl.datatype in NumericDatatypes) {
val scope = decl.definingScope()
addVarDecl(scope, decl.asDefaultValueDecl(null))
val declvalue = decl.value!!
val value =
if(declvalue is LiteralValue) {
val converted = declvalue.intoDatatype(decl.datatype)
converted ?: declvalue
}
else
declvalue
return VariableInitializationAssignment(
AssignTarget(null, IdentifierReference(decl.scopedname.split("."), decl.position), null, null, decl.position),
null,
value,
decl.position
)
}
return decl
}
override fun process(functionCall: FunctionCall): IExpression {
val targetStatement = functionCall.target.targetSubroutine(namespace)
if(targetStatement!=null) {
var node: Node = functionCall
while(node !is IStatement)
node=node.parent
addAddressOfExprIfNeeded(targetStatement, functionCall.arglist, node)
}
return functionCall
}
override fun process(functionCallStatement: FunctionCallStatement): IStatement {
val targetStatement = functionCallStatement.target.targetSubroutine(namespace)
if(targetStatement!=null)
addAddressOfExprIfNeeded(targetStatement, functionCallStatement.arglist, functionCallStatement)
return functionCallStatement
}
private fun addAddressOfExprIfNeeded(subroutine: Subroutine, arglist: MutableList<IExpression>, parent: IStatement) {
// functions that accept UWORD and are given an array type, or string, will receive the AddressOf (memory location) of that value instead.
for(argparam in subroutine.parameters.withIndex().zip(arglist)) {
if(argparam.first.value.type==DataType.UWORD || argparam.first.value.type in StringDatatypes) {
if(argparam.second is AddressOf)
continue
val idref = argparam.second as? IdentifierReference
val strvalue = argparam.second as? LiteralValue
if(idref!=null) {
val variable = idref.targetVarDecl(namespace)
if(variable!=null && (variable.datatype in StringDatatypes || variable.datatype in ArrayDatatypes)) {
val pointerExpr = AddressOf(idref, idref.position)
pointerExpr.scopedname = parent.makeScopedName(idref.nameInSource.single())
pointerExpr.linkParents(arglist[argparam.first.index].parent)
arglist[argparam.first.index] = pointerExpr
}
}
else if(strvalue!=null) {
if(strvalue.isString) {
// replace the argument with &autovar
val autoVarName = "$autoHeapValuePrefix${strvalue.heapId}"
val autoHeapvarRef = IdentifierReference(listOf(autoVarName), strvalue.position)
val pointerExpr = AddressOf(autoHeapvarRef, strvalue.position)
pointerExpr.scopedname = parent.makeScopedName(autoVarName)
pointerExpr.linkParents(arglist[argparam.first.index].parent)
arglist[argparam.first.index] = pointerExpr
// add a vardecl so that the autovar can be resolved in later lookups
val variable = VarDecl(VarDeclType.VAR, strvalue.type, false, null, false, autoVarName, strvalue, strvalue.position)
addVarDecl(strvalue.definingScope(), variable)
}
}
}
}
}
private fun addVarDecl(scope: INameScope, variable: VarDecl) {
if(scope !in vardeclsToAdd)
vardeclsToAdd[scope] = mutableMapOf()
vardeclsToAdd.getValue(scope)[variable.name]=variable
}
}

View File

@ -0,0 +1,646 @@
package prog8.ast.antlr
import org.antlr.v4.runtime.IntStream
import org.antlr.v4.runtime.ParserRuleContext
import org.antlr.v4.runtime.tree.TerminalNode
import prog8.ast.Module
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.*
import prog8.compiler.target.c64.Petscii
import prog8.parser.CustomLexer
import prog8.parser.prog8Parser
import java.io.CharConversionException
import java.io.File
import java.nio.file.Path
/***************** Antlr Extension methods to create AST ****************/
private data class NumericLiteral(val number: Number, val datatype: DataType)
fun prog8Parser.ModuleContext.toAst(name: String, isLibrary: Boolean, source: Path) : Module {
val nameWithoutSuffix = if(name.endsWith(".p8")) name.substringBeforeLast('.') else name
return Module(nameWithoutSuffix, modulestatement().asSequence().map { it.toAst(isLibrary) }.toMutableList(), toPosition(), isLibrary, source)
}
private fun ParserRuleContext.toPosition() : Position {
val customTokensource = this.start.tokenSource as? CustomLexer
val filename =
when {
customTokensource!=null -> customTokensource.modulePath.fileName.toString()
start.tokenSource.sourceName == IntStream.UNKNOWN_SOURCE_NAME -> "@internal@"
else -> File(start.inputStream.sourceName).name
}
// note: be ware of TAB characters in the source text, they count as 1 column...
return Position(filename, start.line, start.charPositionInLine, stop.charPositionInLine + stop.text.length)
}
private fun prog8Parser.ModulestatementContext.toAst(isInLibrary: Boolean) : Statement {
val directive = directive()?.toAst()
if(directive!=null) return directive
val block = block()?.toAst(isInLibrary)
if(block!=null) return block
throw FatalAstException(text)
}
private fun prog8Parser.BlockContext.toAst(isInLibrary: Boolean) : Statement =
Block(identifier().text, integerliteral()?.toAst()?.number?.toInt(), statement_block().toAst(), isInLibrary, toPosition())
private fun prog8Parser.Statement_blockContext.toAst(): MutableList<Statement> =
statement().asSequence().map { it.toAst() }.toMutableList()
private fun prog8Parser.StatementContext.toAst() : Statement {
vardecl()?.let { return it.toAst() }
varinitializer()?.let {
val vd = it.vardecl()
return VarDecl(
VarDeclType.VAR,
vd.datatype()?.toAst() ?: DataType.STRUCT,
if(vd.ZEROPAGE() != null) ZeropageWish.PREFER_ZEROPAGE else ZeropageWish.DONTCARE,
vd.arrayindex()?.toAst(),
vd.varname.text,
null,
it.expression().toAst(),
vd.ARRAYSIG() != null || vd.arrayindex() != null,
false,
it.toPosition()
)
}
structvarinitializer()?.let {
val vd = it.structvardecl()
return VarDecl(
VarDeclType.VAR,
DataType.STRUCT,
ZeropageWish.NOT_IN_ZEROPAGE,
null,
vd.varname.text,
vd.structname.text,
it.expression().toAst(),
isArray = false,
autogeneratedDontRemove = false,
position = it.toPosition()
)
}
structvardecl()?.let {
return VarDecl(
VarDeclType.VAR,
DataType.STRUCT,
ZeropageWish.NOT_IN_ZEROPAGE,
null,
it.varname.text,
it.structname.text,
null,
isArray = false,
autogeneratedDontRemove = false,
position = it.toPosition()
)
}
constdecl()?.let {
val cvarinit = it.varinitializer()
val vd = cvarinit.vardecl()
return VarDecl(
VarDeclType.CONST,
vd.datatype()?.toAst() ?: DataType.STRUCT,
if(vd.ZEROPAGE() != null) ZeropageWish.PREFER_ZEROPAGE else ZeropageWish.DONTCARE,
vd.arrayindex()?.toAst(),
vd.varname.text,
null,
cvarinit.expression().toAst(),
vd.ARRAYSIG() != null || vd.arrayindex() != null,
false,
cvarinit.toPosition()
)
}
memoryvardecl()?.let {
val mvarinit = it.varinitializer()
val vd = mvarinit.vardecl()
return VarDecl(
VarDeclType.MEMORY,
vd.datatype()?.toAst() ?: DataType.STRUCT,
if(vd.ZEROPAGE() != null) ZeropageWish.PREFER_ZEROPAGE else ZeropageWish.DONTCARE,
vd.arrayindex()?.toAst(),
vd.varname.text,
null,
mvarinit.expression().toAst(),
vd.ARRAYSIG() != null || vd.arrayindex() != null,
false,
mvarinit.toPosition()
)
}
assignment()?.let {
return Assignment(it.assign_target().toAst(), null, it.expression().toAst(), it.toPosition())
}
augassignment()?.let {
return Assignment(it.assign_target().toAst(),
it.operator.text,
it.expression().toAst(),
it.toPosition())
}
postincrdecr()?.let {
return PostIncrDecr(it.assign_target().toAst(), it.operator.text, it.toPosition())
}
val directive = directive()?.toAst()
if(directive!=null) return directive
val label = labeldef()?.toAst()
if(label!=null) return label
val jump = unconditionaljump()?.toAst()
if(jump!=null) return jump
val fcall = functioncall_stmt()?.toAst()
if(fcall!=null) return fcall
val ifstmt = if_stmt()?.toAst()
if(ifstmt!=null) return ifstmt
val returnstmt = returnstmt()?.toAst()
if(returnstmt!=null) return returnstmt
val sub = subroutine()?.toAst()
if(sub!=null) return sub
val asm = inlineasm()?.toAst()
if(asm!=null) return asm
val branchstmt = branch_stmt()?.toAst()
if(branchstmt!=null) return branchstmt
val forloop = forloop()?.toAst()
if(forloop!=null) return forloop
val repeatloop = repeatloop()?.toAst()
if(repeatloop!=null) return repeatloop
val whileloop = whileloop()?.toAst()
if(whileloop!=null) return whileloop
val breakstmt = breakstmt()?.toAst()
if(breakstmt!=null) return breakstmt
val continuestmt = continuestmt()?.toAst()
if(continuestmt!=null) return continuestmt
val asmsubstmt = asmsubroutine()?.toAst()
if(asmsubstmt!=null) return asmsubstmt
val whenstmt = whenstmt()?.toAst()
if(whenstmt!=null) return whenstmt
structdecl()?.let {
return StructDecl(it.identifier().text,
it.vardecl().map { vd->vd.toAst() }.toMutableList(),
toPosition())
}
throw FatalAstException("unprocessed source text (are we missing ast conversion rules for parser elements?): $text")
}
private fun prog8Parser.AsmsubroutineContext.toAst(): Statement {
val name = identifier().text
val address = asmsub_address()?.address?.toAst()?.number?.toInt()
val params = asmsub_params()?.toAst() ?: emptyList()
val returns = asmsub_returns()?.toAst() ?: emptyList()
val normalParameters = params.map { SubroutineParameter(it.name, it.type, it.position) }
val normalReturnvalues = returns.map { it.type }
val paramRegisters = params.map { RegisterOrStatusflag(it.registerOrPair, it.statusflag, it.stack) }
val returnRegisters = returns.map { RegisterOrStatusflag(it.registerOrPair, it.statusflag, it.stack) }
val clobbers = asmsub_clobbers()?.clobber()?.toAst() ?: emptySet()
val statements = statement_block()?.toAst() ?: mutableListOf()
return Subroutine(name, normalParameters, normalReturnvalues,
paramRegisters, returnRegisters, clobbers, address, true, statements, toPosition())
}
private class AsmSubroutineParameter(name: String,
type: DataType,
val registerOrPair: RegisterOrPair?,
val statusflag: Statusflag?,
val stack: Boolean,
position: Position) : SubroutineParameter(name, type, position)
private class AsmSubroutineReturn(val type: DataType,
val registerOrPair: RegisterOrPair?,
val statusflag: Statusflag?,
val stack: Boolean,
val position: Position)
private fun prog8Parser.ClobberContext.toAst(): Set<Register>
= this.register().asSequence().map { it.toAst() }.toSet()
private fun prog8Parser.Asmsub_returnsContext.toAst(): List<AsmSubroutineReturn>
= asmsub_return().map { AsmSubroutineReturn(it.datatype().toAst(), it.registerorpair()?.toAst(), it.statusregister()?.toAst(), !it.stack?.text.isNullOrEmpty(), toPosition()) }
private fun prog8Parser.Asmsub_paramsContext.toAst(): List<AsmSubroutineParameter>
= asmsub_param().map {
val vardecl = it.vardecl()
val datatype = vardecl.datatype()?.toAst() ?: DataType.STRUCT
AsmSubroutineParameter(vardecl.varname.text, datatype,
it.registerorpair()?.toAst(),
it.statusregister()?.toAst(),
!it.stack?.text.isNullOrEmpty(), toPosition())
}
private fun prog8Parser.StatusregisterContext.toAst() = Statusflag.valueOf(text)
private fun prog8Parser.Functioncall_stmtContext.toAst(): Statement {
val location = scoped_identifier().toAst()
return if(expression_list() == null)
FunctionCallStatement(location, mutableListOf(), toPosition())
else
FunctionCallStatement(location, expression_list().toAst().toMutableList(), toPosition())
}
private fun prog8Parser.FunctioncallContext.toAst(): FunctionCall {
val location = scoped_identifier().toAst()
return if(expression_list() == null)
FunctionCall(location, mutableListOf(), toPosition())
else
FunctionCall(location, expression_list().toAst().toMutableList(), toPosition())
}
private fun prog8Parser.InlineasmContext.toAst() =
InlineAssembly(INLINEASMBLOCK().text, toPosition())
private fun prog8Parser.ReturnstmtContext.toAst() : Return {
return Return(expression()?.toAst(), toPosition())
}
private fun prog8Parser.UnconditionaljumpContext.toAst(): Jump {
val address = integerliteral()?.toAst()?.number?.toInt()
val identifier = scoped_identifier()?.toAst()
return Jump(address, identifier, null, toPosition())
}
private fun prog8Parser.LabeldefContext.toAst(): Statement =
Label(children[0].text, toPosition())
private fun prog8Parser.SubroutineContext.toAst() : Subroutine {
return Subroutine(identifier().text,
sub_params()?.toAst() ?: emptyList(),
sub_return_part()?.toAst() ?: emptyList(),
emptyList(),
emptyList(),
emptySet(),
null,
false,
statement_block()?.toAst() ?: mutableListOf(),
toPosition())
}
private fun prog8Parser.Sub_return_partContext.toAst(): List<DataType> {
val returns = sub_returns() ?: return emptyList()
return returns.datatype().map { it.toAst() }
}
private fun prog8Parser.Sub_paramsContext.toAst(): List<SubroutineParameter> =
vardecl().map {
val datatype = it.datatype()?.toAst() ?: DataType.STRUCT
SubroutineParameter(it.varname.text, datatype, it.toPosition())
}
private fun prog8Parser.Assign_targetContext.toAst() : AssignTarget {
val register = register()?.toAst()
val identifier = scoped_identifier()
return when {
register!=null -> AssignTarget(register, null, null, null, toPosition())
identifier!=null -> AssignTarget(null, identifier.toAst(), null, null, toPosition())
arrayindexed()!=null -> AssignTarget(null, null, arrayindexed().toAst(), null, toPosition())
directmemory()!=null -> AssignTarget(null, null, null, DirectMemoryWrite(directmemory().expression().toAst(), toPosition()), toPosition())
else -> AssignTarget(null, scoped_identifier()?.toAst(), null, null, toPosition())
}
}
private fun prog8Parser.RegisterContext.toAst() = Register.valueOf(text.toUpperCase())
private fun prog8Parser.DatatypeContext.toAst() = DataType.valueOf(text.toUpperCase())
private fun prog8Parser.RegisterorpairContext.toAst() = RegisterOrPair.valueOf(text.toUpperCase())
private fun prog8Parser.ArrayindexContext.toAst() : ArrayIndex =
ArrayIndex(expression().toAst(), toPosition())
private fun prog8Parser.DirectiveContext.toAst() : Directive =
Directive(directivename.text, directivearg().map { it.toAst() }, toPosition())
private fun prog8Parser.DirectiveargContext.toAst() : DirectiveArg =
DirectiveArg(stringliteral()?.text, identifier()?.text, integerliteral()?.toAst()?.number?.toInt(), toPosition())
private fun prog8Parser.IntegerliteralContext.toAst(): NumericLiteral {
fun makeLiteral(text: String, radix: Int, forceWord: Boolean): NumericLiteral {
val integer: Int
var datatype = DataType.UBYTE
when (radix) {
10 -> {
integer = try {
text.toInt()
} catch(x: NumberFormatException) {
throw AstException("${toPosition()} invalid decimal literal ${x.message}")
}
datatype = when(integer) {
in 0..255 -> DataType.UBYTE
in -128..127 -> DataType.BYTE
in 0..65535 -> DataType.UWORD
in -32768..32767 -> DataType.WORD
else -> DataType.FLOAT
}
}
2 -> {
if(text.length>8)
datatype = DataType.UWORD
try {
integer = text.toInt(2)
} catch(x: NumberFormatException) {
throw AstException("${toPosition()} invalid binary literal ${x.message}")
}
}
16 -> {
if(text.length>2)
datatype = DataType.UWORD
try {
integer = text.toInt(16)
} catch(x: NumberFormatException) {
throw AstException("${toPosition()} invalid hexadecimal literal ${x.message}")
}
}
else -> throw FatalAstException("invalid radix")
}
return NumericLiteral(integer, if (forceWord) DataType.UWORD else datatype)
}
val terminal: TerminalNode = children[0] as TerminalNode
val integerPart = this.intpart.text
return when (terminal.symbol.type) {
prog8Parser.DEC_INTEGER -> makeLiteral(integerPart, 10, wordsuffix()!=null)
prog8Parser.HEX_INTEGER -> makeLiteral(integerPart.substring(1), 16, wordsuffix()!=null)
prog8Parser.BIN_INTEGER -> makeLiteral(integerPart.substring(1), 2, wordsuffix()!=null)
else -> throw FatalAstException(terminal.text)
}
}
private fun prog8Parser.ExpressionContext.toAst() : Expression {
val litval = literalvalue()
if(litval!=null) {
val booleanlit = litval.booleanliteral()?.toAst()
return if(booleanlit!=null) {
NumericLiteralValue.fromBoolean(booleanlit, litval.toPosition())
}
else {
val intLit = litval.integerliteral()?.toAst()
when {
intLit!=null -> when(intLit.datatype) {
DataType.UBYTE -> NumericLiteralValue(DataType.UBYTE, intLit.number.toShort(), litval.toPosition())
DataType.BYTE -> NumericLiteralValue(DataType.BYTE, intLit.number.toShort(), litval.toPosition())
DataType.UWORD -> NumericLiteralValue(DataType.UWORD, intLit.number.toInt(), litval.toPosition())
DataType.WORD -> NumericLiteralValue(DataType.WORD, intLit.number.toInt(), litval.toPosition())
DataType.FLOAT -> NumericLiteralValue(DataType.FLOAT, intLit.number.toDouble(), litval.toPosition())
else -> throw FatalAstException("invalid datatype for numeric literal")
}
litval.floatliteral()!=null -> NumericLiteralValue(DataType.FLOAT, litval.floatliteral().toAst(), litval.toPosition())
litval.stringliteral()!=null -> ReferenceLiteralValue(DataType.STR, unescape(litval.stringliteral().text, litval.toPosition()), position = litval.toPosition())
litval.charliteral()!=null -> {
try {
NumericLiteralValue(DataType.UBYTE, Petscii.encodePetscii(unescape(litval.charliteral().text, litval.toPosition()), true)[0], litval.toPosition())
} catch (ce: CharConversionException) {
throw SyntaxError(ce.message ?: ce.toString(), litval.toPosition())
}
}
litval.arrayliteral()!=null -> {
val array = litval.arrayliteral()?.toAst()
// the actual type of the arraysize can not yet be determined here (missing namespace & heap)
// the ConstantFold takes care of that and converts the type if needed.
ReferenceLiteralValue(DataType.ARRAY_UB, array = array, position = litval.toPosition())
}
litval.structliteral()!=null -> {
val values = litval.structliteral().expression().map { it.toAst() }
StructLiteralValue(values, litval.toPosition())
}
else -> throw FatalAstException("invalid parsed literal")
}
}
}
if(register()!=null)
return RegisterExpr(register().toAst(), register().toPosition())
if(scoped_identifier()!=null)
return scoped_identifier().toAst()
if(bop!=null)
return BinaryExpression(left.toAst(), bop.text, right.toAst(), toPosition())
if(prefix!=null)
return PrefixExpression(prefix.text, expression(0).toAst(), toPosition())
val funcall = functioncall()?.toAst()
if(funcall!=null) return funcall
if (rangefrom!=null && rangeto!=null) {
val step = rangestep?.toAst() ?: NumericLiteralValue(DataType.UBYTE, 1, toPosition())
return RangeExpr(rangefrom.toAst(), rangeto.toAst(), step, toPosition())
}
if(childCount==3 && children[0].text=="(" && children[2].text==")")
return expression(0).toAst() // expression within ( )
if(arrayindexed()!=null)
return arrayindexed().toAst()
if(typecast()!=null)
return TypecastExpression(expression(0).toAst(), typecast().datatype().toAst(), false, toPosition())
if(directmemory()!=null)
return DirectMemoryRead(directmemory().expression().toAst(), toPosition())
if(addressof()!=null)
return AddressOf(addressof().scoped_identifier().toAst(), toPosition())
throw FatalAstException(text)
}
private fun prog8Parser.ArrayindexedContext.toAst(): ArrayIndexedExpression {
return ArrayIndexedExpression(scoped_identifier().toAst(),
arrayindex().toAst(),
toPosition())
}
private fun prog8Parser.Expression_listContext.toAst() = expression().map{ it.toAst() }
private fun prog8Parser.IdentifierContext.toAst() : IdentifierReference =
IdentifierReference(listOf(text), toPosition())
private fun prog8Parser.Scoped_identifierContext.toAst() : IdentifierReference =
IdentifierReference(NAME().map { it.text }, toPosition())
private fun prog8Parser.FloatliteralContext.toAst() = text.toDouble()
private fun prog8Parser.BooleanliteralContext.toAst() = when(text) {
"true" -> true
"false" -> false
else -> throw FatalAstException(text)
}
private fun prog8Parser.ArrayliteralContext.toAst() : Array<Expression> =
expression().map { it.toAst() }.toTypedArray()
private fun prog8Parser.If_stmtContext.toAst(): IfStatement {
val condition = expression().toAst()
val trueStatements = statement_block()?.toAst() ?: mutableListOf(statement().toAst())
val elseStatements = else_part()?.toAst() ?: mutableListOf()
val trueScope = AnonymousScope(trueStatements, statement_block()?.toPosition()
?: statement().toPosition())
val elseScope = AnonymousScope(elseStatements, else_part()?.toPosition() ?: toPosition())
return IfStatement(condition, trueScope, elseScope, toPosition())
}
private fun prog8Parser.Else_partContext.toAst(): MutableList<Statement> {
return statement_block()?.toAst() ?: mutableListOf(statement().toAst())
}
private fun prog8Parser.Branch_stmtContext.toAst(): BranchStatement {
val branchcondition = branchcondition().toAst()
val trueStatements = statement_block()?.toAst() ?: mutableListOf(statement().toAst())
val elseStatements = else_part()?.toAst() ?: mutableListOf()
val trueScope = AnonymousScope(trueStatements, statement_block()?.toPosition()
?: statement().toPosition())
val elseScope = AnonymousScope(elseStatements, else_part()?.toPosition() ?: toPosition())
return BranchStatement(branchcondition, trueScope, elseScope, toPosition())
}
private fun prog8Parser.BranchconditionContext.toAst() = BranchCondition.valueOf(text.substringAfter('_').toUpperCase())
private fun prog8Parser.ForloopContext.toAst(): ForLoop {
val loopregister = register()?.toAst()
val datatype = datatype()?.toAst()
val zeropage = if(ZEROPAGE() != null) ZeropageWish.PREFER_ZEROPAGE else ZeropageWish.DONTCARE
val loopvar = identifier()?.toAst()
val iterable = expression()!!.toAst()
val scope =
if(statement()!=null)
AnonymousScope(mutableListOf(statement().toAst()), statement().toPosition())
else
AnonymousScope(statement_block().toAst(), statement_block().toPosition())
return ForLoop(loopregister, datatype, zeropage, loopvar, iterable, scope, toPosition())
}
private fun prog8Parser.ContinuestmtContext.toAst() = Continue(toPosition())
private fun prog8Parser.BreakstmtContext.toAst() = Break(toPosition())
private fun prog8Parser.WhileloopContext.toAst(): WhileLoop {
val condition = expression().toAst()
val statements = statement_block()?.toAst() ?: mutableListOf(statement().toAst())
val scope = AnonymousScope(statements, statement_block()?.toPosition()
?: statement().toPosition())
return WhileLoop(condition, scope, toPosition())
}
private fun prog8Parser.RepeatloopContext.toAst(): RepeatLoop {
val untilCondition = expression().toAst()
val statements = statement_block()?.toAst() ?: mutableListOf(statement().toAst())
val scope = AnonymousScope(statements, statement_block()?.toPosition()
?: statement().toPosition())
return RepeatLoop(scope, untilCondition, toPosition())
}
private fun prog8Parser.WhenstmtContext.toAst(): WhenStatement {
val condition = expression().toAst()
val choices = this.when_choice()?.map { it.toAst() }?.toMutableList() ?: mutableListOf()
return WhenStatement(condition, choices, toPosition())
}
private fun prog8Parser.When_choiceContext.toAst(): WhenChoice {
val values = expression_list()?.toAst()
val stmt = statement()?.toAst()
val stmt_block = statement_block()?.toAst()?.toMutableList() ?: mutableListOf()
if(stmt!=null)
stmt_block.add(stmt)
val scope = AnonymousScope(stmt_block, toPosition())
return WhenChoice(values, scope, toPosition())
}
private fun prog8Parser.VardeclContext.toAst(): VarDecl {
return VarDecl(
VarDeclType.VAR,
datatype()?.toAst() ?: DataType.STRUCT,
if(ZEROPAGE() != null) ZeropageWish.PREFER_ZEROPAGE else ZeropageWish.DONTCARE,
arrayindex()?.toAst(),
varname.text,
null,
null,
ARRAYSIG() != null || arrayindex() != null,
false,
toPosition()
)
}
internal fun escape(str: String) = str.replace("\t", "\\t").replace("\n", "\\n").replace("\r", "\\r")
internal fun unescape(str: String, position: Position): String {
val result = mutableListOf<Char>()
val iter = str.iterator()
while(iter.hasNext()) {
val c = iter.nextChar()
if(c=='\\') {
val ec = iter.nextChar()
result.add(when(ec) {
'\\' -> '\\'
'n' -> '\n'
'r' -> '\r'
'"' -> '"'
'u' -> {
"${iter.nextChar()}${iter.nextChar()}${iter.nextChar()}${iter.nextChar()}".toInt(16).toChar()
}
else -> throw SyntaxError("invalid escape char in string: \\$ec", position)
})
} else {
result.add(c)
}
}
return result.joinToString("")
}

View File

@ -0,0 +1,153 @@
package prog8.ast.base
import prog8.ast.Node
import prog8.compiler.target.c64.MachineDefinition
/**************************** AST Data classes ****************************/
enum class DataType {
UBYTE, // pass by value
BYTE, // pass by value
UWORD, // pass by value
WORD, // pass by value
FLOAT, // pass by value
STR, // pass by reference
STR_S, // pass by reference
ARRAY_UB, // pass by reference
ARRAY_B, // pass by reference
ARRAY_UW, // pass by reference
ARRAY_W, // pass by reference
ARRAY_F, // pass by reference
STRUCT; // pass by reference
/**
* is the type assignable to the given other type?
*/
infix fun isAssignableTo(targetType: DataType) =
// what types are assignable to others without loss of precision?
when(this) {
UBYTE -> targetType in setOf(UBYTE, WORD, UWORD, FLOAT)
BYTE -> targetType in setOf(BYTE, WORD, FLOAT)
UWORD -> targetType in setOf(UWORD, FLOAT)
WORD -> targetType in setOf(WORD, FLOAT)
FLOAT -> targetType == FLOAT
STR -> targetType == STR || targetType==STR_S
STR_S -> targetType == STR || targetType==STR_S
in ArrayDatatypes -> targetType == this
else -> false
}
infix fun isAssignableTo(targetTypes: Set<DataType>) = targetTypes.any { this isAssignableTo it }
infix fun largerThan(other: DataType) =
when(this) {
in ByteDatatypes -> false
in WordDatatypes -> other in ByteDatatypes
else -> true
}
infix fun equalsSize(other: DataType) =
when(this) {
in ByteDatatypes -> other in ByteDatatypes
in WordDatatypes -> other in WordDatatypes
else -> false
}
fun memorySize(): Int {
return when(this) {
in ByteDatatypes -> 1
in WordDatatypes -> 2
FLOAT -> MachineDefinition.Mflpt5.MemorySize
in PassByReferenceDatatypes -> 2
else -> -9999999
}
}
}
enum class Register {
A,
X,
Y
}
enum class RegisterOrPair {
A,
X,
Y,
AX,
AY,
XY
} // only used in parameter and return value specs in asm subroutines
enum class Statusflag {
Pc,
Pz,
Pv,
Pn
}
enum class BranchCondition {
CS,
CC,
EQ,
Z,
NE,
NZ,
VS,
VC,
MI,
NEG,
PL,
POS
}
enum class VarDeclType {
VAR,
CONST,
MEMORY
}
val ByteDatatypes = setOf(DataType.UBYTE, DataType.BYTE)
val WordDatatypes = setOf(DataType.UWORD, DataType.WORD)
val IntegerDatatypes = setOf(DataType.UBYTE, DataType.BYTE, DataType.UWORD, DataType.WORD)
val NumericDatatypes = setOf(DataType.UBYTE, DataType.BYTE, DataType.UWORD, DataType.WORD, DataType.FLOAT)
val StringDatatypes = setOf(DataType.STR, DataType.STR_S)
val ArrayDatatypes = setOf(DataType.ARRAY_UB, DataType.ARRAY_B, DataType.ARRAY_UW, DataType.ARRAY_W, DataType.ARRAY_F)
val IterableDatatypes = setOf(
DataType.STR, DataType.STR_S,
DataType.ARRAY_UB, DataType.ARRAY_B,
DataType.ARRAY_UW, DataType.ARRAY_W,
DataType.ARRAY_F)
val PassByValueDatatypes = NumericDatatypes
val PassByReferenceDatatypes = IterableDatatypes.plus(DataType.STRUCT)
val ArrayElementTypes = mapOf(
DataType.STR to DataType.UBYTE,
DataType.STR_S to DataType.UBYTE,
DataType.ARRAY_B to DataType.BYTE,
DataType.ARRAY_UB to DataType.UBYTE,
DataType.ARRAY_W to DataType.WORD,
DataType.ARRAY_UW to DataType.UWORD,
DataType.ARRAY_F to DataType.FLOAT)
// find the parent node of a specific type or interface
// (useful to figure out in what namespace/block something is defined, etc)
inline fun <reified T> findParentNode(node: Node): T? {
var candidate = node.parent
while(candidate !is T && candidate !is ParentSentinel)
candidate = candidate.parent
return if(candidate is ParentSentinel)
null
else
candidate as T
}
object ParentSentinel : Node {
override val position = Position("<<sentinel>>", 0, 0, 0)
override var parent: Node = this
override fun linkParents(parent: Node) {}
}
data class Position(val file: String, val line: Int, val startCol: Int, val endCol: Int) {
override fun toString(): String = "[$file: line $line col ${startCol+1}-${endCol+1}]"
}

View File

@ -0,0 +1,37 @@
package prog8.ast.base
import prog8.parser.ParsingFailedError
fun printErrors(errors: List<Any>, moduleName: String) {
val reportedMessages = mutableSetOf<String>()
print("\u001b[91m") // bright red
errors.forEach {
val msg = it.toString()
if(msg !in reportedMessages) {
System.err.println(msg)
reportedMessages.add(msg)
}
}
print("\u001b[0m") // reset color
if(reportedMessages.isNotEmpty())
throw ParsingFailedError("There are ${reportedMessages.size} errors in module '$moduleName'.")
}
fun printWarning(msg: String, position: Position, detailInfo: String?=null) {
print("\u001b[93m") // bright yellow
print("$position Warning: $msg")
if(detailInfo==null)
print("\n")
else
println(": $detailInfo\n")
print("\u001b[0m") // normal
}
fun printWarning(msg: String) {
print("\u001b[93m") // bright yellow
print("Warning: $msg")
print("\u001b[0m\n") // normal
}

View File

@ -0,0 +1,22 @@
package prog8.ast.base
import prog8.ast.expressions.IdentifierReference
class FatalAstException (override var message: String) : Exception(message)
open class AstException (override var message: String) : Exception(message)
class SyntaxError(override var message: String, val position: Position) : AstException(message) {
override fun toString() = "$position Syntax error: $message"
}
class NameError(override var message: String, val position: Position) : AstException(message) {
override fun toString() = "$position Name error: $message"
}
open class ExpressionError(message: String, val position: Position) : AstException(message) {
override fun toString() = "$position Error: $message"
}
class UndefinedSymbolError(symbol: IdentifierReference)
: ExpressionError("undefined symbol: ${symbol.nameInSource.joinToString(".")}", symbol.position)

View File

@ -0,0 +1,65 @@
package prog8.ast.base
import prog8.ast.Module
import prog8.ast.Program
import prog8.ast.processing.*
import prog8.compiler.CompilationOptions
import prog8.compiler.target.c64.codegen2.AnonymousScopeVarsCleanup
import prog8.optimizer.FlattenAnonymousScopesAndRemoveNops
// the name of the subroutine that should be called for every block to initialize its variables
internal const val initvarsSubName="prog8_init_vars"
internal fun Program.removeNopsFlattenAnonScopes() {
val flattener = FlattenAnonymousScopesAndRemoveNops()
flattener.visit(this)
}
internal fun Program.checkValid(compilerOptions: CompilationOptions) {
val checker = AstChecker(this, compilerOptions)
checker.visit(this)
printErrors(checker.result(), name)
}
internal fun Program.anonscopeVarsCleanup() {
val mover = AnonymousScopeVarsCleanup(this)
mover.visit(this)
printErrors(mover.result(), name)
}
internal fun Program.reorderStatements() {
val initvalueCreator = VarInitValueAndAddressOfCreator(this)
initvalueCreator.visit(this)
val checker = StatementReorderer(this)
checker.visit(this)
}
internal fun Module.checkImportedValid() {
val checker = ImportedModuleDirectiveRemover()
checker.visit(this)
printErrors(checker.result(), name)
}
internal fun Program.checkRecursion() {
val checker = AstRecursionChecker(namespace)
checker.visit(this)
printErrors(checker.result(), name)
}
internal fun Program.checkIdentifiers() {
val checker = AstIdentifiersChecker(this)
checker.visit(this)
if(modules.map {it.name}.toSet().size != modules.size) {
throw FatalAstException("modules should all be unique")
}
printErrors(checker.result(), name)
}

View File

@ -0,0 +1,780 @@
package prog8.ast.expressions
import prog8.ast.IFunctionCall
import prog8.ast.INameScope
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.antlr.escape
import prog8.ast.base.*
import prog8.ast.processing.IAstModifyingVisitor
import prog8.ast.processing.IAstVisitor
import prog8.ast.statements.ArrayIndex
import prog8.ast.statements.BuiltinFunctionStatementPlaceholder
import prog8.ast.statements.Subroutine
import prog8.ast.statements.VarDecl
import prog8.compiler.HeapValues
import prog8.compiler.IntegerOrAddressOf
import prog8.compiler.target.c64.Petscii
import prog8.functions.BuiltinFunctions
import prog8.functions.NotConstArgumentException
import prog8.functions.builtinFunctionReturnType
import kotlin.math.abs
val associativeOperators = setOf("+", "*", "&", "|", "^", "or", "and", "xor", "==", "!=")
sealed class Expression: Node {
abstract fun constValue(program: Program): NumericLiteralValue?
abstract fun accept(visitor: IAstModifyingVisitor): Expression
abstract fun accept(visitor: IAstVisitor)
abstract fun referencesIdentifiers(vararg name: String): Boolean // todo: remove this here and move it into CallGraph instead
abstract fun inferType(program: Program): DataType?
infix fun isSameAs(other: Expression): Boolean {
if(this===other)
return true
when(this) {
is RegisterExpr ->
return (other is RegisterExpr && other.register==register)
is IdentifierReference ->
return (other is IdentifierReference && other.nameInSource==nameInSource)
is PrefixExpression ->
return (other is PrefixExpression && other.operator==operator && other.expression isSameAs expression)
is BinaryExpression ->
return (other is BinaryExpression && other.operator==operator
&& other.left isSameAs left
&& other.right isSameAs right)
is ArrayIndexedExpression -> {
return (other is ArrayIndexedExpression && other.identifier.nameInSource == identifier.nameInSource
&& other.arrayspec.index isSameAs arrayspec.index)
}
else -> return other==this
}
}
}
class PrefixExpression(val operator: String, var expression: Expression, override val position: Position) : Expression() {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
expression.linkParents(this)
}
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun referencesIdentifiers(vararg name: String) = expression.referencesIdentifiers(*name)
override fun inferType(program: Program): DataType? = expression.inferType(program)
override fun toString(): String {
return "Prefix($operator $expression)"
}
}
class BinaryExpression(var left: Expression, var operator: String, var right: Expression, override val position: Position) : Expression() {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
left.linkParents(this)
right.linkParents(this)
}
override fun toString(): String {
return "[$left $operator $right]"
}
// binary expression should actually have been optimized away into a single value, before const value was requested...
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun referencesIdentifiers(vararg name: String) = left.referencesIdentifiers(*name) || right.referencesIdentifiers(*name)
override fun inferType(program: Program): DataType? {
val leftDt = left.inferType(program)
val rightDt = right.inferType(program)
return when (operator) {
"+", "-", "*", "**", "%", "/" -> if (leftDt == null || rightDt == null) null else {
try {
commonDatatype(leftDt, rightDt, null, null).first
} catch (x: FatalAstException) {
null
}
}
"&" -> leftDt
"|" -> leftDt
"^" -> leftDt
"and", "or", "xor",
"<", ">",
"<=", ">=",
"==", "!=" -> DataType.UBYTE
"<<", ">>" -> leftDt
else -> throw FatalAstException("resulting datatype check for invalid operator $operator")
}
}
companion object {
fun commonDatatype(leftDt: DataType, rightDt: DataType,
left: Expression?, right: Expression?): Pair<DataType, Expression?> {
// byte + byte -> byte
// byte + word -> word
// word + byte -> word
// word + word -> word
// a combination with a float will be float (but give a warning about this!)
return when (leftDt) {
DataType.UBYTE -> {
when (rightDt) {
DataType.UBYTE -> Pair(DataType.UBYTE, null)
DataType.BYTE -> Pair(DataType.BYTE, left)
DataType.UWORD -> Pair(DataType.UWORD, left)
DataType.WORD -> Pair(DataType.WORD, left)
DataType.FLOAT -> Pair(DataType.FLOAT, left)
else -> Pair(leftDt, null) // non-numeric datatype
}
}
DataType.BYTE -> {
when (rightDt) {
DataType.UBYTE -> Pair(DataType.BYTE, right)
DataType.BYTE -> Pair(DataType.BYTE, null)
DataType.UWORD -> Pair(DataType.WORD, left)
DataType.WORD -> Pair(DataType.WORD, left)
DataType.FLOAT -> Pair(DataType.FLOAT, left)
else -> Pair(leftDt, null) // non-numeric datatype
}
}
DataType.UWORD -> {
when (rightDt) {
DataType.UBYTE -> Pair(DataType.UWORD, right)
DataType.BYTE -> Pair(DataType.WORD, right)
DataType.UWORD -> Pair(DataType.UWORD, null)
DataType.WORD -> Pair(DataType.WORD, left)
DataType.FLOAT -> Pair(DataType.FLOAT, left)
else -> Pair(leftDt, null) // non-numeric datatype
}
}
DataType.WORD -> {
when (rightDt) {
DataType.UBYTE -> Pair(DataType.WORD, right)
DataType.BYTE -> Pair(DataType.WORD, right)
DataType.UWORD -> Pair(DataType.WORD, right)
DataType.WORD -> Pair(DataType.WORD, null)
DataType.FLOAT -> Pair(DataType.FLOAT, left)
else -> Pair(leftDt, null) // non-numeric datatype
}
}
DataType.FLOAT -> {
Pair(DataType.FLOAT, right)
}
else -> Pair(leftDt, null) // non-numeric datatype
}
}
}
}
class ArrayIndexedExpression(var identifier: IdentifierReference,
val arrayspec: ArrayIndex,
override val position: Position) : Expression() {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
identifier.linkParents(this)
arrayspec.linkParents(this)
}
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun referencesIdentifiers(vararg name: String) = identifier.referencesIdentifiers(*name)
override fun inferType(program: Program): DataType? {
val target = identifier.targetStatement(program.namespace)
if (target is VarDecl) {
return when (target.datatype) {
in NumericDatatypes -> null
in StringDatatypes -> DataType.UBYTE
in ArrayDatatypes -> ArrayElementTypes[target.datatype]
else -> throw FatalAstException("invalid dt")
}
}
return null
}
override fun toString(): String {
return "ArrayIndexed(ident=$identifier, arraysize=$arrayspec; pos=$position)"
}
}
class TypecastExpression(var expression: Expression, var type: DataType, val implicit: Boolean, override val position: Position) : Expression() {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
expression.linkParents(this)
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun referencesIdentifiers(vararg name: String) = expression.referencesIdentifiers(*name)
override fun inferType(program: Program): DataType? = type
override fun constValue(program: Program): NumericLiteralValue? {
val cv = expression.constValue(program) ?: return null
return cv.cast(type)
// val value = RuntimeValue(cv.type, cv.asNumericValue!!).cast(type)
// return LiteralValue.fromNumber(value.numericValue(), value.type, position).cast(type)
}
override fun toString(): String {
return "Typecast($expression as $type)"
}
}
data class AddressOf(var identifier: IdentifierReference, override val position: Position) : Expression() {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
identifier.parent=this
}
var scopedname: String? = null // will be set in a later state by the compiler // TODO get rid of this??
override fun constValue(program: Program): NumericLiteralValue? = null
override fun referencesIdentifiers(vararg name: String) = false
override fun inferType(program: Program) = DataType.UWORD
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
}
class DirectMemoryRead(var addressExpression: Expression, override val position: Position) : Expression() {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
this.addressExpression.linkParents(this)
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun referencesIdentifiers(vararg name: String) = false
override fun inferType(program: Program): DataType? = DataType.UBYTE
override fun constValue(program: Program): NumericLiteralValue? = null
override fun toString(): String {
return "DirectMemoryRead($addressExpression)"
}
}
class NumericLiteralValue(val type: DataType, // only numerical types allowed
val number: Number, // can be byte, word or float depending on the type
override val position: Position) : Expression() {
override lateinit var parent: Node
companion object {
fun fromBoolean(bool: Boolean, position: Position) =
NumericLiteralValue(DataType.UBYTE, if (bool) 1 else 0, position)
fun optimalNumeric(value: Number, position: Position): NumericLiteralValue {
return if(value is Double) {
NumericLiteralValue(DataType.FLOAT, value, position)
} else {
when (val intval = value.toInt()) {
in 0..255 -> NumericLiteralValue(DataType.UBYTE, intval, position)
in -128..127 -> NumericLiteralValue(DataType.BYTE, intval, position)
in 0..65535 -> NumericLiteralValue(DataType.UWORD, intval, position)
in -32768..32767 -> NumericLiteralValue(DataType.WORD, intval, position)
else -> NumericLiteralValue(DataType.FLOAT, intval.toDouble(), position)
}
}
}
fun optimalInteger(value: Int, position: Position): NumericLiteralValue {
return when (value) {
in 0..255 -> NumericLiteralValue(DataType.UBYTE, value, position)
in -128..127 -> NumericLiteralValue(DataType.BYTE, value, position)
in 0..65535 -> NumericLiteralValue(DataType.UWORD, value, position)
in -32768..32767 -> NumericLiteralValue(DataType.WORD, value, position)
else -> throw FatalAstException("integer overflow: $value")
}
}
}
val asBooleanValue: Boolean = number!=0
override fun linkParents(parent: Node) {
this.parent = parent
}
override fun referencesIdentifiers(vararg name: String) = false
override fun constValue(program: Program) = this
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun toString(): String = "NumericLiteral(${type.name}:$number)"
override fun inferType(program: Program) = type
override fun hashCode(): Int = type.hashCode() * 31 xor number.hashCode()
override fun equals(other: Any?): Boolean {
if(other==null || other !is NumericLiteralValue)
return false
return number.toDouble()==other.number.toDouble()
}
operator fun compareTo(other: NumericLiteralValue): Int = number.toDouble().compareTo(other.number.toDouble())
fun cast(targettype: DataType): NumericLiteralValue? {
if(type==targettype)
return this
val numval = number.toDouble()
when(type) {
DataType.UBYTE -> {
if(targettype== DataType.BYTE && numval <= 127)
return NumericLiteralValue(targettype, number.toShort(), position)
if(targettype== DataType.WORD || targettype== DataType.UWORD)
return NumericLiteralValue(targettype, number.toInt(), position)
if(targettype== DataType.FLOAT)
return NumericLiteralValue(targettype, number.toDouble(), position)
}
DataType.BYTE -> {
if(targettype== DataType.UBYTE && numval >= 0)
return NumericLiteralValue(targettype, number.toShort(), position)
if(targettype== DataType.UWORD && numval >= 0)
return NumericLiteralValue(targettype, number.toInt(), position)
if(targettype== DataType.WORD)
return NumericLiteralValue(targettype, number.toInt(), position)
if(targettype== DataType.FLOAT)
return NumericLiteralValue(targettype, number.toDouble(), position)
}
DataType.UWORD -> {
if(targettype== DataType.BYTE && numval <= 127)
return NumericLiteralValue(targettype, number.toShort(), position)
if(targettype== DataType.UBYTE && numval <= 255)
return NumericLiteralValue(targettype, number.toShort(), position)
if(targettype== DataType.WORD && numval <= 32767)
return NumericLiteralValue(targettype, number.toInt(), position)
if(targettype== DataType.FLOAT)
return NumericLiteralValue(targettype, number.toDouble(), position)
}
DataType.WORD -> {
if(targettype== DataType.BYTE && numval >= -128 && numval <=127)
return NumericLiteralValue(targettype, number.toShort(), position)
if(targettype== DataType.UBYTE && numval >= 0 && numval <= 255)
return NumericLiteralValue(targettype, number.toShort(), position)
if(targettype== DataType.UWORD && numval >=0)
return NumericLiteralValue(targettype, number.toInt(), position)
if(targettype== DataType.FLOAT)
return NumericLiteralValue(targettype, number.toDouble(), position)
}
DataType.FLOAT -> {
if (targettype == DataType.BYTE && numval >= -128 && numval <=127)
return NumericLiteralValue(targettype, number.toShort(), position)
if (targettype == DataType.UBYTE && numval >=0 && numval <= 255)
return NumericLiteralValue(targettype, number.toShort(), position)
if (targettype == DataType.WORD && numval >= -32768 && numval <= 32767)
return NumericLiteralValue(targettype, number.toInt(), position)
if (targettype == DataType.UWORD && numval >=0 && numval <= 65535)
return NumericLiteralValue(targettype, number.toInt(), position)
}
else -> {}
}
return null // invalid type conversion from $this to $targettype
}
}
class StructLiteralValue(var values: List<Expression>,
override val position: Position): Expression() {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent=parent
values.forEach { it.linkParents(this) }
}
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun referencesIdentifiers(vararg name: String) = values.any { it.referencesIdentifiers(*name) }
override fun inferType(program: Program) = DataType.STRUCT
override fun toString(): String {
return "struct{ ${values.joinToString(", ")} }"
}
}
class ReferenceLiteralValue(val type: DataType, // only reference types allowed here
val str: String? = null,
val array: Array<Expression>? = null,
// actually, at the moment, we don't have struct literals in the language
initHeapId: Int? =null,
override val position: Position) : Expression() {
override lateinit var parent: Node
override fun referencesIdentifiers(vararg name: String) = array?.any { it.referencesIdentifiers(*name) } ?: false
val isString = type in StringDatatypes
val isArray = type in ArrayDatatypes
var heapId = initHeapId
private set
init {
when(type){
in StringDatatypes ->
if(str==null) throw FatalAstException("literal value missing strvalue/heapId")
in ArrayDatatypes ->
if(array==null) throw FatalAstException("literal value missing arrayvalue/heapId")
else -> throw FatalAstException("invalid type $type")
}
if(array==null && str==null)
throw FatalAstException("literal ref value without actual value")
}
override fun linkParents(parent: Node) {
this.parent = parent
array?.forEach {it.linkParents(this)}
}
override fun constValue(program: Program): NumericLiteralValue? {
// note that we can't handle arrays that only contain constant numbers here anymore
// so they're not treated as constants anymore
return null
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun toString(): String {
val valueStr = when(type) {
in StringDatatypes -> "'${escape(str!!)}'"
in ArrayDatatypes -> "$array"
else -> throw FatalAstException("weird ref type")
}
return "RefValueLit($type, $valueStr)"
}
override fun inferType(program: Program) = type
override fun hashCode(): Int {
val sh = str?.hashCode() ?: 0x00014567
val ah = array?.hashCode() ?: 0x11119876
return sh * 31 xor ah xor type.hashCode()
}
override fun equals(other: Any?): Boolean {
if(other==null || other !is ReferenceLiteralValue)
return false
if(isArray && other.isArray)
return array!!.contentEquals(other.array!!) && heapId==other.heapId
if(isString && other.isString)
return str==other.str && heapId==other.heapId
if(type!=other.type)
return false
return compareTo(other) == 0
}
operator fun compareTo(other: ReferenceLiteralValue): Int {
throw ExpressionError("cannot order compare type $type with ${other.type}", other.position)
}
fun cast(targettype: DataType): ReferenceLiteralValue? {
if(type==targettype)
return this
when(type) {
in StringDatatypes -> {
if(targettype in StringDatatypes)
return ReferenceLiteralValue(targettype, str, position = position)
}
in ArrayDatatypes -> {
if(targettype in ArrayDatatypes) {
val elementType = ArrayElementTypes.getValue(targettype)
val castArray = array!!.map{
val num = it as? NumericLiteralValue
if(num==null) {
// an array of UWORDs could possibly also contain AddressOfs
if (elementType != DataType.UWORD || it !is AddressOf)
throw FatalAstException("weird array element $it")
it
} else {
num.cast(elementType)!!
}
}.toTypedArray()
return ReferenceLiteralValue(targettype, null, array=castArray, position = position)
}
}
else -> {}
}
return null // invalid type conversion from $this to $targettype
}
fun addToHeap(heap: HeapValues) {
if (heapId != null) return
if (str != null) {
heapId = heap.addString(type, str)
}
else if (array!=null) {
if(array.any {it is AddressOf }) {
val intArrayWithAddressOfs = array.map {
when (it) {
is AddressOf -> IntegerOrAddressOf(null, it)
is NumericLiteralValue -> IntegerOrAddressOf(it.number.toInt(), null)
else -> throw FatalAstException("invalid datatype in array")
}
}
heapId = heap.addIntegerArray(type, intArrayWithAddressOfs.toTypedArray())
} else {
val valuesInArray = array.map { (it as? NumericLiteralValue)?.number }
if(null !in valuesInArray) {
heapId = if (type == DataType.ARRAY_F) {
val doubleArray = valuesInArray.map { it!!.toDouble() }.toDoubleArray()
heap.addDoublesArray(doubleArray)
} else {
val integerArray = valuesInArray.map { it!!.toInt() }
heap.addIntegerArray(type, integerArray.map { IntegerOrAddressOf(it, null) }.toTypedArray())
}
}
}
}
}
}
class RangeExpr(var from: Expression,
var to: Expression,
var step: Expression,
override val position: Position) : Expression() {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
from.linkParents(this)
to.linkParents(this)
step.linkParents(this)
}
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun referencesIdentifiers(vararg name: String): Boolean = from.referencesIdentifiers(*name) || to.referencesIdentifiers(*name)
override fun inferType(program: Program): DataType? {
val fromDt=from.inferType(program)
val toDt=to.inferType(program)
return when {
fromDt==null || toDt==null -> null
fromDt== DataType.UBYTE && toDt== DataType.UBYTE -> DataType.ARRAY_UB
fromDt== DataType.UWORD && toDt== DataType.UWORD -> DataType.ARRAY_UW
fromDt== DataType.STR && toDt== DataType.STR -> DataType.STR
fromDt== DataType.STR_S && toDt== DataType.STR_S -> DataType.STR_S
fromDt== DataType.WORD || toDt== DataType.WORD -> DataType.ARRAY_W
fromDt== DataType.BYTE || toDt== DataType.BYTE -> DataType.ARRAY_B
else -> DataType.ARRAY_UB
}
}
override fun toString(): String {
return "RangeExpr(from $from, to $to, step $step, pos=$position)"
}
fun size(): Int? {
val fromLv = (from as? NumericLiteralValue)
val toLv = (to as? NumericLiteralValue)
if(fromLv==null || toLv==null)
return null
return toConstantIntegerRange()?.count()
}
fun toConstantIntegerRange(): IntProgression? {
val fromVal: Int
val toVal: Int
val fromRlv = from as? ReferenceLiteralValue
val toRlv = to as? ReferenceLiteralValue
if(fromRlv!=null && fromRlv.isString && toRlv!=null && toRlv.isString) {
// string range -> int range over petscii values
fromVal = Petscii.encodePetscii(fromRlv.str!!, true)[0].toInt()
toVal = Petscii.encodePetscii(toRlv.str!!, true)[0].toInt()
} else {
val fromLv = from as? NumericLiteralValue
val toLv = to as? NumericLiteralValue
if(fromLv==null || toLv==null)
return null // non-constant range
// integer range
fromVal = fromLv.number.toInt()
toVal = toLv.number.toInt()
}
val stepVal = (step as? NumericLiteralValue)?.number?.toInt() ?: 1
return when {
fromVal <= toVal -> when {
stepVal <= 0 -> IntRange.EMPTY
stepVal == 1 -> fromVal..toVal
else -> fromVal..toVal step stepVal
}
else -> when {
stepVal >= 0 -> IntRange.EMPTY
stepVal == -1 -> fromVal downTo toVal
else -> fromVal downTo toVal step abs(stepVal)
}
}
}
}
class RegisterExpr(val register: Register, override val position: Position) : Expression() {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
}
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun referencesIdentifiers(vararg name: String): Boolean = register.name in name
override fun toString(): String {
return "RegisterExpr(register=$register, pos=$position)"
}
override fun inferType(program: Program) = DataType.UBYTE
}
data class IdentifierReference(val nameInSource: List<String>, override val position: Position) : Expression() {
override lateinit var parent: Node
fun targetStatement(namespace: INameScope) =
if(nameInSource.size==1 && nameInSource[0] in BuiltinFunctions)
BuiltinFunctionStatementPlaceholder(nameInSource[0], position)
else
namespace.lookup(nameInSource, this)
fun targetVarDecl(namespace: INameScope): VarDecl? = targetStatement(namespace) as? VarDecl
fun targetSubroutine(namespace: INameScope): Subroutine? = targetStatement(namespace) as? Subroutine
override fun linkParents(parent: Node) {
this.parent = parent
}
override fun constValue(program: Program): NumericLiteralValue? {
val node = program.namespace.lookup(nameInSource, this)
?: throw UndefinedSymbolError(this)
val vardecl = node as? VarDecl
if(vardecl==null) {
return null
} else if(vardecl.type!= VarDeclType.CONST) {
return null
}
return vardecl.value?.constValue(program)
}
override fun toString(): String {
return "IdentifierRef($nameInSource)"
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun referencesIdentifiers(vararg name: String): Boolean = nameInSource.last() in name // @todo is this correct all the time?
override fun inferType(program: Program): DataType? {
val targetStmt = targetStatement(program.namespace)
if(targetStmt is VarDecl) {
return targetStmt.datatype
} else {
throw FatalAstException("cannot get datatype from identifier reference ${this}, pos=$position")
}
}
fun memberOfStruct(namespace: INameScope) = this.targetVarDecl(namespace)?.struct
fun heapId(namespace: INameScope): Int {
val node = namespace.lookup(nameInSource, this) ?: throw UndefinedSymbolError(this)
val value = (node as? VarDecl)?.value ?: throw FatalAstException("requires a reference value")
return when (value) {
is IdentifierReference -> value.heapId(namespace)
is ReferenceLiteralValue -> value.heapId ?: throw FatalAstException("refLv is not on the heap: $value")
else -> throw FatalAstException("requires a reference value")
}
}
fun withPrefixedName(nameprefix: String): IdentifierReference {
val prefixed = nameInSource.dropLast(1) + listOf(nameprefix+nameInSource.last())
val new = IdentifierReference(prefixed, position)
new.parent = parent
return new
}
}
class FunctionCall(override var target: IdentifierReference,
override var arglist: MutableList<Expression>,
override val position: Position) : Expression(), IFunctionCall {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
target.linkParents(this)
arglist.forEach { it.linkParents(this) }
}
override fun constValue(program: Program) = constValue(program, true)
private fun constValue(program: Program, withDatatypeCheck: Boolean): NumericLiteralValue? {
// if the function is a built-in function and the args are consts, should try to const-evaluate!
// lenghts of arrays and strings are constants that are determined at compile time!
if(target.nameInSource.size>1) return null
try {
var resultValue: NumericLiteralValue? = null
val func = BuiltinFunctions[target.nameInSource[0]]
if(func!=null) {
val exprfunc = func.constExpressionFunc
if(exprfunc!=null)
resultValue = exprfunc(arglist, position, program)
else if(func.returntype==null)
throw ExpressionError("builtin function ${target.nameInSource[0]} can't be used here because it doesn't return a value", position)
}
if(withDatatypeCheck) {
val resultDt = this.inferType(program)
if(resultValue==null || resultDt == resultValue.type)
return resultValue
throw FatalAstException("evaluated const expression result value doesn't match expected datatype $resultDt, pos=$position")
} else {
return resultValue
}
}
catch(x: NotConstArgumentException) {
// const-evaluating the builtin function call failed.
return null
}
}
override fun toString(): String {
return "FunctionCall(target=$target, pos=$position)"
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun referencesIdentifiers(vararg name: String): Boolean = target.referencesIdentifiers(*name) || arglist.any{it.referencesIdentifiers(*name)}
override fun inferType(program: Program): DataType? {
val constVal = constValue(program ,false)
if(constVal!=null)
return constVal.type
val stmt = target.targetStatement(program.namespace) ?: return null
when (stmt) {
is BuiltinFunctionStatementPlaceholder -> {
if(target.nameInSource[0] == "set_carry" || target.nameInSource[0]=="set_irqd" ||
target.nameInSource[0] == "clear_carry" || target.nameInSource[0]=="clear_irqd") {
return null // these have no return value
}
return builtinFunctionReturnType(target.nameInSource[0], this.arglist, program)
}
is Subroutine -> {
if(stmt.returntypes.isEmpty())
return null // no return value
if(stmt.returntypes.size==1)
return stmt.returntypes[0]
return null // has multiple return types... so not a single resulting datatype possible
}
else -> return null
}
}
}

View File

@ -0,0 +1,395 @@
package prog8.ast.processing
import prog8.ast.INameScope
import prog8.ast.Module
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.*
import prog8.compiler.HeapValues
import prog8.compiler.target.c64.AssemblyProgram
import prog8.functions.BuiltinFunctions
internal class AstIdentifiersChecker(private val program: Program) : IAstModifyingVisitor {
private val checkResult: MutableList<AstException> = mutableListOf()
private var blocks = mutableMapOf<String, Block>()
private val vardeclsToAdd = mutableMapOf<INameScope, MutableList<VarDecl>>()
internal fun result(): List<AstException> {
return checkResult
}
private fun nameError(name: String, position: Position, existing: Statement) {
checkResult.add(NameError("name conflict '$name', also defined in ${existing.position.file} line ${existing.position.line}", position))
}
override fun visit(module: Module) {
vardeclsToAdd.clear()
blocks.clear() // blocks may be redefined within a different module
super.visit(module)
// add any new vardecls to the various scopes
for((where, decls) in vardeclsToAdd) {
where.statements.addAll(0, decls)
decls.forEach { it.linkParents(where as Node) }
}
}
override fun visit(block: Block): Statement {
val existing = blocks[block.name]
if(existing!=null)
nameError(block.name, block.position, existing)
else
blocks[block.name] = block
return super.visit(block)
}
override fun visit(functionCall: FunctionCall): Expression {
if(functionCall.target.nameInSource.size==1 && functionCall.target.nameInSource[0]=="lsb") {
// lsb(...) is just an alias for type cast to ubyte, so replace with "... as ubyte"
val typecast = TypecastExpression(functionCall.arglist.single(), DataType.UBYTE, false, functionCall.position)
typecast.linkParents(functionCall.parent)
return super.visit(typecast)
}
return super.visit(functionCall)
}
override fun visit(decl: VarDecl): Statement {
// first, check if there are datatype errors on the vardecl
decl.datatypeErrors.forEach { checkResult.add(it) }
// now check the identifier
if(decl.name in BuiltinFunctions)
// the builtin functions can't be redefined
checkResult.add(NameError("builtin function cannot be redefined", decl.position))
if(decl.name in AssemblyProgram.opcodeNames)
checkResult.add(NameError("can't use a cpu opcode name as a symbol", decl.position))
// is it a struct variable? then define all its struct members as mangled names,
// and include the original decl as well.
if(decl.datatype==DataType.STRUCT) {
if(decl.structHasBeenFlattened)
return super.visit(decl) // don't do this multiple times
if(decl.struct==null) {
checkResult.add(NameError("undefined struct type", decl.position))
return super.visit(decl)
}
if(decl.struct!!.statements.any { (it as VarDecl).datatype !in NumericDatatypes})
return super.visit(decl) // a non-numeric member, not supported. proper error is given by AstChecker later
if(decl.value is NumericLiteralValue) {
checkResult.add(ExpressionError("you cannot initialize a struct using a single value", decl.position))
return super.visit(decl)
}
val decls = decl.flattenStructMembers()
decls.add(decl)
val result = AnonymousScope(decls, decl.position)
result.linkParents(decl.parent)
return result
}
val existing = program.namespace.lookup(listOf(decl.name), decl)
if (existing != null && existing !== decl)
nameError(decl.name, decl.position, existing)
return super.visit(decl)
}
override fun visit(subroutine: Subroutine): Statement {
if(subroutine.name in AssemblyProgram.opcodeNames) {
checkResult.add(NameError("can't use a cpu opcode name as a symbol", subroutine.position))
} else if(subroutine.name in BuiltinFunctions) {
// the builtin functions can't be redefined
checkResult.add(NameError("builtin function cannot be redefined", subroutine.position))
} else {
// already reported elsewhere:
// if (subroutine.parameters.any { it.name in BuiltinFunctions })
// checkResult.add(NameError("builtin function name cannot be used as parameter", subroutine.position))
val existing = program.namespace.lookup(listOf(subroutine.name), subroutine)
if (existing != null && existing !== subroutine)
nameError(subroutine.name, subroutine.position, existing)
// does the parameter redefine a variable declared elsewhere?
for(param in subroutine.parameters) {
val existingVar = subroutine.lookup(listOf(param.name), subroutine)
if (existingVar != null && existingVar.parent !== subroutine) {
nameError(param.name, param.position, existingVar)
}
}
// check that there are no local variables, labels, or other subs that redefine the subroutine's parameters
val symbolsInSub = subroutine.allDefinedSymbols()
val namesInSub = symbolsInSub.map{ it.first }.toSet()
val paramNames = subroutine.parameters.map { it.name }.toSet()
val paramsToCheck = paramNames.intersect(namesInSub)
for(name in paramsToCheck) {
val labelOrVar = subroutine.getLabelOrVariable(name)
if(labelOrVar!=null && labelOrVar.position != subroutine.position)
nameError(name, labelOrVar.position, subroutine)
val sub = subroutine.statements.singleOrNull { it is Subroutine && it.name==name}
if(sub!=null)
nameError(name, sub.position, subroutine)
}
// inject subroutine params as local variables (if they're not there yet) (for non-kernel subroutines and non-asm parameters)
// NOTE:
// - numeric types BYTE and WORD and FLOAT are passed by value;
// - strings, arrays, matrices are passed by reference (their 16-bit address is passed as an uword parameter)
// - do NOT do this is the statement can be transformed into an asm subroutine later!
if(subroutine.asmAddress==null && !subroutine.canBeAsmSubroutine) {
if(subroutine.asmParameterRegisters.isEmpty()) {
subroutine.parameters
.filter { it.name !in namesInSub }
.forEach {
val vardecl = VarDecl(VarDeclType.VAR, it.type, ZeropageWish.NOT_IN_ZEROPAGE, null, it.name, null, null,
isArray = false, autogeneratedDontRemove = true, position = subroutine.position)
vardecl.linkParents(subroutine)
subroutine.statements.add(0, vardecl)
}
}
}
}
return super.visit(subroutine)
}
override fun visit(label: Label): Statement {
if(label.name in AssemblyProgram.opcodeNames)
checkResult.add(NameError("can't use a cpu opcode name as a symbol", label.position))
if(label.name in BuiltinFunctions) {
// the builtin functions can't be redefined
checkResult.add(NameError("builtin function cannot be redefined", label.position))
} else {
val existing = program.namespace.lookup(listOf(label.name), label)
if (existing != null && existing !== label)
nameError(label.name, label.position, existing)
}
return super.visit(label)
}
override fun visit(forLoop: ForLoop): Statement {
// If the for loop has a decltype, it means to declare the loopvar inside the loop body
// rather than reusing an already declared loopvar from an outer scope.
// For loops that loop over an interable variable (instead of a range of numbers) get an
// additional interation count variable in their scope.
if(forLoop.loopRegister!=null) {
if(forLoop.decltype!=null)
checkResult.add(SyntaxError("register loop variables have a fixed implicit datatype", forLoop.position))
if(forLoop.loopRegister == Register.X)
printWarning("writing to the X register is dangerous, because it's used as an internal pointer", forLoop.position)
} else {
val loopVar = forLoop.loopVar
if (loopVar != null) {
val varName = loopVar.nameInSource.last()
if (forLoop.decltype != null) {
val existing = if (forLoop.body.containsNoCodeNorVars()) null else forLoop.body.lookup(loopVar.nameInSource, forLoop.body.statements.first())
if (existing == null) {
// create the local scoped for loop variable itself
val vardecl = VarDecl(VarDeclType.VAR, forLoop.decltype, forLoop.zeropage, null, varName, null, null,
isArray = false, autogeneratedDontRemove = true, position = loopVar.position)
vardecl.linkParents(forLoop.body)
forLoop.body.statements.add(0, vardecl)
loopVar.parent = forLoop.body // loopvar 'is defined in the body'
} else if(existing.parent!==forLoop && existing.parent.parent!==forLoop) {
checkResult.add(NameError("for loop var was already defined at ${existing.position}", loopVar.position))
}
}
val validName = forLoop.body.name.replace("<", "").replace(">", "").replace("-", "")
val loopvarName = "prog8_loopvar_$validName"
if (forLoop.iterable !is RangeExpr) {
val existing = if (forLoop.body.containsNoCodeNorVars()) null else forLoop.body.lookup(listOf(loopvarName), forLoop.body.statements.first())
if (existing == null) {
// create loop iteration counter variable (without value, to avoid an assignment)
val vardecl = VarDecl(VarDeclType.VAR, DataType.UBYTE, ZeropageWish.PREFER_ZEROPAGE, null, loopvarName, null, null,
isArray = false, autogeneratedDontRemove = true, position = loopVar.position)
vardecl.linkParents(forLoop.body)
forLoop.body.statements.add(0, vardecl)
loopVar.parent = forLoop.body // loopvar 'is defined in the body'
}
}
}
}
return super.visit(forLoop)
}
override fun visit(assignTarget: AssignTarget): AssignTarget {
if(assignTarget.register== Register.X)
printWarning("writing to the X register is dangerous, because it's used as an internal pointer", assignTarget.position)
return super.visit(assignTarget)
}
override fun visit(returnStmt: Return): Statement {
if(returnStmt.value!=null) {
// possibly adjust any literal values returned, into the desired returning data type
val subroutine = returnStmt.definingSubroutine()!!
if(subroutine.returntypes.size!=1)
return returnStmt // mismatch in number of return values, error will be printed later.
val newValue: Expression
val lval = returnStmt.value as? NumericLiteralValue
if(lval!=null) {
val adjusted = lval.cast(subroutine.returntypes.single())
newValue = if(adjusted!=null && adjusted !== lval) adjusted else lval
} else {
newValue = returnStmt.value!!
}
returnStmt.value = newValue
}
return super.visit(returnStmt)
}
override fun visit(refLiteral: ReferenceLiteralValue): Expression {
val litval = super.visit(refLiteral)
if(litval is ReferenceLiteralValue) {
val vardecl = litval.parent as? VarDecl
if (litval.isString) {
// intern the string; move it into the heap
if (litval.str!!.length !in 1..255)
checkResult.add(ExpressionError("string literal length must be between 1 and 255", litval.position))
else {
litval.addToHeap(program.heap)
}
return if(vardecl!=null)
litval
else
makeIdentifierFromRefLv(litval) // replace the literal string by a identifier reference.
} else if (litval.isArray) {
if (vardecl!=null) {
return fixupArrayDatatype(litval, vardecl, program.heap)
} else {
// fix the datatype of the array (also on the heap) to the 'biggest' datatype in the array
// (we don't know the desired datatype here exactly so we guess)
val datatype = determineArrayDt(litval.array!!) ?: return litval
val litval2 = litval.cast(datatype)!!
litval2.parent = litval.parent
// finally, replace the literal array by a identifier reference.
return makeIdentifierFromRefLv(litval2)
}
}
}
return litval
}
private fun determineArrayDt(array: Array<Expression>): DataType? {
val datatypesInArray = array.mapNotNull { it.inferType(program) }
if(datatypesInArray.isEmpty())
return null
if(DataType.FLOAT in datatypesInArray)
return DataType.ARRAY_F
if(DataType.WORD in datatypesInArray)
return DataType.ARRAY_W
if(DataType.UWORD in datatypesInArray)
return DataType.ARRAY_UW
if(DataType.BYTE in datatypesInArray)
return DataType.ARRAY_B
if(DataType.UBYTE in datatypesInArray)
return DataType.ARRAY_UB
return null
}
private fun makeIdentifierFromRefLv(refLiteral: ReferenceLiteralValue): IdentifierReference {
// a referencetype literal value that's not declared as a variable
// we need to introduce an auto-generated variable for this to be able to refer to the value
// note: if the var references the same literal value, it is not yet de-duplicated here.
refLiteral.addToHeap(program.heap)
val scope = refLiteral.definingScope()
var variable = VarDecl.createAuto(refLiteral, program.heap)
val existing = scope.lookup(listOf(variable.name), refLiteral)
variable = addVarDecl(scope, variable)
// replace the reference literal by a identifier reference
val identifier = IdentifierReference(listOf(variable.name), variable.position)
identifier.parent = refLiteral.parent
return identifier
}
override fun visit(addressOf: AddressOf): Expression {
// register the scoped name of the referenced identifier
val variable= addressOf.identifier.targetVarDecl(program.namespace) ?: return addressOf
addressOf.scopedname = variable.scopedname
return super.visit(addressOf)
}
override fun visit(structDecl: StructDecl): Statement {
for(member in structDecl.statements){
val decl = member as? VarDecl
if(decl!=null && decl.datatype !in NumericDatatypes)
checkResult.add(SyntaxError("structs can only contain numerical types", decl.position))
}
return super.visit(structDecl)
}
override fun visit(expr: BinaryExpression): Expression {
return when {
expr.left is ReferenceLiteralValue ->
processBinaryExprWithReferenceVal(expr.left as ReferenceLiteralValue, expr.right, expr)
expr.right is ReferenceLiteralValue ->
processBinaryExprWithReferenceVal(expr.right as ReferenceLiteralValue, expr.left, expr)
else -> super.visit(expr)
}
}
private fun processBinaryExprWithReferenceVal(refLv: ReferenceLiteralValue, operand: Expression, expr: BinaryExpression): Expression {
// expressions on strings or arrays
if(refLv.isString) {
val constvalue = operand.constValue(program)
if(constvalue!=null) {
if (expr.operator == "*") {
// repeat a string a number of times
return ReferenceLiteralValue(refLv.inferType(program),
refLv.str!!.repeat(constvalue.number.toInt()), null, null, expr.position)
}
}
if(expr.operator == "+" && operand is ReferenceLiteralValue) {
if (operand.isString) {
// concatenate two strings
return ReferenceLiteralValue(refLv.inferType(program),
"${refLv.str}${operand.str}", null, null, expr.position)
}
}
}
return expr
}
private fun addVarDecl(scope: INameScope, variable: VarDecl): VarDecl {
if(scope !in vardeclsToAdd)
vardeclsToAdd[scope] = mutableListOf()
val declList = vardeclsToAdd.getValue(scope)
val existing = declList.singleOrNull { it.name==variable.name }
return if(existing!=null) {
existing
} else {
declList.add(variable)
variable
}
}
}
internal fun fixupArrayDatatype(array: ReferenceLiteralValue, vardecl: VarDecl, heap: HeapValues): ReferenceLiteralValue {
if(array.heapId!=null) {
val arrayDt = array.type
if(arrayDt!=vardecl.datatype) {
// fix the datatype of the array (also on the heap) to match the vardecl
val litval2 = array.cast(vardecl.datatype)!!
vardecl.value = litval2
litval2.linkParents(vardecl)
litval2.addToHeap(heap) // TODO is the previous array discarded from the resulting asm code?
return litval2
}
} else {
array.addToHeap(heap)
}
return array
}

View File

@ -0,0 +1,117 @@
package prog8.ast.processing
import prog8.ast.INameScope
import prog8.ast.base.AstException
import prog8.ast.expressions.FunctionCall
import prog8.ast.statements.FunctionCallStatement
import prog8.ast.statements.Subroutine
internal class AstRecursionChecker(private val namespace: INameScope) : IAstVisitor {
private val callGraph = DirectedGraph<INameScope>()
internal fun result(): List<AstException> {
val cycle = callGraph.checkForCycle()
if(cycle.isEmpty())
return emptyList()
val chain = cycle.joinToString(" <-- ") { "${it.name} at ${it.position}" }
return listOf(AstException("Program contains recursive subroutine calls, this is not supported. Recursive chain:\n (a subroutine call in) $chain"))
}
override fun visit(functionCallStatement: FunctionCallStatement) {
val scope = functionCallStatement.definingScope()
val targetStatement = functionCallStatement.target.targetStatement(namespace)
if(targetStatement!=null) {
val targetScope = when (targetStatement) {
is Subroutine -> targetStatement
else -> targetStatement.definingScope()
}
callGraph.add(scope, targetScope)
}
super.visit(functionCallStatement)
}
override fun visit(functionCall: FunctionCall) {
val scope = functionCall.definingScope()
val targetStatement = functionCall.target.targetStatement(namespace)
if(targetStatement!=null) {
val targetScope = when (targetStatement) {
is Subroutine -> targetStatement
else -> targetStatement.definingScope()
}
callGraph.add(scope, targetScope)
}
super.visit(functionCall)
}
private class DirectedGraph<VT> {
private val graph = mutableMapOf<VT, MutableSet<VT>>()
private var uniqueVertices = mutableSetOf<VT>()
val numVertices : Int
get() = uniqueVertices.size
fun add(from: VT, to: VT) {
var targets = graph[from]
if(targets==null) {
targets = mutableSetOf()
graph[from] = targets
}
targets.add(to)
uniqueVertices.add(from)
uniqueVertices.add(to)
}
fun print() {
println("#vertices: $numVertices")
graph.forEach { (from, to) ->
println("$from CALLS:")
to.forEach { println(" $it") }
}
val cycle = checkForCycle()
if(cycle.isNotEmpty()) {
println("CYCLIC! $cycle")
}
}
fun checkForCycle(): MutableList<VT> {
val visited = uniqueVertices.associateWith { false }.toMutableMap()
val recStack = uniqueVertices.associateWith { false }.toMutableMap()
val cycle = mutableListOf<VT>()
for(node in uniqueVertices) {
if(isCyclicUntil(node, visited, recStack, cycle))
return cycle
}
return mutableListOf()
}
private fun isCyclicUntil(node: VT,
visited: MutableMap<VT, Boolean>,
recStack: MutableMap<VT, Boolean>,
cycleNodes: MutableList<VT>): Boolean {
if(recStack[node]==true) return true
if(visited[node]==true) return false
// mark current node as visited and add to recursion stack
visited[node] = true
recStack[node] = true
// recurse for all neighbours
val neighbors = graph[node]
if(neighbors!=null) {
for (neighbour in neighbors) {
if (isCyclicUntil(neighbour, visited, recStack, cycleNodes)) {
cycleNodes.add(node)
return true
}
}
}
// pop node from recursion stack
recStack[node] = false
return false
}
}
}

View File

@ -0,0 +1,261 @@
package prog8.ast.processing
import prog8.ast.Module
import prog8.ast.Program
import prog8.ast.base.FatalAstException
import prog8.ast.expressions.*
import prog8.ast.statements.*
interface IAstModifyingVisitor {
fun visit(program: Program) {
program.modules.forEach { visit(it) }
}
fun visit(module: Module) {
module.statements = module.statements.map { it.accept(this) }.toMutableList()
}
fun visit(expr: PrefixExpression): Expression {
expr.expression = expr.expression.accept(this)
return expr
}
fun visit(expr: BinaryExpression): Expression {
expr.left = expr.left.accept(this)
expr.right = expr.right.accept(this)
return expr
}
fun visit(directive: Directive): Statement {
return directive
}
fun visit(block: Block): Statement {
block.statements = block.statements.map { it.accept(this) }.toMutableList()
return block
}
fun visit(decl: VarDecl): Statement {
decl.value = decl.value?.accept(this)
decl.arraysize?.accept(this)
return decl
}
fun visit(subroutine: Subroutine): Statement {
subroutine.statements = subroutine.statements.map { it.accept(this) }.toMutableList()
return subroutine
}
fun visit(functionCall: FunctionCall): Expression {
val newtarget = functionCall.target.accept(this)
if(newtarget is IdentifierReference)
functionCall.target = newtarget
else
throw FatalAstException("cannot change class of function call target")
functionCall.arglist = functionCall.arglist.map { it.accept(this) }.toMutableList()
return functionCall
}
fun visit(functionCallStatement: FunctionCallStatement): Statement {
val newtarget = functionCallStatement.target.accept(this)
if(newtarget is IdentifierReference)
functionCallStatement.target = newtarget
else
throw FatalAstException("cannot change class of function call target")
functionCallStatement.arglist = functionCallStatement.arglist.map { it.accept(this) }.toMutableList()
return functionCallStatement
}
fun visit(identifier: IdentifierReference): Expression {
// note: this is an identifier that is used in an expression.
// other identifiers are simply part of the other statements (such as jumps, subroutine defs etc)
return identifier
}
fun visit(jump: Jump): Statement {
if(jump.identifier!=null) {
val ident = jump.identifier.accept(this)
if(ident is IdentifierReference && ident!==jump.identifier) {
return Jump(null, ident, null, jump.position)
}
}
return jump
}
fun visit(ifStatement: IfStatement): Statement {
ifStatement.condition = ifStatement.condition.accept(this)
ifStatement.truepart = ifStatement.truepart.accept(this) as AnonymousScope
ifStatement.elsepart = ifStatement.elsepart.accept(this) as AnonymousScope
return ifStatement
}
fun visit(branchStatement: BranchStatement): Statement {
branchStatement.truepart = branchStatement.truepart.accept(this) as AnonymousScope
branchStatement.elsepart = branchStatement.elsepart.accept(this) as AnonymousScope
return branchStatement
}
fun visit(range: RangeExpr): Expression {
range.from = range.from.accept(this)
range.to = range.to.accept(this)
range.step = range.step.accept(this)
return range
}
fun visit(label: Label): Statement {
return label
}
fun visit(literalValue: NumericLiteralValue): NumericLiteralValue {
return literalValue
}
fun visit(refLiteral: ReferenceLiteralValue): Expression {
if(refLiteral.array!=null) {
for(av in refLiteral.array.withIndex()) {
val newvalue = av.value.accept(this)
refLiteral.array[av.index] = newvalue
}
}
return refLiteral
}
fun visit(assignment: Assignment): Statement {
assignment.target = assignment.target.accept(this)
assignment.value = assignment.value.accept(this)
return assignment
}
fun visit(postIncrDecr: PostIncrDecr): Statement {
postIncrDecr.target = postIncrDecr.target.accept(this)
return postIncrDecr
}
fun visit(contStmt: Continue): Statement {
return contStmt
}
fun visit(breakStmt: Break): Statement {
return breakStmt
}
fun visit(forLoop: ForLoop): Statement {
val newloopvar = forLoop.loopVar?.accept(this)
when(newloopvar) {
is IdentifierReference -> forLoop.loopVar = newloopvar
null -> forLoop.loopVar = null
else -> throw FatalAstException("can't change class of loopvar")
}
forLoop.iterable = forLoop.iterable.accept(this)
forLoop.body = forLoop.body.accept(this) as AnonymousScope
return forLoop
}
fun visit(whileLoop: WhileLoop): Statement {
whileLoop.condition = whileLoop.condition.accept(this)
whileLoop.body = whileLoop.body.accept(this) as AnonymousScope
return whileLoop
}
fun visit(repeatLoop: RepeatLoop): Statement {
repeatLoop.untilCondition = repeatLoop.untilCondition.accept(this)
repeatLoop.body = repeatLoop.body.accept(this) as AnonymousScope
return repeatLoop
}
fun visit(returnStmt: Return): Statement {
returnStmt.value = returnStmt.value?.accept(this)
return returnStmt
}
fun visit(arrayIndexedExpression: ArrayIndexedExpression): ArrayIndexedExpression {
val ident = arrayIndexedExpression.identifier.accept(this)
if(ident is IdentifierReference)
arrayIndexedExpression.identifier = ident
arrayIndexedExpression.arrayspec.accept(this)
return arrayIndexedExpression
}
fun visit(assignTarget: AssignTarget): AssignTarget {
val ident = assignTarget.identifier?.accept(this)
when (ident) {
is IdentifierReference -> assignTarget.identifier = ident
null -> assignTarget.identifier = null
else -> throw FatalAstException("can't change class of assign target identifier")
}
assignTarget.arrayindexed = assignTarget.arrayindexed?.accept(this)
assignTarget.memoryAddress?.let { visit(it) }
return assignTarget
}
fun visit(scope: AnonymousScope): Statement {
scope.statements = scope.statements.map { it.accept(this) }.toMutableList()
return scope
}
fun visit(typecast: TypecastExpression): Expression {
typecast.expression = typecast.expression.accept(this)
return typecast
}
fun visit(memread: DirectMemoryRead): Expression {
memread.addressExpression = memread.addressExpression.accept(this)
return memread
}
fun visit(memwrite: DirectMemoryWrite) {
memwrite.addressExpression = memwrite.addressExpression.accept(this)
}
fun visit(addressOf: AddressOf): Expression {
val ident = addressOf.identifier.accept(this)
if(ident is IdentifierReference)
addressOf.identifier = ident
else
throw FatalAstException("can't change class of addressof identifier")
return addressOf
}
fun visit(inlineAssembly: InlineAssembly): Statement {
return inlineAssembly
}
fun visit(registerExpr: RegisterExpr): Expression {
return registerExpr
}
fun visit(builtinFunctionStatementPlaceholder: BuiltinFunctionStatementPlaceholder): Statement {
return builtinFunctionStatementPlaceholder
}
fun visit(nopStatement: NopStatement): Statement {
return nopStatement
}
fun visit(whenStatement: WhenStatement): Statement {
whenStatement.condition = whenStatement.condition.accept(this)
whenStatement.choices.forEach { it.accept(this) }
return whenStatement
}
fun visit(whenChoice: WhenChoice) {
whenChoice.values = whenChoice.values?.map { it.accept(this) }
val stmt = whenChoice.statements.accept(this)
if(stmt is AnonymousScope)
whenChoice.statements = stmt
else {
whenChoice.statements = AnonymousScope(mutableListOf(stmt), stmt.position)
whenChoice.statements.linkParents(whenChoice)
}
}
fun visit(structDecl: StructDecl): Statement {
structDecl.statements = structDecl.statements.map{ it.accept(this) }.toMutableList()
return structDecl
}
fun visit(structLv: StructLiteralValue): Expression {
structLv.values = structLv.values.map { it.accept(this) }
return structLv
}
}

View File

@ -0,0 +1,181 @@
package prog8.ast.processing
import prog8.ast.Module
import prog8.ast.Program
import prog8.ast.expressions.*
import prog8.ast.statements.*
interface IAstVisitor {
fun visit(program: Program) {
program.modules.forEach { visit(it) }
}
fun visit(module: Module) {
module.statements.forEach{ it.accept(this) }
}
fun visit(expr: PrefixExpression) {
expr.expression.accept(this)
}
fun visit(expr: BinaryExpression) {
expr.left.accept(this)
expr.right.accept(this)
}
fun visit(directive: Directive) {
}
fun visit(block: Block) {
block.statements.forEach { it.accept(this) }
}
fun visit(decl: VarDecl) {
decl.value?.accept(this)
decl.arraysize?.accept(this)
}
fun visit(subroutine: Subroutine) {
subroutine.statements.forEach { it.accept(this) }
}
fun visit(functionCall: FunctionCall) {
functionCall.target.accept(this)
functionCall.arglist.forEach { it.accept(this) }
}
fun visit(functionCallStatement: FunctionCallStatement) {
functionCallStatement.target.accept(this)
functionCallStatement.arglist.forEach { it.accept(this) }
}
fun visit(identifier: IdentifierReference) {
}
fun visit(jump: Jump) {
jump.identifier?.accept(this)
}
fun visit(ifStatement: IfStatement) {
ifStatement.condition.accept(this)
ifStatement.truepart.accept(this)
ifStatement.elsepart.accept(this)
}
fun visit(branchStatement: BranchStatement) {
branchStatement.truepart.accept(this)
branchStatement.elsepart.accept(this)
}
fun visit(range: RangeExpr) {
range.from.accept(this)
range.to.accept(this)
range.step.accept(this)
}
fun visit(label: Label) {
}
fun visit(numLiteral: NumericLiteralValue) {
}
fun visit(refLiteral: ReferenceLiteralValue) {
refLiteral.array?.let { it.forEach { v->v.accept(this) }}
}
fun visit(assignment: Assignment) {
assignment.target.accept(this)
assignment.value.accept(this)
}
fun visit(postIncrDecr: PostIncrDecr) {
postIncrDecr.target.accept(this)
}
fun visit(contStmt: Continue) {
}
fun visit(breakStmt: Break) {
}
fun visit(forLoop: ForLoop) {
forLoop.loopVar?.accept(this)
forLoop.iterable.accept(this)
forLoop.body.accept(this)
}
fun visit(whileLoop: WhileLoop) {
whileLoop.condition.accept(this)
whileLoop.body.accept(this)
}
fun visit(repeatLoop: RepeatLoop) {
repeatLoop.untilCondition.accept(this)
repeatLoop.body.accept(this)
}
fun visit(returnStmt: Return) {
returnStmt.value?.accept(this)
}
fun visit(arrayIndexedExpression: ArrayIndexedExpression) {
arrayIndexedExpression.identifier.accept(this)
arrayIndexedExpression.arrayspec.accept(this)
}
fun visit(assignTarget: AssignTarget) {
assignTarget.arrayindexed?.accept(this)
assignTarget.identifier?.accept(this)
assignTarget.memoryAddress?.accept(this)
}
fun visit(scope: AnonymousScope) {
scope.statements.forEach { it.accept(this) }
}
fun visit(typecast: TypecastExpression) {
typecast.expression.accept(this)
}
fun visit(memread: DirectMemoryRead) {
memread.addressExpression.accept(this)
}
fun visit(memwrite: DirectMemoryWrite) {
memwrite.addressExpression.accept(this)
}
fun visit(addressOf: AddressOf) {
addressOf.identifier.accept(this)
}
fun visit(inlineAssembly: InlineAssembly) {
}
fun visit(registerExpr: RegisterExpr) {
}
fun visit(builtinFunctionStatementPlaceholder: BuiltinFunctionStatementPlaceholder) {
}
fun visit(nopStatement: NopStatement) {
}
fun visit(whenStatement: WhenStatement) {
whenStatement.condition.accept(this)
whenStatement.choices.forEach { it.accept(this) }
}
fun visit(whenChoice: WhenChoice) {
whenChoice.values?.forEach { it.accept(this) }
whenChoice.statements.accept(this)
}
fun visit(structDecl: StructDecl) {
structDecl.statements.forEach { it.accept(this) }
}
fun visit(structLv: StructLiteralValue) {
structLv.values.forEach { it.accept(this) }
}
}

View File

@ -1,35 +1,28 @@
package prog8.ast
package prog8.ast.processing
import prog8.ast.Module
import prog8.ast.base.SyntaxError
import prog8.ast.base.printWarning
import prog8.ast.statements.Directive
import prog8.ast.statements.Statement
/**
* Checks that are specific for imported modules.
*/
fun Module.checkImportedValid() {
val checker = ImportedAstChecker()
this.linkParents()
this.process(checker)
printErrors(checker.result(), name)
}
private class ImportedAstChecker : IAstProcessor {
internal class ImportedModuleDirectiveRemover : IAstModifyingVisitor {
private val checkResult: MutableList<SyntaxError> = mutableListOf()
fun result(): List<SyntaxError> {
internal fun result(): List<SyntaxError> {
return checkResult
}
/**
* Module check: most global directives don't apply for imported modules
* Most global directives don't apply for imported modules, so remove them
*/
override fun process(module: Module) {
super.process(module)
val newStatements : MutableList<IStatement> = mutableListOf()
override fun visit(module: Module) {
super.visit(module)
val newStatements : MutableList<Statement> = mutableListOf()
val moduleLevelDirectives = listOf("%output", "%launcher", "%zeropage", "%zpreserved", "%address")
for (sourceStmt in module.statements) {
val stmt = sourceStmt.process(this)
val stmt = sourceStmt.accept(this)
if(stmt is Directive && stmt.parent is Module) {
if(stmt.directive in moduleLevelDirectives) {
printWarning("ignoring module directive because it was imported", stmt.position, stmt.directive)

View File

@ -0,0 +1,400 @@
package prog8.ast.processing
import prog8.ast.*
import prog8.ast.base.DataType
import prog8.ast.base.FatalAstException
import prog8.ast.base.initvarsSubName
import prog8.ast.base.printWarning
import prog8.ast.expressions.*
import prog8.ast.statements.*
import prog8.functions.BuiltinFunctions
fun flattenStructAssignmentFromIdentifier(structAssignment: Assignment, program: Program): List<Assignment> {
val identifier = structAssignment.target.identifier!!
val identifierName = identifier.nameInSource.single()
val targetVar = identifier.targetVarDecl(program.namespace)!!
val struct = targetVar.struct!!
when {
structAssignment.value is IdentifierReference -> {
val sourceVar = (structAssignment.value as IdentifierReference).targetVarDecl(program.namespace)!!
if (sourceVar.struct == null)
throw FatalAstException("can only assign arrays or structs to structs")
// struct memberwise copy
val sourceStruct = sourceVar.struct!!
if(sourceStruct!==targetVar.struct) {
// structs are not the same in assignment
return listOf() // error will be printed elsewhere
}
return struct.statements.zip(sourceStruct.statements).map { member ->
val targetDecl = member.first as VarDecl
val sourceDecl = member.second as VarDecl
if(targetDecl.name != sourceDecl.name)
throw FatalAstException("struct member mismatch")
val mangled = mangledStructMemberName(identifierName, targetDecl.name)
val idref = IdentifierReference(listOf(mangled), structAssignment.position)
val sourcemangled = mangledStructMemberName(sourceVar.name, sourceDecl.name)
val sourceIdref = IdentifierReference(listOf(sourcemangled), structAssignment.position)
val assign = Assignment(AssignTarget(null, idref, null, null, structAssignment.position),
null, sourceIdref, member.second.position)
assign.linkParents(structAssignment)
assign
}
}
structAssignment.value is StructLiteralValue -> {
throw IllegalArgumentException("not going to flatten a structLv assignment here")
}
else -> throw FatalAstException("strange struct value")
}
}
internal class StatementReorderer(private val program: Program): IAstModifyingVisitor {
// Reorders the statements in a way the compiler needs.
// - 'main' block must be the very first statement UNLESS it has an address set.
// - blocks are ordered by address, where blocks without address are put at the end.
// - in every scope:
// -- the directives '%output', '%launcher', '%zeropage', '%zpreserved', '%address' and '%option' will come first.
// -- all vardecls then follow.
// -- the remaining statements then follow in their original order.
//
// - the 'start' subroutine in the 'main' block will be moved to the top immediately following the directives.
// - all other subroutines will be moved to the end of their block.
// - sorts the choices in when statement.
//
// Also, makes sure any value assignments get the proper type casts if needed to cast them into the target variable's type.
// (this includes function call arguments)
private val directivesToMove = setOf("%output", "%launcher", "%zeropage", "%zpreserved", "%address", "%option")
override fun visit(module: Module) {
super.visit(module)
val (blocks, other) = module.statements.partition { it is Block }
module.statements = other.asSequence().plus(blocks.sortedBy { (it as Block).address ?: Int.MAX_VALUE }).toMutableList()
// make sure user-defined blocks come BEFORE library blocks, and move the "main" block to the top of everything
val nonLibraryBlocks = module.statements.withIndex()
.filter { it.value is Block && !(it.value as Block).isInLibrary }
.map { it.index to it.value }
.reversed()
for(nonLibBlock in nonLibraryBlocks)
module.statements.removeAt(nonLibBlock.first)
for(nonLibBlock in nonLibraryBlocks)
module.statements.add(0, nonLibBlock.second)
val mainBlock = module.statements.singleOrNull { it is Block && it.name=="main" }
if(mainBlock!=null && (mainBlock as Block).address==null) {
module.remove(mainBlock)
module.statements.add(0, mainBlock)
}
val varDecls = module.statements.filterIsInstance<VarDecl>()
module.statements.removeAll(varDecls)
module.statements.addAll(0, varDecls)
val directives = module.statements.filter {it is Directive && it.directive in directivesToMove}
module.statements.removeAll(directives)
module.statements.addAll(0, directives)
}
override fun visit(block: Block): Statement {
val subroutines = block.statements.filterIsInstance<Subroutine>()
var numSubroutinesAtEnd = 0
// move all subroutines to the end of the block
for (subroutine in subroutines) {
if(subroutine.name!="start" || block.name!="main") {
block.remove(subroutine)
block.statements.add(subroutine)
}
numSubroutinesAtEnd++
}
// move the "start" subroutine to the top
if(block.name=="main") {
block.statements.singleOrNull { it is Subroutine && it.name == "start" } ?.let {
block.remove(it)
block.statements.add(0, it)
numSubroutinesAtEnd--
}
}
// make sure there is a 'return' in front of the first subroutine
// (if it isn't the first statement in the block itself, and isn't the program's entrypoint)
if(numSubroutinesAtEnd>0 && block.statements.size > (numSubroutinesAtEnd+1)) {
val firstSub = block.statements[block.statements.size - numSubroutinesAtEnd] as Subroutine
if(firstSub.name != "start" && block.name != "main") {
val stmtBeforeFirstSub = block.statements[block.statements.size - numSubroutinesAtEnd - 1]
if (stmtBeforeFirstSub !is Return
&& stmtBeforeFirstSub !is Jump
&& stmtBeforeFirstSub !is Subroutine
&& stmtBeforeFirstSub !is BuiltinFunctionStatementPlaceholder) {
val ret = Return(null, stmtBeforeFirstSub.position)
ret.linkParents(block)
block.statements.add(block.statements.size - numSubroutinesAtEnd, ret)
}
}
}
val varDecls = block.statements.filterIsInstance<VarDecl>()
block.statements.removeAll(varDecls)
block.statements.addAll(0, varDecls)
val directives = block.statements.filter {it is Directive && it.directive in directivesToMove}
block.statements.removeAll(directives)
block.statements.addAll(0, directives)
block.linkParents(block.parent)
// create subroutine that initializes the block's variables (if any)
val varInits = block.statements.withIndex().filter { it.value is VariableInitializationAssignment }
if(varInits.isNotEmpty()) {
val statements = varInits.map{it.value}.toMutableList()
val varInitSub = Subroutine(initvarsSubName, emptyList(), emptyList(), emptyList(), emptyList(),
emptySet(), null, false, statements, block.position)
varInitSub.keepAlways = true
varInitSub.linkParents(block)
block.statements.add(varInitSub)
// remove the varinits from the block's statements
for(index in varInits.map{it.index}.reversed())
block.statements.removeAt(index)
}
return super.visit(block)
}
override fun visit(subroutine: Subroutine): Statement {
super.visit(subroutine)
val varDecls = subroutine.statements.filterIsInstance<VarDecl>()
subroutine.statements.removeAll(varDecls)
subroutine.statements.addAll(0, varDecls)
val directives = subroutine.statements.filter {it is Directive && it.directive in directivesToMove}
subroutine.statements.removeAll(directives)
subroutine.statements.addAll(0, directives)
if(subroutine.returntypes.isEmpty()) {
// add the implicit return statement at the end (if it's not there yet), but only if it's not a kernel routine.
// and if an assembly block doesn't contain a rts/rti
if(subroutine.asmAddress==null && subroutine.amountOfRtsInAsm()==0) {
if (subroutine.statements.lastOrNull {it !is VarDecl } !is Return) {
val returnStmt = Return(null, subroutine.position)
returnStmt.linkParents(subroutine)
subroutine.statements.add(returnStmt)
}
}
}
return subroutine
}
override fun visit(expr: BinaryExpression): Expression {
val expr2 = super.visit(expr)
if(expr2 !is BinaryExpression)
return expr2
val leftDt = expr2.left.inferType(program)
val rightDt = expr2.right.inferType(program)
if(leftDt!=null && rightDt!=null && leftDt!=rightDt) {
// determine common datatype and add typecast as required to make left and right equal types
val (commonDt, toFix) = BinaryExpression.commonDatatype(leftDt, rightDt, expr2.left, expr2.right)
if(toFix!=null) {
when {
toFix===expr2.left -> {
expr2.left = TypecastExpression(expr2.left, commonDt, true, expr2.left.position)
expr2.left.linkParents(expr2)
}
toFix===expr2.right -> {
expr2.right = TypecastExpression(expr2.right, commonDt, true, expr2.right.position)
expr2.right.linkParents(expr2)
}
else -> throw FatalAstException("confused binary expression side")
}
}
}
return expr2
}
override fun visit(assignment: Assignment): Statement {
val assg = super.visit(assignment)
if(assg !is Assignment)
return assg
// see if a typecast is needed to convert the value's type into the proper target type
val valuetype = assg.value.inferType(program)
val targettype = assg.target.inferType(program, assg)
if(targettype!=null && valuetype!=null) {
if(valuetype!=targettype) {
if (valuetype isAssignableTo targettype) {
assg.value = TypecastExpression(assg.value, targettype, true, assg.value.position)
assg.value.linkParents(assg)
}
// if they're not assignable, we'll get a proper error later from the AstChecker
}
}
// struct assignments will be flattened (if it's not a struct literal)
if(valuetype==DataType.STRUCT && targettype==DataType.STRUCT) {
if(assg.value is StructLiteralValue)
return assg // do NOT flatten it at this point!! (the compiler will take care if it, later, if needed)
val assignments = flattenStructAssignmentFromIdentifier(assg, program) // 'structvar1 = structvar2'
return if(assignments.isEmpty()) {
// something went wrong (probably incompatible struct types)
// we'll get an error later from the AstChecker
assg
} else {
val scope = AnonymousScope(assignments.toMutableList(), assg.position)
scope.linkParents(assg.parent)
scope
}
}
if(assg.aug_op!=null) {
// transform augmented assg into normal assg so we have one case less to deal with later
val newTarget: Expression =
when {
assg.target.register != null -> RegisterExpr(assg.target.register!!, assg.target.position)
assg.target.identifier != null -> assg.target.identifier!!
assg.target.arrayindexed != null -> assg.target.arrayindexed!!
assg.target.memoryAddress != null -> DirectMemoryRead(assg.target.memoryAddress!!.addressExpression, assg.value.position)
else -> throw FatalAstException("strange assg")
}
val expression = BinaryExpression(newTarget, assg.aug_op.substringBeforeLast('='), assg.value, assg.position)
expression.linkParents(assg.parent)
val convertedAssignment = Assignment(assg.target, null, expression, assg.position)
convertedAssignment.linkParents(assg.parent)
return super.visit(convertedAssignment)
}
return assg
}
override fun visit(functionCallStatement: FunctionCallStatement): Statement {
checkFunctionCallArguments(functionCallStatement, functionCallStatement.definingScope())
return super.visit(functionCallStatement)
}
override fun visit(functionCall: FunctionCall): Expression {
checkFunctionCallArguments(functionCall, functionCall.definingScope())
return super.visit(functionCall)
}
private fun checkFunctionCallArguments(call: IFunctionCall, scope: INameScope) {
// see if a typecast is needed to convert the arguments into the required parameter's type
when(val sub = call.target.targetStatement(scope)) {
is Subroutine -> {
for(arg in sub.parameters.zip(call.arglist.withIndex())) {
val argtype = arg.second.value.inferType(program)
if(argtype!=null) {
val requiredType = arg.first.type
if (requiredType != argtype) {
if (argtype isAssignableTo requiredType) {
val typecasted = TypecastExpression(arg.second.value, requiredType, true, arg.second.value.position)
typecasted.linkParents(arg.second.value.parent)
call.arglist[arg.second.index] = typecasted
}
// if they're not assignable, we'll get a proper error later from the AstChecker
}
}
}
}
is BuiltinFunctionStatementPlaceholder -> {
val func = BuiltinFunctions.getValue(sub.name)
if(func.pure) {
// non-pure functions don't get automatic typecasts because sometimes they act directly on their parameters
for (arg in func.parameters.zip(call.arglist.withIndex())) {
val argtype = arg.second.value.inferType(program)
if (argtype != null) {
if (arg.first.possibleDatatypes.any { argtype == it })
continue
for (possibleType in arg.first.possibleDatatypes) {
if (argtype isAssignableTo possibleType) {
val typecasted = TypecastExpression(arg.second.value, possibleType, true, arg.second.value.position)
typecasted.linkParents(arg.second.value.parent)
call.arglist[arg.second.index] = typecasted
break
}
}
}
}
}
}
null -> {}
else -> TODO("call to something weird $sub ${call.target}")
}
}
override fun visit(typecast: TypecastExpression): Expression {
// warn about any implicit type casts to Float, because that may not be intended
if(typecast.implicit && typecast.type in setOf(DataType.FLOAT, DataType.ARRAY_F)) {
printWarning("byte or word value implicitly converted to float. Suggestion: use explicit cast as float, a float number, or revert to integer arithmetic", typecast.position)
}
return super.visit(typecast)
}
override fun visit(memread: DirectMemoryRead): Expression {
// make sure the memory address is an uword
val dt = memread.addressExpression.inferType(program)
if(dt!=DataType.UWORD) {
val literaladdr = memread.addressExpression as? NumericLiteralValue
if(literaladdr!=null) {
memread.addressExpression = literaladdr.cast(DataType.UWORD)!!
} else {
memread.addressExpression = TypecastExpression(memread.addressExpression, DataType.UWORD, true, memread.addressExpression.position)
memread.addressExpression.parent = memread
}
}
return super.visit(memread)
}
override fun visit(memwrite: DirectMemoryWrite) {
val dt = memwrite.addressExpression.inferType(program)
if(dt!=DataType.UWORD) {
val literaladdr = memwrite.addressExpression as? NumericLiteralValue
if(literaladdr!=null) {
memwrite.addressExpression = literaladdr.cast(DataType.UWORD)!!
} else {
memwrite.addressExpression = TypecastExpression(memwrite.addressExpression, DataType.UWORD, true, memwrite.addressExpression.position)
memwrite.addressExpression.parent = memwrite
}
}
super.visit(memwrite)
}
override fun visit(structLv: StructLiteralValue): Expression {
val litval = super.visit(structLv)
if(litval !is StructLiteralValue)
return litval
val decl = litval.parent as? VarDecl
if(decl != null) {
val struct = decl.struct
if(struct != null) {
addTypecastsIfNeeded(litval, struct)
}
} else {
val assign = litval.parent as? Assignment
if (assign != null) {
val decl2 = assign.target.identifier?.targetVarDecl(program.namespace)
if(decl2 != null) {
val struct = decl2.struct
if(struct != null) {
addTypecastsIfNeeded(litval, struct)
}
}
}
}
return litval
}
private fun addTypecastsIfNeeded(structLv: StructLiteralValue, struct: StructDecl) {
structLv.values = struct.statements.zip(structLv.values).map {
val memberDt = (it.first as VarDecl).datatype
val valueDt = it.second.inferType(program)
if (valueDt != memberDt)
TypecastExpression(it.second, memberDt, true, it.second.position)
else
it.second
}
}
}

View File

@ -0,0 +1,163 @@
package prog8.ast.processing
import prog8.ast.INameScope
import prog8.ast.Module
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.*
import prog8.compiler.CompilerException
import prog8.functions.BuiltinFunctions
import prog8.functions.FunctionSignature
internal class VarInitValueAndAddressOfCreator(private val program: Program): IAstModifyingVisitor {
// For VarDecls that declare an initialization value:
// Replace the vardecl with an assignment (to set the initial value),
// and add a new vardecl with the default constant value of that type (usually zero) to the scope.
// This makes sure the variables get reset to the intended value on a next run of the program.
// Variable decls without a value don't get this treatment, which means they retain the last
// value they had when restarting the program.
// This is done in a separate step because it interferes with the namespace lookup of symbols
// in other ast processors.
// Also takes care to insert AddressOf (&) expression where required (string params to a UWORD function param etc).
private val vardeclsToAdd = mutableMapOf<INameScope, MutableList<VarDecl>>()
override fun visit(module: Module) {
vardeclsToAdd.clear()
super.visit(module)
// add any new vardecls to the various scopes
for((where, decls) in vardeclsToAdd) {
where.statements.addAll(0, decls)
decls.forEach { it.linkParents(where as Node) }
}
}
override fun visit(decl: VarDecl): Statement {
super.visit(decl)
if(decl.isArray && decl.value==null) {
// array datatype without initialization value, add list of zeros
val arraysize = decl.arraysize!!.size()!!
val array = ReferenceLiteralValue(decl.datatype, null,
Array(arraysize) { NumericLiteralValue.optimalInteger(0, decl.position) },
null, decl.position)
array.addToHeap(program.heap)
decl.value = array
}
if(decl.type!= VarDeclType.VAR || decl.value==null)
return decl
if(decl.datatype in NumericDatatypes) {
val scope = decl.definingScope()
addVarDecl(scope, decl.asDefaultValueDecl(null))
val declvalue = decl.value!!
val value =
if(declvalue is NumericLiteralValue) {
val converted = declvalue.cast(decl.datatype)
converted ?: declvalue
}
else
declvalue
val identifierName = listOf(decl.name) // this was: (scoped name) decl.scopedname.split(".")
return VariableInitializationAssignment(
AssignTarget(null, IdentifierReference(identifierName, decl.position), null, null, decl.position),
null,
value,
decl.position
)
}
return decl
}
override fun visit(functionCall: FunctionCall): Expression {
var parentStatement: Node = functionCall
while(parentStatement !is Statement)
parentStatement = parentStatement.parent
val targetStatement = functionCall.target.targetSubroutine(program.namespace)
if(targetStatement!=null) {
addAddressOfExprIfNeeded(targetStatement, functionCall.arglist, parentStatement)
} else {
val builtinFunc = BuiltinFunctions[functionCall.target.nameInSource.joinToString (".")]
if(builtinFunc!=null)
addAddressOfExprIfNeededForBuiltinFuncs(builtinFunc, functionCall.arglist, parentStatement)
}
return functionCall
}
override fun visit(functionCallStatement: FunctionCallStatement): Statement {
val targetStatement = functionCallStatement.target.targetSubroutine(program.namespace)
if(targetStatement!=null) {
addAddressOfExprIfNeeded(targetStatement, functionCallStatement.arglist, functionCallStatement)
} else {
val builtinFunc = BuiltinFunctions[functionCallStatement.target.nameInSource.joinToString (".")]
if(builtinFunc!=null)
addAddressOfExprIfNeededForBuiltinFuncs(builtinFunc, functionCallStatement.arglist, functionCallStatement)
}
return functionCallStatement
}
private fun addAddressOfExprIfNeeded(subroutine: Subroutine, arglist: MutableList<Expression>, parent: Statement) {
// functions that accept UWORD and are given an array type, or string, will receive the AddressOf (memory location) of that value instead.
for(argparam in subroutine.parameters.withIndex().zip(arglist)) {
if(argparam.first.value.type==DataType.UWORD || argparam.first.value.type in StringDatatypes) {
if(argparam.second is AddressOf)
continue
val idref = argparam.second as? IdentifierReference
val strvalue = argparam.second as? ReferenceLiteralValue
if(idref!=null) {
val variable = idref.targetVarDecl(program.namespace)
if(variable!=null && (variable.datatype in StringDatatypes || variable.datatype in ArrayDatatypes)) {
val pointerExpr = AddressOf(idref, idref.position)
pointerExpr.scopedname = parent.makeScopedName(idref.nameInSource.single())
pointerExpr.linkParents(arglist[argparam.first.index].parent)
arglist[argparam.first.index] = pointerExpr
}
}
else if(strvalue!=null) {
if(strvalue.isString) {
// add a vardecl so that the autovar can be resolved in later lookups
val variable = VarDecl.createAuto(strvalue, program.heap)
addVarDecl(strvalue.definingScope(), variable)
// replace the argument with &autovar
val autoHeapvarRef = IdentifierReference(listOf(variable.name), strvalue.position)
val pointerExpr = AddressOf(autoHeapvarRef, strvalue.position)
pointerExpr.scopedname = parent.makeScopedName(variable.name)
pointerExpr.linkParents(arglist[argparam.first.index].parent)
arglist[argparam.first.index] = pointerExpr
}
}
}
}
}
private fun addAddressOfExprIfNeededForBuiltinFuncs(signature: FunctionSignature, args: MutableList<Expression>, parent: Statement) {
for(arg in args.withIndex().zip(signature.parameters)) {
val argvalue = arg.first.value
val argDt = argvalue.inferType(program)
if(DataType.UWORD in arg.second.possibleDatatypes && argDt in PassByReferenceDatatypes) {
if(argvalue !is IdentifierReference)
throw CompilerException("pass-by-reference parameter isn't an identifier? $argvalue")
val addrOf = AddressOf(argvalue, argvalue.position)
args[arg.first.index] = addrOf
addrOf.scopedname = parent.makeScopedName(argvalue.nameInSource.single())
addrOf.linkParents(parent)
}
}
}
private fun addVarDecl(scope: INameScope, variable: VarDecl) {
if(scope !in vardeclsToAdd)
vardeclsToAdd[scope] = mutableListOf()
val declList = vardeclsToAdd.getValue(scope)
if(declList.all{it.name!=variable.name})
declList.add(variable)
}
}

View File

@ -0,0 +1,840 @@
package prog8.ast.statements
import prog8.ast.*
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.processing.IAstModifyingVisitor
import prog8.ast.processing.IAstVisitor
import prog8.compiler.HeapValues
sealed class Statement : Node {
abstract fun accept(visitor: IAstModifyingVisitor) : Statement
abstract fun accept(visitor: IAstVisitor)
fun makeScopedName(name: String): String {
// easy way out is to always return the full scoped name.
// it would be nicer to find only the minimal prefixed scoped name, but that's too much hassle for now.
// and like this, we can cache the name even,
// like in a lazy property on the statement object itself (label, subroutine, vardecl)
val scope = mutableListOf<String>()
var statementScope = this.parent
while(statementScope !is ParentSentinel && statementScope !is Module) {
if(statementScope is INameScope) {
scope.add(0, statementScope.name)
}
statementScope = statementScope.parent
}
if(name.isNotEmpty())
scope.add(name)
return scope.joinToString(".")
}
abstract val expensiveToInline: Boolean
fun definingBlock(): Block {
if(this is Block)
return this
return findParentNode<Block>(this)!!
}
}
class BuiltinFunctionStatementPlaceholder(val name: String, override val position: Position) : Statement() {
override var parent: Node = ParentSentinel
override fun linkParents(parent: Node) {}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun definingScope(): INameScope = BuiltinFunctionScopePlaceholder
override val expensiveToInline = false
}
data class RegisterOrStatusflag(val registerOrPair: RegisterOrPair?, val statusflag: Statusflag?, val stack: Boolean)
class Block(override val name: String,
val address: Int?,
override var statements: MutableList<Statement>,
val isInLibrary: Boolean,
override val position: Position) : Statement(), INameScope {
override lateinit var parent: Node
override val expensiveToInline
get() = statements.any { it.expensiveToInline }
override fun linkParents(parent: Node) {
this.parent = parent
statements.forEach {it.linkParents(this)}
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun toString(): String {
return "Block(name=$name, address=$address, ${statements.size} statements)"
}
fun options() = statements.filter { it is Directive && it.directive == "%option" }.flatMap { (it as Directive).args }.map {it.name!!}.toSet()
}
data class Directive(val directive: String, val args: List<DirectiveArg>, override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline = false
override fun linkParents(parent: Node) {
this.parent = parent
args.forEach{it.linkParents(this)}
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
}
data class DirectiveArg(val str: String?, val name: String?, val int: Int?, override val position: Position) : Node {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
}
}
data class Label(val name: String, override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline = false
override fun linkParents(parent: Node) {
this.parent = parent
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun toString(): String {
return "Label(name=$name, pos=$position)"
}
val scopedname: String by lazy { makeScopedName(name) }
}
open class Return(var value: Expression?, override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline = value!=null && value !is NumericLiteralValue
override fun linkParents(parent: Node) {
this.parent = parent
value?.linkParents(this)
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun toString(): String {
return "Return($value, pos=$position)"
}
}
class ReturnFromIrq(override val position: Position) : Return(null, position) {
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun toString(): String {
return "ReturnFromIrq(pos=$position)"
}
}
class Continue(override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline = false
override fun linkParents(parent: Node) {
this.parent=parent
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
}
class Break(override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline = false
override fun linkParents(parent: Node) {
this.parent=parent
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
}
enum class ZeropageWish {
REQUIRE_ZEROPAGE,
PREFER_ZEROPAGE,
DONTCARE,
NOT_IN_ZEROPAGE
}
class VarDecl(val type: VarDeclType,
private val declaredDatatype: DataType,
val zeropage: ZeropageWish,
var arraysize: ArrayIndex?,
val name: String,
private val structName: String?,
var value: Expression?,
val isArray: Boolean,
val autogeneratedDontRemove: Boolean,
override val position: Position) : Statement() {
override lateinit var parent: Node
var struct: StructDecl? = null // set later (because at parse time, we only know the name)
private set
var structHasBeenFlattened = false // set later
private set
override val expensiveToInline
get() = value!=null && value !is NumericLiteralValue
// prefix for literal values that are turned into a variable on the heap
companion object {
private var autoHeapValueSequenceNumber = 0
fun createAuto(refLv: ReferenceLiteralValue, heap: HeapValues): VarDecl {
if(refLv.heapId==null)
throw FatalAstException("can only create autovar for a ref lv that has a heapid $refLv")
val autoVarName = "auto_heap_value_${++autoHeapValueSequenceNumber}"
return if(refLv.isArray) {
val declaredType = ArrayElementTypes.getValue(refLv.type)
val arraysize = ArrayIndex.forArray(refLv, heap)
VarDecl(VarDeclType.VAR, declaredType, ZeropageWish.NOT_IN_ZEROPAGE, arraysize, autoVarName, null, refLv,
isArray = true, autogeneratedDontRemove = true, position = refLv.position)
} else {
VarDecl(VarDeclType.VAR, refLv.type, ZeropageWish.NOT_IN_ZEROPAGE, null, autoVarName, null, refLv,
isArray = false, autogeneratedDontRemove = true, position = refLv.position)
}
}
}
val datatypeErrors = mutableListOf<SyntaxError>() // don't crash at init time, report them in the AstChecker
val datatype =
if (!isArray) declaredDatatype
else when (declaredDatatype) {
DataType.UBYTE -> DataType.ARRAY_UB
DataType.BYTE -> DataType.ARRAY_B
DataType.UWORD -> DataType.ARRAY_UW
DataType.WORD -> DataType.ARRAY_W
DataType.FLOAT -> DataType.ARRAY_F
else -> {
datatypeErrors.add(SyntaxError("array can only contain bytes/words/floats", position))
DataType.ARRAY_UB
}
}
override fun linkParents(parent: Node) {
this.parent = parent
arraysize?.linkParents(this)
value?.linkParents(this)
if(structName!=null) {
val structStmt = definingScope().lookup(listOf(structName), this)
if(structStmt!=null)
struct = definingScope().lookup(listOf(structName), this) as StructDecl
}
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
val scopedname: String by lazy { makeScopedName(name) }
override fun toString(): String {
return "VarDecl(name=$name, vartype=$type, datatype=$datatype, struct=$structName, value=$value, pos=$position)"
}
fun asDefaultValueDecl(parent: Node?): VarDecl {
val constValue = when(declaredDatatype) {
DataType.UBYTE -> NumericLiteralValue(DataType.UBYTE, 0, position)
DataType.BYTE -> NumericLiteralValue(DataType.BYTE, 0, position)
DataType.UWORD -> NumericLiteralValue(DataType.UWORD, 0, position)
DataType.WORD -> NumericLiteralValue(DataType.WORD, 0, position)
DataType.FLOAT -> NumericLiteralValue(DataType.FLOAT, 0.0, position)
else -> throw FatalAstException("can only set a default value for a numeric type")
}
val decl = VarDecl(type, declaredDatatype, zeropage, arraysize, name, structName, constValue, isArray, false, position)
if(parent!=null)
decl.linkParents(parent)
return decl
}
fun flattenStructMembers(): MutableList<Statement> {
val result = struct!!.statements.withIndex().map {
val member = it.value as VarDecl
val initvalue = if(value!=null) (value as StructLiteralValue).values[it.index] else null
VarDecl(
VarDeclType.VAR,
member.datatype,
ZeropageWish.NOT_IN_ZEROPAGE,
member.arraysize,
mangledStructMemberName(name, member.name),
struct!!.name,
initvalue,
member.isArray,
true,
member.position
) as Statement
}.toMutableList()
structHasBeenFlattened = true
return result
}
fun withPrefixedName(nameprefix: String): Statement {
val new = VarDecl(type, declaredDatatype, zeropage, arraysize, nameprefix+name, structName, value, isArray, autogeneratedDontRemove, position)
new.parent = parent
return new
}
}
class ArrayIndex(var index: Expression, override val position: Position) : Node {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
index.linkParents(this)
}
companion object {
fun forArray(v: ReferenceLiteralValue, heap: HeapValues): ArrayIndex {
val arraySize = v.array?.size ?: heap.get(v.heapId!!).arraysize
return ArrayIndex(NumericLiteralValue.optimalNumeric(arraySize, v.position), v.position)
}
}
fun accept(visitor: IAstModifyingVisitor) {
index = index.accept(visitor)
}
fun accept(visitor: IAstVisitor) {
index.accept(visitor)
}
override fun toString(): String {
return("ArrayIndex($index, pos=$position)")
}
fun size() = (index as? NumericLiteralValue)?.number?.toInt()
}
open class Assignment(var target: AssignTarget, val aug_op : String?, var value: Expression, override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline
get() = value !is NumericLiteralValue
override fun linkParents(parent: Node) {
this.parent = parent
this.target.linkParents(this)
value.linkParents(this)
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun toString(): String {
return("Assignment(augop: $aug_op, target: $target, value: $value, pos=$position)")
}
}
// This is a special class so the compiler can see if the assignments are for initializing the vars in the scope,
// or just a regular assignment. It may optimize the initialization step from this.
class VariableInitializationAssignment(target: AssignTarget, aug_op: String?, value: Expression, position: Position)
: Assignment(target, aug_op, value, position)
data class AssignTarget(val register: Register?,
var identifier: IdentifierReference?,
var arrayindexed: ArrayIndexedExpression?,
val memoryAddress: DirectMemoryWrite?,
override val position: Position) : Node {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
identifier?.linkParents(this)
arrayindexed?.linkParents(this)
memoryAddress?.linkParents(this)
}
fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
fun accept(visitor: IAstVisitor) = visitor.visit(this)
companion object {
fun fromExpr(expr: Expression): AssignTarget {
return when (expr) {
is RegisterExpr -> AssignTarget(expr.register, null, null, null, expr.position)
is IdentifierReference -> AssignTarget(null, expr, null, null, expr.position)
is ArrayIndexedExpression -> AssignTarget(null, null, expr, null, expr.position)
is DirectMemoryRead -> AssignTarget(null, null, null, DirectMemoryWrite(expr.addressExpression, expr.position), expr.position)
else -> throw FatalAstException("invalid expression object $expr")
}
}
}
fun inferType(program: Program, stmt: Statement): DataType? {
if(register!=null)
return DataType.UBYTE
if(identifier!=null) {
val symbol = program.namespace.lookup(identifier!!.nameInSource, stmt) ?: return null
if (symbol is VarDecl) return symbol.datatype
}
if(arrayindexed!=null) {
val dt = arrayindexed!!.inferType(program)
if(dt!=null)
return dt
}
if(memoryAddress!=null)
return DataType.UBYTE
return null
}
infix fun isSameAs(value: Expression): Boolean {
return when {
this.memoryAddress!=null -> false
this.register!=null -> value is RegisterExpr && value.register==register
this.identifier!=null -> value is IdentifierReference && value.nameInSource==identifier!!.nameInSource
this.arrayindexed!=null -> value is ArrayIndexedExpression &&
value.identifier.nameInSource==arrayindexed!!.identifier.nameInSource &&
value.arrayspec.size()!=null &&
arrayindexed!!.arrayspec.size()!=null &&
value.arrayspec.size()==arrayindexed!!.arrayspec.size()
else -> false
}
}
fun isSameAs(other: AssignTarget, program: Program): Boolean {
if(this===other)
return true
if(this.register!=null && other.register!=null)
return this.register==other.register
if(this.identifier!=null && other.identifier!=null)
return this.identifier!!.nameInSource==other.identifier!!.nameInSource
if(this.memoryAddress!=null && other.memoryAddress!=null) {
val addr1 = this.memoryAddress.addressExpression.constValue(program)
val addr2 = other.memoryAddress.addressExpression.constValue(program)
return addr1!=null && addr2!=null && addr1==addr2
}
if(this.arrayindexed!=null && other.arrayindexed!=null) {
if(this.arrayindexed!!.identifier.nameInSource == other.arrayindexed!!.identifier.nameInSource) {
val x1 = this.arrayindexed!!.arrayspec.index.constValue(program)
val x2 = other.arrayindexed!!.arrayspec.index.constValue(program)
return x1!=null && x2!=null && x1==x2
}
}
return false
}
fun isNotMemory(namespace: INameScope): Boolean {
if(this.register!=null)
return true
if(this.memoryAddress!=null)
return false
if(this.arrayindexed!=null) {
val targetStmt = this.arrayindexed!!.identifier.targetVarDecl(namespace)
if(targetStmt!=null)
return targetStmt.type!= VarDeclType.MEMORY
}
if(this.identifier!=null) {
val targetStmt = this.identifier!!.targetVarDecl(namespace)
if(targetStmt!=null)
return targetStmt.type!= VarDeclType.MEMORY
}
return false
}
}
class PostIncrDecr(var target: AssignTarget, val operator: String, override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline = false
override fun linkParents(parent: Node) {
this.parent = parent
target.linkParents(this)
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun toString(): String {
return "PostIncrDecr(op: $operator, target: $target, pos=$position)"
}
}
class Jump(val address: Int?,
val identifier: IdentifierReference?,
val generatedLabel: String?, // used in code generation scenarios
override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline = false
override fun linkParents(parent: Node) {
this.parent = parent
identifier?.linkParents(this)
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun toString(): String {
return "Jump(addr: $address, identifier: $identifier, label: $generatedLabel; pos=$position)"
}
}
class FunctionCallStatement(override var target: IdentifierReference,
override var arglist: MutableList<Expression>,
override val position: Position) : Statement(), IFunctionCall {
override lateinit var parent: Node
override val expensiveToInline
get() = arglist.any { it !is NumericLiteralValue }
override fun linkParents(parent: Node) {
this.parent = parent
target.linkParents(this)
arglist.forEach { it.linkParents(this) }
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun toString(): String {
return "FunctionCallStatement(target=$target, pos=$position)"
}
}
class InlineAssembly(val assembly: String, override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline = true
override fun linkParents(parent: Node) {
this.parent = parent
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
}
class AnonymousScope(override var statements: MutableList<Statement>,
override val position: Position) : INameScope, Statement() {
override val name: String
override lateinit var parent: Node
override val expensiveToInline
get() = statements.any { it.expensiveToInline }
companion object {
private var sequenceNumber = 1
}
init {
name = "<anon-$sequenceNumber>" // make sure it's an invalid soruce code identifier so user source code can never produce it
sequenceNumber++
}
override fun linkParents(parent: Node) {
this.parent = parent
statements.forEach { it.linkParents(this) }
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
}
class NopStatement(override val position: Position): Statement() {
override lateinit var parent: Node
override val expensiveToInline = false
override fun linkParents(parent: Node) {
this.parent = parent
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
companion object {
fun insteadOf(stmt: Statement): NopStatement {
val nop = NopStatement(stmt.position)
nop.parent = stmt.parent
return nop
}
}
}
// the subroutine class covers both the normal user-defined subroutines,
// and also the predefined/ROM/register-based subroutines.
// (multiple return types can only occur for the latter type)
class Subroutine(override val name: String,
val parameters: List<SubroutineParameter>,
val returntypes: List<DataType>,
val asmParameterRegisters: List<RegisterOrStatusflag>,
val asmReturnvaluesRegisters: List<RegisterOrStatusflag>,
val asmClobbers: Set<Register>,
val asmAddress: Int?,
val isAsmSubroutine: Boolean,
override var statements: MutableList<Statement>,
override val position: Position) : Statement(), INameScope {
var keepAlways: Boolean = false
override val expensiveToInline
get() = statements.any { it.expensiveToInline }
override lateinit var parent: Node
val calledBy = mutableListOf<Node>()
val calls = mutableSetOf<Subroutine>()
val scopedname: String by lazy { makeScopedName(name) }
override fun linkParents(parent: Node) {
this.parent = parent
parameters.forEach { it.linkParents(this) }
statements.forEach { it.linkParents(this) }
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun toString(): String {
return "Subroutine(name=$name, parameters=$parameters, returntypes=$returntypes, ${statements.size} statements, address=$asmAddress)"
}
fun amountOfRtsInAsm(): Int = statements
.asSequence()
.filter { it is InlineAssembly }
.map { (it as InlineAssembly).assembly }
.count { " rti" in it || "\trti" in it || " rts" in it || "\trts" in it || " jmp" in it || "\tjmp" in it }
val canBeAsmSubroutine =false // TODO disabled for now, see below about problem with converting to asm subroutine
// !isAsmSubroutine
// && ((parameters.size == 1 && parameters[0].type in setOf(DataType.BYTE, DataType.UBYTE, DataType.WORD, DataType.UWORD))
// || (parameters.size == 2 && parameters.map { it.type }.all { it == DataType.BYTE || it == DataType.UBYTE }))
fun intoAsmSubroutine(): Subroutine {
// TODO turn subroutine into asm calling convention. Requires rethinking of how parameters are handled (conflicts with local vardefs now, see AstIdentifierChecker...)
return this // TODO
// println("TO ASM $this") // TODO
// val paramregs = if (parameters.size == 1 && parameters[0].type in setOf(DataType.BYTE, DataType.UBYTE))
// listOf(RegisterOrStatusflag(RegisterOrPair.Y, null, null))
// else if (parameters.size == 1 && parameters[0].type in setOf(DataType.WORD, DataType.UWORD))
// listOf(RegisterOrStatusflag(RegisterOrPair.AY, null, null))
// else if (parameters.size == 2 && parameters.map { it.type }.all { it == DataType.BYTE || it == DataType.UBYTE })
// listOf(RegisterOrStatusflag(RegisterOrPair.A, null, null), RegisterOrStatusflag(RegisterOrPair.Y, null, null))
// else throw FatalAstException("cannot convert subroutine to asm parameters")
//
// val asmsub=Subroutine(
// name,
// parameters,
// returntypes,
// paramregs,
// emptyList(),
// emptySet(),
// null,
// true,
// statements,
// position
// )
// asmsub.linkParents(parent)
// return asmsub
}
}
open class SubroutineParameter(val name: String,
val type: DataType,
override val position: Position) : Node {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
}
}
class IfStatement(var condition: Expression,
var truepart: AnonymousScope,
var elsepart: AnonymousScope,
override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline: Boolean
get() = truepart.expensiveToInline || elsepart.expensiveToInline
override fun linkParents(parent: Node) {
this.parent = parent
condition.linkParents(this)
truepart.linkParents(this)
elsepart.linkParents(this)
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
}
class BranchStatement(var condition: BranchCondition,
var truepart: AnonymousScope,
var elsepart: AnonymousScope,
override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline: Boolean
get() = truepart.expensiveToInline || elsepart.expensiveToInline
override fun linkParents(parent: Node) {
this.parent = parent
truepart.linkParents(this)
elsepart.linkParents(this)
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
}
class ForLoop(val loopRegister: Register?,
val decltype: DataType?,
val zeropage: ZeropageWish,
var loopVar: IdentifierReference?,
var iterable: Expression,
var body: AnonymousScope,
override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline = true
override fun linkParents(parent: Node) {
this.parent=parent
loopVar?.linkParents(if(decltype==null) this else body)
iterable.linkParents(this)
body.linkParents(this)
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun toString(): String {
return "ForLoop(loopVar: $loopVar, loopReg: $loopRegister, iterable: $iterable, pos=$position)"
}
}
class WhileLoop(var condition: Expression,
var body: AnonymousScope,
override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline = true
override fun linkParents(parent: Node) {
this.parent = parent
condition.linkParents(this)
body.linkParents(this)
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
}
class RepeatLoop(var body: AnonymousScope,
var untilCondition: Expression,
override val position: Position) : Statement() {
override lateinit var parent: Node
override val expensiveToInline = true
override fun linkParents(parent: Node) {
this.parent = parent
untilCondition.linkParents(this)
body.linkParents(this)
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
}
class WhenStatement(var condition: Expression,
var choices: MutableList<WhenChoice>,
override val position: Position): Statement() {
override lateinit var parent: Node
override val expensiveToInline: Boolean = true
override fun linkParents(parent: Node) {
this.parent = parent
condition.linkParents(this)
choices.forEach { it.linkParents(this) }
}
fun choiceValues(program: Program): List<Pair<List<Int>?, WhenChoice>> {
// only gives sensible results when the choices are all valid (constant integers)
val result = mutableListOf<Pair<List<Int>?, WhenChoice>>()
for(choice in choices) {
if(choice.values==null)
result.add(null to choice)
else {
val values = choice.values!!.map { it.constValue(program)?.number?.toInt() }
if(values.contains(null))
result.add(null to choice)
else
result.add(values.filterNotNull() to choice)
}
}
return result
}
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
}
class WhenChoice(var values: List<Expression>?, // if null, this is the 'else' part
var statements: AnonymousScope,
override val position: Position) : Node {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
values?.forEach { it.linkParents(this) }
statements.linkParents(this)
this.parent = parent
}
override fun toString(): String {
return "Choice($values at $position)"
}
fun accept(visitor: IAstVisitor) = visitor.visit(this)
fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
}
class StructDecl(override val name: String,
override var statements: MutableList<Statement>, // actually, only vardecls here
override val position: Position): Statement(), INameScope {
override lateinit var parent: Node
override val expensiveToInline: Boolean = true
override fun linkParents(parent: Node) {
this.parent = parent
this.statements.forEach { it.linkParents(this) }
}
val numberOfElements: Int
get() = this.statements.size
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
fun nameOfFirstMember() = (statements.first() as VarDecl).name
}
class DirectMemoryWrite(var addressExpression: Expression, override val position: Position) : Node {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
this.addressExpression.linkParents(this)
}
override fun toString(): String {
return "DirectMemoryWrite($addressExpression)"
}
fun accept(visitor: IAstVisitor) = visitor.visit(this)
fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,177 @@
package prog8.compiler
import prog8.ast.AstToSourceCode
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.statements.Directive
import prog8.compiler.target.c64.MachineDefinition
import prog8.compiler.target.c64.codegen2.AsmGen2
import prog8.optimizer.constantFold
import prog8.optimizer.optimizeStatements
import prog8.optimizer.simplifyExpressions
import prog8.parser.ParsingFailedError
import prog8.parser.importLibraryModule
import prog8.parser.importModule
import prog8.parser.moduleName
import java.nio.file.Path
import kotlin.system.measureTimeMillis
class CompilationResult(val success: Boolean,
val programAst: Program,
val programName: String,
val importedFiles: List<Path>)
fun compileProgram(filepath: Path,
optimize: Boolean, optimizeInlining: Boolean,
writeAssembly: Boolean): CompilationResult {
lateinit var programAst: Program
var programName: String? = null
var importedFiles: List<Path> = emptyList()
var success=false
try {
val totalTime = measureTimeMillis {
// import main module and everything it needs
println("Parsing...")
programAst = Program(moduleName(filepath.fileName), mutableListOf())
importModule(programAst, filepath)
importedFiles = programAst.modules.filter { !it.source.startsWith("@embedded@") }.map{ it.source }
val compilerOptions = determineCompilationOptions(programAst)
if (compilerOptions.launcher == LauncherType.BASIC && compilerOptions.output != OutputType.PRG)
throw ParsingFailedError("${programAst.modules.first().position} BASIC launcher requires output type PRG.")
// if we're producing a PRG or BASIC program, include the c64utils and c64lib libraries
if (compilerOptions.launcher == LauncherType.BASIC || compilerOptions.output == OutputType.PRG) {
importLibraryModule(programAst, "c64lib")
importLibraryModule(programAst, "c64utils")
}
// always import prog8lib and math
importLibraryModule(programAst, "math")
importLibraryModule(programAst, "prog8lib")
// perform initial syntax checks and constant folding
println("Syntax check...")
val time1 = measureTimeMillis {
programAst.checkIdentifiers()
}
//println(" time1: $time1")
val time2 = measureTimeMillis {
programAst.constantFold()
}
//println(" time2: $time2")
val time3 = measureTimeMillis {
programAst.removeNopsFlattenAnonScopes()
programAst.reorderStatements() // reorder statements and add type casts, to please the compiler later
}
//println(" time3: $time3")
val time4 = measureTimeMillis {
programAst.checkValid(compilerOptions) // check if tree is valid
}
//println(" time4: $time4")
programAst.checkIdentifiers()
if (optimize) {
// optimize the parse tree
println("Optimizing...")
while (true) {
// keep optimizing expressions and statements until no more steps remain
val optsDone1 = programAst.simplifyExpressions()
val optsDone2 = programAst.optimizeStatements(optimizeInlining)
if (optsDone1 + optsDone2 == 0)
break
}
}
programAst.removeNopsFlattenAnonScopes()
programAst.checkValid(compilerOptions) // check if final tree is valid
programAst.checkRecursion() // check if there are recursive subroutine calls
printAst(programAst)
if(writeAssembly) {
// asm generation directly from the Ast, no need for intermediate code
val zeropage = MachineDefinition.C64Zeropage(compilerOptions)
programAst.anonscopeVarsCleanup()
val assembly = AsmGen2(programAst, compilerOptions, zeropage).compileToAssembly(optimize)
assembly.assemble(compilerOptions)
programName = assembly.name
}
success = true
}
println("\nTotal compilation+assemble time: ${totalTime / 1000.0} sec.")
} catch (px: ParsingFailedError) {
System.err.print("\u001b[91m") // bright red
System.err.println(px.message)
System.err.print("\u001b[0m") // reset
} catch (ax: AstException) {
System.err.print("\u001b[91m") // bright red
System.err.println(ax.toString())
System.err.print("\u001b[0m") // reset
} catch (x: Exception) {
print("\u001b[91m") // bright red
println("\n* internal error *")
print("\u001b[0m") // reset
System.out.flush()
throw x
} catch (x: NotImplementedError) {
print("\u001b[91m") // bright red
println("\n* internal error: missing feature/code *")
print("\u001b[0m") // reset
System.out.flush()
throw x
}
return CompilationResult(success, programAst, programName ?: "", importedFiles)
}
fun printAst(programAst: Program) {
println()
val printer = AstToSourceCode(::print, programAst)
printer.visit(programAst)
println()
}
private fun determineCompilationOptions(program: Program): CompilationOptions {
val mainModule = program.modules.first()
val outputType = (mainModule.statements.singleOrNull { it is Directive && it.directive == "%output" }
as? Directive)?.args?.single()?.name?.toUpperCase()
val launcherType = (mainModule.statements.singleOrNull { it is Directive && it.directive == "%launcher" }
as? Directive)?.args?.single()?.name?.toUpperCase()
mainModule.loadAddress = (mainModule.statements.singleOrNull { it is Directive && it.directive == "%address" }
as? Directive)?.args?.single()?.int ?: 0
val zpoption: String? = (mainModule.statements.singleOrNull { it is Directive && it.directive == "%zeropage" }
as? Directive)?.args?.single()?.name?.toUpperCase()
val allOptions = program.modules.flatMap { it.statements }.filter { it is Directive && it.directive == "%option" }.flatMap { (it as Directive).args }.toSet()
val floatsEnabled = allOptions.any { it.name == "enable_floats" }
val zpType: ZeropageType =
if (zpoption == null)
if(floatsEnabled) ZeropageType.FLOATSAFE else ZeropageType.KERNALSAFE
else
try {
ZeropageType.valueOf(zpoption)
} catch (x: IllegalArgumentException) {
ZeropageType.KERNALSAFE
// error will be printed by the astchecker
}
val zpReserved = mainModule.statements
.asSequence()
.filter { it is Directive && it.directive == "%zpreserved" }
.map { (it as Directive).args }
.map { it[0].int!!..it[1].int!! }
.toList()
return CompilationOptions(
if (outputType == null) OutputType.PRG else OutputType.valueOf(outputType),
if (launcherType == null) LauncherType.BASIC else LauncherType.valueOf(launcherType),
zpType, zpReserved, floatsEnabled
)
}

View File

@ -1,6 +1,6 @@
package prog8.compiler
import prog8.ast.*
import prog8.ast.base.*
class ZeropageDepletedError(message: String) : Exception(message)
@ -16,7 +16,10 @@ abstract class Zeropage(protected val options: CompilationOptions) {
fun available() = free.size
fun allocate(scopedname: String, datatype: DataType, position: Position?): Int {
assert(scopedname.isEmpty() || !allocations.values.any { it.first==scopedname } ) {"same scopedname can't be allocated twice"}
assert(scopedname.isEmpty() || !allocations.values.any { it.first==scopedname } ) {"isSameAs scopedname can't be allocated twice"}
if(options.zeropage==ZeropageType.DONTUSE)
throw CompilerException("zero page usage has been disabled")
val size =
when (datatype) {

View File

@ -1,478 +0,0 @@
package prog8.compiler.intermediate
import prog8.ast.*
import java.lang.Exception
import kotlin.math.abs
import kotlin.math.pow
class ValueException(msg: String?) : Exception(msg)
class Value(val type: DataType, numericvalueOrHeapId: Number) {
private var byteval: Short? = null
private var wordval: Int? = null
private var floatval: Double? = null
var heapId: Int = -1
private set
val asBooleanValue: Boolean
init {
when(type) {
DataType.UBYTE -> {
if(numericvalueOrHeapId.toInt() !in 0..255)
throw ValueException("value out of range: $numericvalueOrHeapId")
byteval = numericvalueOrHeapId.toShort()
asBooleanValue = byteval != (0.toShort())
}
DataType.BYTE -> {
if(numericvalueOrHeapId.toInt() !in -128..127)
throw ValueException("value out of range: $numericvalueOrHeapId")
byteval = numericvalueOrHeapId.toShort()
asBooleanValue = byteval != (0.toShort())
}
DataType.UWORD -> {
if(numericvalueOrHeapId.toInt() !in 0..65535)
throw ValueException("value out of range: $numericvalueOrHeapId")
wordval = numericvalueOrHeapId.toInt()
asBooleanValue = wordval != 0
}
DataType.WORD -> {
if(numericvalueOrHeapId.toInt() !in -32768..32767)
throw ValueException("value out of range: $numericvalueOrHeapId")
wordval = numericvalueOrHeapId.toInt()
asBooleanValue = wordval != 0
}
DataType.FLOAT -> {
floatval = numericvalueOrHeapId.toDouble()
asBooleanValue = floatval != 0.0
}
else -> {
if(numericvalueOrHeapId !is Int || numericvalueOrHeapId<0)
throw ValueException("for non-numeric types, the value should be a integer heapId >= 0")
heapId = numericvalueOrHeapId
asBooleanValue=true
}
}
}
override fun toString(): String {
return when(type) {
DataType.UBYTE -> "ub:%02x".format(byteval)
DataType.BYTE -> {
if(byteval!!<0)
"b:-%02x".format(abs(byteval!!.toInt()))
else
"b:%02x".format(byteval)
}
DataType.UWORD -> "uw:%04x".format(wordval)
DataType.WORD -> {
if(wordval!!<0)
"w:-%04x".format(abs(wordval!!))
else
"w:%04x".format(wordval)
}
DataType.FLOAT -> "f:$floatval"
else -> "heap:$heapId"
}
}
fun numericValue(): Number {
return when(type) {
in ByteDatatypes -> byteval!!
in WordDatatypes -> wordval!!
DataType.FLOAT -> floatval!!
else -> throw ValueException("invalid datatype for numeric value: $type")
}
}
fun integerValue(): Int {
return when(type) {
in ByteDatatypes -> byteval!!.toInt()
in WordDatatypes -> wordval!!
DataType.FLOAT -> throw ValueException("float to integer loss of precision")
else -> throw ValueException("invalid datatype for integer value: $type")
}
}
override fun hashCode(): Int {
val bh = byteval?.hashCode() ?: 0x10001234
val wh = wordval?.hashCode() ?: 0x01002345
val fh = floatval?.hashCode() ?: 0x00103456
return bh xor wh xor fh xor heapId.hashCode() xor type.hashCode()
}
override fun equals(other: Any?): Boolean {
if(other==null || other !is Value)
return false
if(type==other.type)
return if (type in IterableDatatypes) heapId==other.heapId else compareTo(other)==0
return compareTo(other)==0 // note: datatype doesn't matter
}
operator fun compareTo(other: Value): Int {
return if (type in NumericDatatypes && other.type in NumericDatatypes)
numericValue().toDouble().compareTo(other.numericValue().toDouble())
else throw ValueException("comparison can only be done between two numeric values")
}
private fun arithResult(leftDt: DataType, result: Number, rightDt: DataType, op: String): Value {
if(leftDt!=rightDt)
throw ValueException("left and right datatypes are not the same")
if(result.toDouble() < 0 ) {
return when(leftDt) {
DataType.UBYTE, DataType.UWORD -> {
// storing a negative number in an unsigned one is done by storing the 2's complement instead
val number = abs(result.toDouble().toInt())
if(leftDt==DataType.UBYTE)
Value(DataType.UBYTE, (number xor 255) + 1)
else
Value(DataType.UBYTE, (number xor 65535) + 1)
}
DataType.BYTE -> Value(DataType.BYTE, result.toInt())
DataType.WORD -> Value(DataType.WORD, result.toInt())
DataType.FLOAT -> Value(DataType.FLOAT, result)
else -> throw ValueException("$op on non-numeric type")
}
}
return when(leftDt) {
DataType.UBYTE -> Value(DataType.UBYTE, result.toInt() and 255)
DataType.BYTE -> Value(DataType.BYTE, result.toInt())
DataType.UWORD -> Value(DataType.UWORD, result.toInt() and 65535)
DataType.WORD -> Value(DataType.WORD, result.toInt())
DataType.FLOAT -> Value(DataType.FLOAT, result)
else -> throw ValueException("$op on non-numeric type")
}
}
fun add(other: Value): Value {
if(other.type == DataType.FLOAT && (type!= DataType.FLOAT))
throw ValueException("floating point loss of precision on type $type")
val v1 = numericValue()
val v2 = other.numericValue()
val result = v1.toDouble() + v2.toDouble()
return arithResult(type, result, other.type, "add")
}
fun sub(other: Value): Value {
if(other.type == DataType.FLOAT && (type!= DataType.FLOAT))
throw ValueException("floating point loss of precision on type $type")
val v1 = numericValue()
val v2 = other.numericValue()
val result = v1.toDouble() - v2.toDouble()
return arithResult(type, result, other.type, "sub")
}
fun mul(other: Value): Value {
if(other.type == DataType.FLOAT && (type!= DataType.FLOAT))
throw ValueException("floating point loss of precision on type $type")
val v1 = numericValue()
val v2 = other.numericValue()
val result = v1.toDouble() * v2.toDouble()
return arithResult(type, result, other.type, "mul")
}
fun div(other: Value): Value {
if(other.type == DataType.FLOAT && (type!= DataType.FLOAT))
throw ValueException("floating point loss of precision on type $type")
val v1 = numericValue()
val v2 = other.numericValue()
if(v2.toDouble()==0.0) {
when (type) {
DataType.UBYTE -> return Value(DataType.UBYTE, 255)
DataType.BYTE -> return Value(DataType.BYTE, 127)
DataType.UWORD -> return Value(DataType.UWORD, 65535)
DataType.WORD -> return Value(DataType.WORD, 32767)
else -> {}
}
}
val result = v1.toDouble() / v2.toDouble()
// NOTE: integer division returns integer result!
return when(type) {
DataType.UBYTE -> Value(DataType.UBYTE, result)
DataType.BYTE -> Value(DataType.BYTE, result)
DataType.UWORD -> Value(DataType.UWORD, result)
DataType.WORD -> Value(DataType.WORD, result)
DataType.FLOAT -> Value(DataType.FLOAT, result)
else -> throw ValueException("div on non-numeric type")
}
}
fun remainder(other: Value): Value? {
val v1 = numericValue()
val v2 = other.numericValue()
val result = v1.toDouble() % v2.toDouble()
return arithResult(type, result, other.type, "remainder")
}
fun pow(other: Value): Value {
val v1 = numericValue()
val v2 = other.numericValue()
val result = v1.toDouble().pow(v2.toDouble())
return arithResult(type, result, other.type,"pow")
}
fun shl(): Value {
val v = integerValue()
return when (type) {
DataType.UBYTE -> return Value(type, (v shl 1) and 255)
DataType.BYTE -> {
if(v<0)
Value(type, -((-v shl 1) and 255))
else
Value(type, (v shl 1) and 255)
}
DataType.UWORD -> return Value(type, (v shl 1) and 65535)
DataType.WORD -> {
if(v<0)
Value(type, -((-v shl 1) and 65535))
else
Value(type, (v shl 1) and 65535)
}
else -> throw ValueException("invalid type for shl: $type")
}
}
fun shr(): Value {
val v = integerValue()
return when(type){
DataType.UBYTE -> Value(type, (v ushr 1) and 255)
DataType.BYTE -> Value(type, v shr 1)
DataType.UWORD -> Value(type, (v ushr 1) and 65535)
DataType.WORD -> Value(type, v shr 1)
else -> throw ValueException("invalid type for shr: $type")
}
}
fun rol(carry: Boolean): Pair<Value, Boolean> {
// 9 or 17 bit rotate left (with carry))
return when(type) {
DataType.UBYTE -> {
val v = byteval!!.toInt()
val newCarry = (v and 0x80) != 0
val newval = (v and 0x7f shl 1) or (if(carry) 1 else 0)
Pair(Value(DataType.UBYTE, newval), newCarry)
}
DataType.UWORD -> {
val v = wordval!!
val newCarry = (v and 0x8000) != 0
val newval = (v and 0x7fff shl 1) or (if(carry) 1 else 0)
Pair(Value(DataType.UWORD, newval), newCarry)
}
else -> throw ValueException("rol can only work on byte/word")
}
}
fun ror(carry: Boolean): Pair<Value, Boolean> {
// 9 or 17 bit rotate right (with carry)
return when(type) {
DataType.UBYTE -> {
val v = byteval!!.toInt()
val newCarry = v and 1 != 0
val newval = (v ushr 1) or (if(carry) 0x80 else 0)
Pair(Value(DataType.UBYTE, newval), newCarry)
}
DataType.UWORD -> {
val v = wordval!!
val newCarry = v and 1 != 0
val newval = (v ushr 1) or (if(carry) 0x8000 else 0)
Pair(Value(DataType.UWORD, newval), newCarry)
}
else -> throw ValueException("ror2 can only work on byte/word")
}
}
fun rol2(): Value {
// 8 or 16 bit rotate left
return when(type) {
DataType.UBYTE -> {
val v = byteval!!.toInt()
val carry = (v and 0x80) ushr 7
val newval = (v and 0x7f shl 1) or carry
Value(DataType.UBYTE, newval)
}
DataType.UWORD -> {
val v = wordval!!
val carry = (v and 0x8000) ushr 15
val newval = (v and 0x7fff shl 1) or carry
Value(DataType.UWORD, newval)
}
else -> throw ValueException("rol2 can only work on byte/word")
}
}
fun ror2(): Value {
// 8 or 16 bit rotate right
return when(type) {
DataType.UBYTE -> {
val v = byteval!!.toInt()
val carry = v and 1 shl 7
val newval = (v ushr 1) or carry
Value(DataType.UBYTE, newval)
}
DataType.UWORD -> {
val v = wordval!!
val carry = v and 1 shl 15
val newval = (v ushr 1) or carry
Value(DataType.UWORD, newval)
}
else -> throw ValueException("ror2 can only work on byte/word")
}
}
fun neg(): Value {
return when(type) {
DataType.BYTE -> Value(DataType.BYTE, -(byteval!!))
DataType.WORD -> Value(DataType.WORD, -(wordval!!))
DataType.FLOAT -> Value(DataType.FLOAT, -(floatval)!!)
else -> throw ValueException("neg can only work on byte/word/float")
}
}
fun abs(): Value {
return when(type) {
DataType.BYTE -> Value(DataType.BYTE, abs(byteval!!.toInt()))
DataType.WORD -> Value(DataType.WORD, abs(wordval!!))
DataType.FLOAT -> Value(DataType.FLOAT, abs(floatval!!))
else -> throw ValueException("abs can only work on byte/word/float")
}
}
fun bitand(other: Value): Value {
val v1 = integerValue()
val v2 = other.integerValue()
val result = v1 and v2
return Value(type, result)
}
fun bitor(other: Value): Value {
val v1 = integerValue()
val v2 = other.integerValue()
val result = v1 or v2
return Value(type, result)
}
fun bitxor(other: Value): Value {
val v1 = integerValue()
val v2 = other.integerValue()
val result = v1 xor v2
return Value(type, result)
}
fun and(other: Value) = Value(DataType.UBYTE, if (this.asBooleanValue && other.asBooleanValue) 1 else 0)
fun or(other: Value) = Value(DataType.UBYTE, if (this.asBooleanValue || other.asBooleanValue) 1 else 0)
fun xor(other: Value) = Value(DataType.UBYTE, if (this.asBooleanValue xor other.asBooleanValue) 1 else 0)
fun not() = Value(DataType.UBYTE, if (this.asBooleanValue) 0 else 1)
fun inv(): Value {
return when(type) {
DataType.UBYTE -> Value(DataType.UBYTE, byteval!!.toInt().inv() and 255)
DataType.UWORD -> Value(DataType.UWORD, wordval!!.inv() and 65535)
else -> throw ValueException("inv can only work on byte/word")
}
}
fun inc(): Value {
return when(type) {
DataType.UBYTE -> Value(DataType.UBYTE, (byteval!! + 1) and 255)
DataType.UWORD -> Value(DataType.UWORD, (wordval!! + 1) and 65535)
DataType.FLOAT -> Value(DataType.FLOAT, floatval!! + 1)
else -> throw ValueException("inc can only work on byte/word/float")
}
}
fun dec(): Value {
return when(type) {
DataType.UBYTE -> Value(DataType.UBYTE, (byteval!! - 1) and 255)
DataType.UWORD -> Value(DataType.UWORD, (wordval!! - 1) and 65535)
DataType.FLOAT -> Value(DataType.FLOAT, floatval!! - 1)
else -> throw ValueException("dec can only work on byte/word/float")
}
}
fun msb(): Value {
return when(type) {
in ByteDatatypes -> Value(DataType.UBYTE, 0)
in WordDatatypes -> Value(DataType.UBYTE, wordval!! ushr 8 and 255)
else -> throw ValueException("msb can only work on (u)byte/(u)word")
}
}
fun cast(targetType: DataType): Value {
return when (type) {
DataType.UBYTE -> {
when (targetType) {
DataType.UBYTE -> this
DataType.BYTE -> {
if(byteval!!<=127)
Value(DataType.BYTE, byteval!!)
else
Value(DataType.BYTE, -(256-byteval!!))
}
DataType.UWORD -> Value(DataType.UWORD, numericValue())
DataType.WORD -> Value(DataType.WORD, numericValue())
DataType.FLOAT -> Value(DataType.FLOAT, numericValue())
else -> throw ValueException("invalid type cast from $type to $targetType")
}
}
DataType.BYTE -> {
when (targetType) {
DataType.BYTE -> this
DataType.UBYTE -> Value(DataType.UBYTE, integerValue() and 255)
DataType.UWORD -> Value(DataType.UWORD, integerValue() and 65535)
DataType.WORD -> Value(DataType.WORD, integerValue())
DataType.FLOAT -> Value(DataType.FLOAT, numericValue())
else -> throw ValueException("invalid type cast from $type to $targetType")
}
}
DataType.UWORD -> {
when (targetType) {
in ByteDatatypes -> Value(DataType.UBYTE, integerValue() and 255)
DataType.UWORD -> this
DataType.WORD -> {
if(integerValue()<=32767)
Value(DataType.WORD, integerValue())
else
Value(DataType.WORD, -(65536-integerValue()))
}
DataType.FLOAT -> Value(DataType.FLOAT, numericValue())
else -> throw ValueException("invalid type cast from $type to $targetType")
}
}
DataType.WORD -> {
when (targetType) {
in ByteDatatypes -> Value(DataType.UBYTE, integerValue() and 255)
DataType.UWORD -> Value(DataType.UWORD, integerValue() and 65535)
DataType.WORD -> this
DataType.FLOAT -> Value(DataType.FLOAT, numericValue())
else -> throw ValueException("invalid type cast from $type to $targetType")
}
}
DataType.FLOAT -> {
when (targetType) {
DataType.BYTE -> {
val integer=numericValue().toInt()
if(integer in -128..127)
Value(DataType.BYTE, integer)
else
throw ValueException("overflow when casting float to byte: $this")
}
DataType.UBYTE -> Value(DataType.UBYTE, numericValue().toInt() and 255)
DataType.UWORD -> Value(DataType.UWORD, numericValue().toInt() and 65535)
DataType.WORD -> {
val integer=numericValue().toInt()
if(integer in -32768..32767)
Value(DataType.WORD, integer)
else
throw ValueException("overflow when casting float to word: $this")
}
DataType.FLOAT -> this
else -> throw ValueException("invalid type cast from $type to $targetType")
}
}
else -> throw ValueException("invalid type cast from $type to $targetType")
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -9,10 +9,25 @@ class AssemblyProgram(val name: String) {
private val assemblyFile = "$name.asm"
private val viceMonListFile = "$name.vice-mon-list"
companion object {
// 6502 opcodes (including aliases and illegal opcodes), these cannot be used as variable or label names
val opcodeNames = setOf("adc", "ahx", "alr", "anc", "and", "ane", "arr", "asl", "asr", "axs", "bcc", "bcs",
"beq", "bge", "bit", "blt", "bmi", "bne", "bpl", "brk", "bvc", "bvs", "clc",
"cld", "cli", "clv", "cmp", "cpx", "cpy", "dcm", "dcp", "dec", "dex", "dey",
"eor", "gcc", "gcs", "geq", "gge", "glt", "gmi", "gne", "gpl", "gvc", "gvs",
"inc", "ins", "inx", "iny", "isb", "isc", "jam", "jmp", "jsr", "lae", "las",
"lax", "lda", "lds", "ldx", "ldy", "lsr", "lxa", "nop", "ora", "pha", "php",
"pla", "plp", "rla", "rol", "ror", "rra", "rti", "rts", "sax", "sbc", "sbx",
"sec", "sed", "sei", "sha", "shl", "shr", "shs", "shx", "shy", "slo", "sre",
"sta", "stx", "sty", "tas", "tax", "tay", "tsx", "txa", "txs", "tya", "xaa")
}
fun assemble(options: CompilationOptions) {
// add "-Wlong-branch" to see warnings about conversion of branch instructions to jumps
val command = mutableListOf("64tass", "--ascii", "--case-sensitive", "--long-branch", "-Wall", "-Wno-strict-bool",
"-Werror", "-Wno-error=long-branch", "--dump-labels", "--vice-labels", "-l", viceMonListFile, "--no-monitor")
val command = mutableListOf("64tass", "--ascii", "--case-sensitive", "--long-branch",
"-Wall", "-Wno-strict-bool", "-Wno-shadow", "-Werror", "-Wno-error=long-branch",
"--dump-labels", "--vice-labels", "-l", viceMonListFile, "--no-monitor")
val outFile = when(options.output) {
OutputType.PRG -> {
@ -41,7 +56,7 @@ class AssemblyProgram(val name: String) {
private fun generateBreakpointList() {
// builds list of breakpoints, appends to monitor list file
val breakpoints = mutableListOf<String>()
val pattern = Regex("""al (\w+) \S+_prog8_breakpoint_\d+.?""") // gather breakpoints by the source label that's generated for them
val pattern = Regex("""al (\w+) \S+_prog8_breakpoint_\d+.?""") // gather breakpoints by the source label that"s generated for them
for(line in File(viceMonListFile).readLines()) {
val match = pattern.matchEntire(line)
if(match!=null)

View File

@ -1,186 +0,0 @@
package prog8.compiler.target.c64
import prog8.compiler.CompilationOptions
import prog8.compiler.CompilerException
import prog8.compiler.Zeropage
import prog8.compiler.ZeropageType
import java.awt.Color
import java.awt.image.BufferedImage
import javax.imageio.ImageIO
import kotlin.math.absoluteValue
import kotlin.math.pow
// 5-byte cbm MFLPT format limitations:
const val FLOAT_MAX_POSITIVE = 1.7014118345e+38 // bytes: 255,127,255,255,255
const val FLOAT_MAX_NEGATIVE = -1.7014118345e+38 // bytes: 255,255,255,255,255
const val BASIC_LOAD_ADDRESS = 0x0801
const val RAW_LOAD_ADDRESS = 0xc000
// the 2*256 byte evaluation stack (on which bytes, words, and even floats are stored during calculations)
const val ESTACK_LO = 0xce00 // $ce00-$ceff inclusive
const val ESTACK_HI = 0xcf00 // $cf00-$cfff inclusive
class C64Zeropage(options: CompilationOptions) : Zeropage(options) {
companion object {
const val SCRATCH_B1 = 0x02
const val SCRATCH_REG = 0x03 // temp storage for a register
const val SCRATCH_REG_X = 0xfa // temp storage for register X (the evaluation stack pointer)
const val SCRATCH_W1 = 0xfb // $fb+$fc
const val SCRATCH_W2 = 0xfd // $fd+$fe
}
override val exitProgramStrategy: ExitProgramStrategy = when(options.zeropage) {
ZeropageType.BASICSAFE -> ExitProgramStrategy.CLEAN_EXIT
ZeropageType.FLOATSAFE, ZeropageType.KERNALSAFE, ZeropageType.FULL -> ExitProgramStrategy.SYSTEM_RESET
}
init {
if(options.floats && options.zeropage!=ZeropageType.FLOATSAFE && options.zeropage!=ZeropageType.BASICSAFE)
throw CompilerException("when floats are enabled, zero page type should be 'floatsafe' or 'basicsafe'")
if(options.zeropage == ZeropageType.FULL) {
free.addAll(0x04 .. 0xf9)
free.add(0xff)
free.removeAll(listOf(SCRATCH_B1, SCRATCH_REG, SCRATCH_REG_X, SCRATCH_W1, SCRATCH_W1+1, SCRATCH_W2, SCRATCH_W2+1))
free.removeAll(listOf(0xa0, 0xa1, 0xa2, 0x91, 0xc0, 0xc5, 0xcb, 0xf5, 0xf6)) // these are updated by IRQ
} else {
if(options.zeropage == ZeropageType.KERNALSAFE || options.zeropage == ZeropageType.FLOATSAFE) {
free.addAll(listOf(0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21,
0x22, 0x23, 0x24, 0x25,
0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46,
0x47, 0x48, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x51, 0x52, 0x53,
0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60,
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72,
0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c,
0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a,
0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0xff
// 0x90-0xfa is 'kernel work storage area'
))
}
if(options.zeropage == ZeropageType.FLOATSAFE) {
// remove the zero page locations used for floating point operations from the free list
free.removeAll(listOf(
0x12, 0x26, 0x27, 0x28, 0x29, 0x2a,
0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60,
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72,
0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0xf
))
}
// add the other free Zp addresses,
// these are valid for the C-64 (when no RS232 I/O is performed) but to keep BASIC running fully:
free.addAll(listOf(0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0d, 0x0e,
0x94, 0x95, 0xa7, 0xa8, 0xa9, 0xaa,
0xb5, 0xb6, 0xf7, 0xf8, 0xf9))
}
assert(SCRATCH_B1 !in free)
assert(SCRATCH_REG !in free)
assert(SCRATCH_REG_X !in free)
assert(SCRATCH_W1 !in free)
assert(SCRATCH_W2 !in free)
for(reserved in options.zpReserved)
reserve(reserved)
}
}
data class Mflpt5(val b0: Short, val b1: Short, val b2: Short, val b3: Short, val b4: Short) {
companion object {
const val MemorySize = 5
val zero = Mflpt5(0, 0,0,0,0)
fun fromNumber(num: Number): Mflpt5 {
// see https://en.wikipedia.org/wiki/Microsoft_Binary_Format
// and https://sourceforge.net/p/acme-crossass/code-0/62/tree/trunk/ACME_Lib/cbm/mflpt.a
// and https://en.wikipedia.org/wiki/IEEE_754-1985
val flt = num.toDouble()
if(flt < FLOAT_MAX_NEGATIVE || flt > FLOAT_MAX_POSITIVE)
throw CompilerException("floating point number out of 5-byte mflpt range: $this")
if(flt==0.0)
return zero
val sign = if(flt<0.0) 0x80L else 0x00L
var exponent = 128 + 32 // 128 is cbm's bias, 32 is this algo's bias
var mantissa = flt.absoluteValue
// if mantissa is too large, shift right and adjust exponent
while(mantissa >= 0x100000000) {
mantissa /= 2.0
exponent ++
}
// if mantissa is too small, shift left and adjust exponent
while(mantissa < 0x80000000) {
mantissa *= 2.0
exponent --
}
return when {
exponent<0 -> zero // underflow, use zero instead
exponent>255 -> throw CompilerException("floating point overflow: $this")
exponent==0 -> zero
else -> {
val mantLong = mantissa.toLong()
Mflpt5(
exponent.toShort(),
(mantLong.and(0x7f000000L) ushr 24).or(sign).toShort(),
(mantLong.and(0x00ff0000L) ushr 16).toShort(),
(mantLong.and(0x0000ff00L) ushr 8).toShort(),
(mantLong.and(0x000000ffL)).toShort())
}
}
}
}
fun toDouble(): Double {
if(this == zero) return 0.0
val exp = b0 - 128
val sign = (b1.toInt() and 0x80) > 0
val number = 0x80000000L.or(b1.toLong() shl 24).or(b2.toLong() shl 16).or(b3.toLong() shl 8).or(b4.toLong())
val result = number.toDouble() * (2.0).pow(exp) / 0x100000000
return if(sign) -result else result
}
}
object Charset {
private val normalImg = ImageIO.read(javaClass.getResource("/charset/c64/charset-normal.png"))
private val shiftedImg = ImageIO.read(javaClass.getResource("/charset/c64/charset-shifted.png"))
private fun scanChars(img: BufferedImage): Array<BufferedImage> {
val transparent = BufferedImage(img.width, img.height, BufferedImage.TYPE_INT_ARGB)
transparent.createGraphics().drawImage(img, 0, 0, null)
val black = Color(0,0,0).rgb
val nopixel = Color(0,0,0,0).rgb
for(y in 0 until transparent.height) {
for(x in 0 until transparent.width) {
val col = transparent.getRGB(x, y)
if(col==black)
transparent.setRGB(x, y, nopixel)
}
}
val numColumns = transparent.width / 8
val charImages = (0..255).map {
val charX = it % numColumns
val charY = it/ numColumns
transparent.getSubimage(charX*8, charY*8, 8, 8)
}
return charImages.toTypedArray()
}
val normalChars = scanChars(normalImg)
val shiftedChars = scanChars(shiftedImg)
}

View File

@ -0,0 +1,255 @@
package prog8.compiler.target.c64
import prog8.compiler.CompilationOptions
import prog8.compiler.CompilerException
import prog8.compiler.Zeropage
import prog8.compiler.ZeropageType
import java.awt.Color
import java.awt.image.BufferedImage
import javax.imageio.ImageIO
import kotlin.math.absoluteValue
import kotlin.math.pow
object MachineDefinition {
// 5-byte cbm MFLPT format limitations:
const val FLOAT_MAX_POSITIVE = 1.7014118345e+38 // bytes: 255,127,255,255,255
const val FLOAT_MAX_NEGATIVE = -1.7014118345e+38 // bytes: 255,255,255,255,255
const val BASIC_LOAD_ADDRESS = 0x0801
const val RAW_LOAD_ADDRESS = 0xc000
// the 2*256 byte evaluation stack (on which bytes, words, and even floats are stored during calculations)
// and some heavily used string constants derived from the two values above
const val ESTACK_LO_VALUE = 0xce00 // $ce00-$ceff inclusive
const val ESTACK_HI_VALUE = 0xcf00 // $cf00-$cfff inclusive
const val ESTACK_LO_HEX = "\$ce00"
const val ESTACK_LO_PLUS1_HEX = "\$ce01"
const val ESTACK_LO_PLUS2_HEX = "\$ce02"
const val ESTACK_HI_HEX = "\$cf00"
const val ESTACK_HI_PLUS1_HEX = "\$cf01"
const val ESTACK_HI_PLUS2_HEX = "\$cf02"
class C64Zeropage(options: CompilationOptions) : Zeropage(options) {
companion object {
const val SCRATCH_B1 = 0x02
const val SCRATCH_REG = 0x03 // temp storage for a register
const val SCRATCH_REG_X = 0xfa // temp storage for register X (the evaluation stack pointer)
const val SCRATCH_W1 = 0xfb // $fb+$fc
const val SCRATCH_W2 = 0xfd // $fd+$fe
}
override val exitProgramStrategy: ExitProgramStrategy = when (options.zeropage) {
ZeropageType.BASICSAFE, ZeropageType.DONTUSE -> ExitProgramStrategy.CLEAN_EXIT
ZeropageType.FLOATSAFE, ZeropageType.KERNALSAFE, ZeropageType.FULL -> ExitProgramStrategy.SYSTEM_RESET
}
init {
if (options.floats && options.zeropage !in setOf(ZeropageType.FLOATSAFE, ZeropageType.BASICSAFE, ZeropageType.DONTUSE ))
throw CompilerException("when floats are enabled, zero page type should be 'floatsafe' or 'basicsafe' or 'dontuse'")
if (options.zeropage == ZeropageType.FULL) {
free.addAll(0x04..0xf9)
free.add(0xff)
free.removeAll(listOf(SCRATCH_B1, SCRATCH_REG, SCRATCH_REG_X, SCRATCH_W1, SCRATCH_W1 + 1, SCRATCH_W2, SCRATCH_W2 + 1))
free.removeAll(listOf(0xa0, 0xa1, 0xa2, 0x91, 0xc0, 0xc5, 0xcb, 0xf5, 0xf6)) // these are updated by IRQ
} else {
if (options.zeropage == ZeropageType.KERNALSAFE || options.zeropage == ZeropageType.FLOATSAFE) {
free.addAll(listOf(0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21,
0x22, 0x23, 0x24, 0x25,
0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46,
0x47, 0x48, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x51, 0x52, 0x53,
0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60,
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72,
0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c,
0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a,
0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0xff
// 0x90-0xfa is 'kernel work storage area'
))
}
if (options.zeropage == ZeropageType.FLOATSAFE) {
// remove the zero page locations used for floating point operations from the free list
free.removeAll(listOf(
0x12, 0x26, 0x27, 0x28, 0x29, 0x2a,
0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60,
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72,
0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0xf
))
}
if(options.zeropage!=ZeropageType.DONTUSE) {
// add the other free Zp addresses,
// these are valid for the C-64 (when no RS232 I/O is performed) but to keep BASIC running fully:
free.addAll(listOf(0x04, 0x05, 0x06, 0x0a, 0x0e,
0x94, 0x95, 0xa7, 0xa8, 0xa9, 0xaa,
0xb5, 0xb6, 0xf7, 0xf8, 0xf9))
} else {
// don't use the zeropage at all
free.clear()
}
}
assert(SCRATCH_B1 !in free)
assert(SCRATCH_REG !in free)
assert(SCRATCH_REG_X !in free)
assert(SCRATCH_W1 !in free)
assert(SCRATCH_W2 !in free)
for (reserved in options.zpReserved)
reserve(reserved)
}
}
data class Mflpt5(val b0: Short, val b1: Short, val b2: Short, val b3: Short, val b4: Short) {
companion object {
const val MemorySize = 5
val zero = Mflpt5(0, 0, 0, 0, 0)
fun fromNumber(num: Number): Mflpt5 {
// see https://en.wikipedia.org/wiki/Microsoft_Binary_Format
// and https://sourceforge.net/p/acme-crossass/code-0/62/tree/trunk/ACME_Lib/cbm/mflpt.a
// and https://en.wikipedia.org/wiki/IEEE_754-1985
val flt = num.toDouble()
if (flt < FLOAT_MAX_NEGATIVE || flt > FLOAT_MAX_POSITIVE)
throw CompilerException("floating point number out of 5-byte mflpt range: $this")
if (flt == 0.0)
return zero
val sign = if (flt < 0.0) 0x80L else 0x00L
var exponent = 128 + 32 // 128 is cbm's bias, 32 is this algo's bias
var mantissa = flt.absoluteValue
// if mantissa is too large, shift right and adjust exponent
while (mantissa >= 0x100000000) {
mantissa /= 2.0
exponent++
}
// if mantissa is too small, shift left and adjust exponent
while (mantissa < 0x80000000) {
mantissa *= 2.0
exponent--
}
return when {
exponent < 0 -> zero // underflow, use zero instead
exponent > 255 -> throw CompilerException("floating point overflow: $this")
exponent == 0 -> zero
else -> {
val mantLong = mantissa.toLong()
Mflpt5(
exponent.toShort(),
(mantLong.and(0x7f000000L) ushr 24).or(sign).toShort(),
(mantLong.and(0x00ff0000L) ushr 16).toShort(),
(mantLong.and(0x0000ff00L) ushr 8).toShort(),
(mantLong.and(0x000000ffL)).toShort())
}
}
}
}
fun toDouble(): Double {
if (this == zero) return 0.0
val exp = b0 - 128
val sign = (b1.toInt() and 0x80) > 0
val number = 0x80000000L.or(b1.toLong() shl 24).or(b2.toLong() shl 16).or(b3.toLong() shl 8).or(b4.toLong())
val result = number.toDouble() * (2.0).pow(exp) / 0x100000000
return if (sign) -result else result
}
}
object Charset {
private val normalImg = ImageIO.read(javaClass.getResource("/charset/c64/charset-normal.png"))
private val shiftedImg = ImageIO.read(javaClass.getResource("/charset/c64/charset-shifted.png"))
private fun scanChars(img: BufferedImage): Array<BufferedImage> {
val transparent = BufferedImage(img.width, img.height, BufferedImage.TYPE_INT_ARGB)
transparent.createGraphics().drawImage(img, 0, 0, null)
val black = Color(0, 0, 0).rgb
val nopixel = Color(0, 0, 0, 0).rgb
for (y in 0 until transparent.height) {
for (x in 0 until transparent.width) {
val col = transparent.getRGB(x, y)
if (col == black)
transparent.setRGB(x, y, nopixel)
}
}
val numColumns = transparent.width / 8
val charImages = (0..255).map {
val charX = it % numColumns
val charY = it / numColumns
transparent.getSubimage(charX * 8, charY * 8, 8, 8)
}
return charImages.toTypedArray()
}
val normalChars = scanChars(normalImg)
val shiftedChars = scanChars(shiftedImg)
private val coloredNormalChars = mutableMapOf<Short, Array<BufferedImage>>()
fun getColoredChar(screenCode: Short, color: Short): BufferedImage {
val colorIdx = (color % colorPalette.size).toShort()
val chars = coloredNormalChars[colorIdx]
if (chars != null)
return chars[screenCode.toInt()]
val coloredChars = mutableListOf<BufferedImage>()
val transparent = Color(0, 0, 0, 0).rgb
val rgb = colorPalette[colorIdx.toInt()].rgb
for (c in normalChars) {
val colored = c.copy()
for (y in 0 until colored.height)
for (x in 0 until colored.width) {
if (colored.getRGB(x, y) != transparent) {
colored.setRGB(x, y, rgb)
}
}
coloredChars.add(colored)
}
coloredNormalChars[colorIdx] = coloredChars.toTypedArray()
return coloredNormalChars.getValue(colorIdx)[screenCode.toInt()]
}
}
private fun BufferedImage.copy(): BufferedImage {
val bcopy = BufferedImage(this.width, this.height, this.type)
val g = bcopy.graphics
g.drawImage(this, 0, 0, null)
g.dispose()
return bcopy
}
val colorPalette = listOf( // this is Pepto's Commodore-64 palette http://www.pepto.de/projects/colorvic/
Color(0x000000), // 0 = black
Color(0xFFFFFF), // 1 = white
Color(0x813338), // 2 = red
Color(0x75cec8), // 3 = cyan
Color(0x8e3c97), // 4 = purple
Color(0x56ac4d), // 5 = green
Color(0x2e2c9b), // 6 = blue
Color(0xedf171), // 7 = yellow
Color(0x8e5029), // 8 = orange
Color(0x553800), // 9 = brown
Color(0xc46c71), // 10 = light red
Color(0x4a4a4a), // 11 = dark grey
Color(0x7b7b7b), // 12 = medium grey
Color(0xa9ff9f), // 13 = light green
Color(0x706deb), // 14 = light blue
Color(0xb2b2b2) // 15 = light grey
)
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,48 @@
package prog8.compiler.target.c64.codegen2
import prog8.ast.Program
import prog8.ast.base.AstException
import prog8.ast.base.NameError
import prog8.ast.processing.IAstModifyingVisitor
import prog8.ast.statements.AnonymousScope
import prog8.ast.statements.Statement
import prog8.ast.statements.VarDecl
class AnonymousScopeVarsCleanup(val program: Program): IAstModifyingVisitor {
private val checkResult: MutableList<AstException> = mutableListOf()
private val varsToMove: MutableMap<AnonymousScope, List<VarDecl>> = mutableMapOf()
fun result(): List<AstException> {
return checkResult
}
override fun visit(program: Program) {
varsToMove.clear()
super.visit(program)
for((scope, decls) in varsToMove) {
val sub = scope.definingSubroutine()!!
val existingVariables = sub.statements.filterIsInstance<VarDecl>().associate { it.name to it }
var conflicts = false
decls.forEach {
val existing = existingVariables[it.name]
if (existing!=null) {
checkResult.add(NameError("variable ${it.name} already defined in subroutine ${sub.name} at ${existing.position}", it.position))
conflicts = true
}
}
if (!conflicts) {
decls.forEach { scope.remove(it) }
sub.statements.addAll(0, decls)
decls.forEach { it.parent = sub }
}
}
}
override fun visit(scope: AnonymousScope): Statement {
val scope2 = super.visit(scope) as AnonymousScope
val vardecls = scope2.statements.filterIsInstance<VarDecl>()
varsToMove[scope2] = vardecls
return scope2
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,11 @@
package prog8.compiler.target.c64
package prog8.compiler.target.c64.codegen2
import prog8.compiler.target.c64.MachineDefinition.ESTACK_LO_HEX
import prog8.compiler.target.c64.MachineDefinition.ESTACK_LO_PLUS1_HEX
// note: see https://wiki.nesdev.com/w/index.php/6502_assembly_optimisations
import prog8.compiler.toHex
fun optimizeAssembly(lines: MutableList<String>): Int {
@ -24,10 +29,19 @@ fun optimizeAssembly(lines: MutableList<String>): Int {
numberOfOptimizations++
}
removeLines = optimizeCmpSequence(linesByFour)
if(removeLines.isNotEmpty()) {
for (i in removeLines.reversed())
lines.removeAt(i)
linesByFour = getLinesBy(lines, 4)
numberOfOptimizations++
}
removeLines = optimizeStoreLoadSame(linesByFour)
if(removeLines.isNotEmpty()) {
for (i in removeLines.reversed())
lines.removeAt(i)
linesByFour = getLinesBy(lines, 4)
numberOfOptimizations++
}
@ -36,6 +50,7 @@ fun optimizeAssembly(lines: MutableList<String>): Int {
if(removeLines.isNotEmpty()) {
for (i in removeLines.reversed())
lines.removeAt(i)
linesByFourteen = getLinesBy(lines, 14)
numberOfOptimizations++
}
@ -44,16 +59,36 @@ fun optimizeAssembly(lines: MutableList<String>): Int {
return numberOfOptimizations
}
fun optimizeCmpSequence(linesByFour: List<List<IndexedValue<String>>>): List<Int> {
// the when statement (on bytes) generates a sequence of:
// lda $ce01,x
// cmp #$20
// beq check_prog8_s72choice_32
// lda $ce01,x
// cmp #$21
// beq check_prog8_s73choice_33
// the repeated lda can be removed
val removeLines = mutableListOf<Int>()
for(lines in linesByFour) {
if(lines[0].value.trim()=="lda $ESTACK_LO_PLUS1_HEX,x" &&
lines[1].value.trim().startsWith("cmp ") &&
lines[2].value.trim().startsWith("beq ") &&
lines[3].value.trim()=="lda $ESTACK_LO_PLUS1_HEX,x") {
removeLines.add(lines[3].index) // remove the second lda
}
}
return removeLines
}
fun optimizeUselessStackByteWrites(linesByFour: List<List<IndexedValue<String>>>): List<Int> {
// sta on stack, dex, inx, lda from stack -> eliminate this useless stack byte write
// this is a lot harder for word values because the instruction sequence varies.
val removeLines = mutableListOf<Int>()
for(lines in linesByFour) {
if(lines[0].value.trim()=="sta ${ESTACK_LO.toHex()},x" &&
if(lines[0].value.trim()=="sta $ESTACK_LO_HEX,x" &&
lines[1].value.trim()=="dex" &&
lines[2].value.trim()=="inx" &&
lines[3].value.trim()=="lda ${ESTACK_LO.toHex()},x") {
removeLines.add(lines[0].index)
lines[3].value.trim()=="lda $ESTACK_LO_HEX,x") {
removeLines.add(lines[1].index)
removeLines.add(lines[2].index)
removeLines.add(lines[3].index)
@ -64,7 +99,7 @@ fun optimizeUselessStackByteWrites(linesByFour: List<List<IndexedValue<String>>>
fun optimizeSameAssignments(linesByFourteen: List<List<IndexedValue<String>>>): List<Int> {
// optimize sequential assignments of the same value to various targets (bytes, words, floats)
// optimize sequential assignments of the isSameAs value to various targets (bytes, words, floats)
// the float one is the one that requires 2*7=14 lines of code to check...
// @todo a better place to do this is in the Compiler instead and work on opcodes, and never even create the inefficient asm...
@ -86,7 +121,7 @@ fun optimizeSameAssignments(linesByFourteen: List<List<IndexedValue<String>>>):
val thirdvalue = fifth.substring(4)
val fourthvalue = sixth.substring(4)
if(firstvalue==thirdvalue && secondvalue==fourthvalue) {
// lda/ldy sta/sty twice the same word --> remove second lda/ldy pair (fifth and sixth lines)
// lda/ldy sta/sty twice the isSameAs word --> remove second lda/ldy pair (fifth and sixth lines)
removeLines.add(pair[4].index)
removeLines.add(pair[5].index)
}
@ -96,7 +131,7 @@ fun optimizeSameAssignments(linesByFourteen: List<List<IndexedValue<String>>>):
val firstvalue = first.substring(4)
val secondvalue = third.substring(4)
if(firstvalue==secondvalue) {
// lda value / sta ? / lda same-value / sta ? -> remove second lda (third line)
// lda value / sta ? / lda isSameAs-value / sta ? -> remove second lda (third line)
removeLines.add(pair[2].index)
}
}
@ -128,7 +163,7 @@ fun optimizeSameAssignments(linesByFourteen: List<List<IndexedValue<String>>>):
}
private fun getLinesBy(lines: MutableList<String>, windowSize: Int) =
// all lines (that aren't empty or comments) in sliding pairs of 2
// all lines (that aren't empty or comments) in sliding windows of certain size
lines.withIndex().filter { it.value.isNotBlank() && !it.value.trimStart().startsWith(';') }.windowed(windowSize, partialWindows = false)
private fun optimizeStoreLoadSame(linesByFour: List<List<IndexedValue<String>>>): List<Int> {

View File

@ -0,0 +1,252 @@
package prog8.compiler.target.c64.codegen2
import prog8.ast.IFunctionCall
import prog8.ast.Program
import prog8.ast.base.ByteDatatypes
import prog8.ast.base.DataType
import prog8.ast.base.Register
import prog8.ast.base.WordDatatypes
import prog8.ast.expressions.*
import prog8.ast.statements.AssignTarget
import prog8.ast.statements.FunctionCallStatement
import prog8.compiler.CompilationOptions
import prog8.compiler.Zeropage
import prog8.compiler.target.c64.MachineDefinition.ESTACK_HI_PLUS1_HEX
import prog8.compiler.target.c64.MachineDefinition.ESTACK_LO_HEX
import prog8.compiler.target.c64.MachineDefinition.ESTACK_LO_PLUS1_HEX
import prog8.compiler.toHex
import prog8.functions.FunctionSignature
internal class BuiltinFunctionsAsmGen(private val program: Program,
private val options: CompilationOptions,
private val zeropage: Zeropage,
private val asmgen: AsmGen2) {
internal fun translateFunctioncallExpression(fcall: FunctionCall, func: FunctionSignature) {
translateFunctioncall(fcall, func, false)
}
internal fun translateFunctioncallStatement(fcall: FunctionCallStatement, func: FunctionSignature) {
translateFunctioncall(fcall, func, true)
}
private fun translateFunctioncall(fcall: IFunctionCall, func: FunctionSignature, discardResult: Boolean) {
val functionName = fcall.target.nameInSource.last()
if(discardResult) {
if(func.pure)
return // can just ignore the whole function call altogether
else if(func.returntype!=null)
throw AssemblyError("discarding result of non-pure function $fcall")
}
when(functionName) {
"msb" -> {
val arg = fcall.arglist.single()
if(arg.inferType(program) !in WordDatatypes)
throw AssemblyError("msb required word argument")
if(arg is NumericLiteralValue)
throw AssemblyError("should have been const-folded")
if(arg is IdentifierReference) {
val sourceName = asmgen.asmIdentifierName(arg)
asmgen.out(" lda $sourceName+1 | sta $ESTACK_LO_HEX,x | dex")
} else {
asmgen.translateExpression(arg)
asmgen.out(" lda $ESTACK_HI_PLUS1_HEX,x | sta $ESTACK_LO_PLUS1_HEX,x")
}
}
"mkword" -> {
translateFunctionArguments(fcall.arglist, func)
asmgen.out(" inx | lda $ESTACK_LO_HEX,x | sta $ESTACK_HI_PLUS1_HEX,x")
}
"abs" -> {
translateFunctionArguments(fcall.arglist, func)
val dt = fcall.arglist.single().inferType(program)!!
when (dt) {
in ByteDatatypes -> asmgen.out(" jsr prog8_lib.abs_b")
in WordDatatypes -> asmgen.out(" jsr prog8_lib.abs_w")
DataType.FLOAT -> asmgen.out(" jsr c64flt.abs_f")
else -> throw AssemblyError("weird type")
}
}
"swap" -> {
val first = fcall.arglist[0]
val second = fcall.arglist[1]
asmgen.translateExpression(first)
asmgen.translateExpression(second)
// pop in reverse order
val firstTarget = AssignTarget.fromExpr(first)
val secondTarget = AssignTarget.fromExpr(second)
asmgen.assignFromEvalResult(firstTarget)
asmgen.assignFromEvalResult(secondTarget)
}
// TODO: any(f), all(f), max(f), min(f), sum(f)
"sin", "cos", "tan", "atan",
"ln", "log2", "sqrt", "rad",
"deg", "round", "floor", "ceil",
"rdnf" -> {
translateFunctionArguments(fcall.arglist, func)
asmgen.out(" jsr c64flt.func_$functionName")
}
/*
TODO this was the old code for bit rotations:
Opcode.SHL_BYTE -> AsmFragment(" asl $variable+$index", 8)
Opcode.SHR_UBYTE -> AsmFragment(" lsr $variable+$index", 8)
Opcode.SHR_SBYTE -> AsmFragment(" lda $variable+$index | asl a | ror $variable+$index")
Opcode.SHL_WORD -> AsmFragment(" asl $variable+${index * 2 + 1} | rol $variable+${index * 2}", 8)
Opcode.SHR_UWORD -> AsmFragment(" lsr $variable+${index * 2 + 1} | ror $variable+${index * 2}", 8)
Opcode.SHR_SWORD -> AsmFragment(" lda $variable+${index * 2 + 1} | asl a | ror $variable+${index * 2 + 1} | ror $variable+${index * 2}", 8)
Opcode.ROL_BYTE -> AsmFragment(" rol $variable+$index", 8)
Opcode.ROR_BYTE -> AsmFragment(" ror $variable+$index", 8)
Opcode.ROL_WORD -> AsmFragment(" rol $variable+${index * 2 + 1} | rol $variable+${index * 2}", 8)
Opcode.ROR_WORD -> AsmFragment(" ror $variable+${index * 2 + 1} | ror $variable+${index * 2}", 8)
Opcode.ROL2_BYTE -> AsmFragment(" lda $variable+$index | cmp #\$80 | rol $variable+$index", 8)
Opcode.ROR2_BYTE -> AsmFragment(" lda $variable+$index | lsr a | bcc + | ora #\$80 |+ | sta $variable+$index", 10)
Opcode.ROL2_WORD -> AsmFragment(" asl $variable+${index * 2 + 1} | rol $variable+${index * 2} | bcc + | inc $variable+${index * 2 + 1} |+", 20)
Opcode.ROR2_WORD -> AsmFragment(" lsr $variable+${index * 2 + 1} | ror $variable+${index * 2} | bcc + | lda $variable+${index * 2 + 1} | ora #\$80 | sta $variable+${index * 2 + 1} |+", 30)
*/
"lsl" -> {
// in-place
val what = fcall.arglist.single()
val dt = what.inferType(program)!!
when(dt) {
in ByteDatatypes -> {
when(what) {
is RegisterExpr -> {
when(what.register) {
Register.A -> asmgen.out(" asl a")
Register.X -> asmgen.out(" txa | asl a | tax")
Register.Y -> asmgen.out(" tya | asl a | tay")
}
}
is IdentifierReference -> asmgen.out(" asl ${asmgen.asmIdentifierName(what)}")
is DirectMemoryRead -> {
if(what.addressExpression is NumericLiteralValue) {
asmgen.out(" asl ${(what.addressExpression as NumericLiteralValue).number.toHex()}")
} else {
TODO("lsl memory byte $what")
}
}
is ArrayIndexedExpression -> {
TODO("lsl byte array $what")
}
else -> throw AssemblyError("weird type")
}
}
in WordDatatypes -> {
TODO("lsl word $what")
}
else -> throw AssemblyError("weird type")
}
}
"lsr" -> {
// in-place
val what = fcall.arglist.single()
val dt = what.inferType(program)!!
when(dt) {
DataType.UBYTE -> {
when(what) {
is RegisterExpr -> {
when(what.register) {
Register.A -> asmgen.out(" lsr a")
Register.X -> asmgen.out(" txa | lsr a | tax")
Register.Y -> asmgen.out(" tya | lsr a | tay")
}
}
is IdentifierReference -> asmgen.out(" lsr ${asmgen.asmIdentifierName(what)}")
is DirectMemoryRead -> {
if(what.addressExpression is NumericLiteralValue) {
asmgen.out(" lsr ${(what.addressExpression as NumericLiteralValue).number.toHex()}")
} else {
TODO("lsr memory byte $what")
}
}
is ArrayIndexedExpression -> {
TODO("lsr byte array $what")
}
else -> throw AssemblyError("weird type")
}
}
DataType.BYTE -> {
TODO("lsr sbyte $what")
}
DataType.UWORD -> {
TODO("lsr sword $what")
}
DataType.WORD -> {
TODO("lsr word $what")
}
else -> throw AssemblyError("weird type")
}
}
"rol" -> {
// in-place
val what = fcall.arglist.single()
val dt = what.inferType(program)!!
when(dt) {
DataType.UBYTE -> {
TODO("rol ubyte")
}
DataType.UWORD -> {
TODO("rol uword")
}
else -> throw AssemblyError("weird type")
}
}
"rol2" -> {
// in-place
val what = fcall.arglist.single()
val dt = what.inferType(program)!!
when(dt) {
DataType.UBYTE -> {
TODO("rol2 ubyte")
}
DataType.UWORD -> {
TODO("rol2 uword")
}
else -> throw AssemblyError("weird type")
}
}
"ror" -> {
// in-place
val what = fcall.arglist.single()
val dt = what.inferType(program)!!
when(dt) {
DataType.UBYTE -> {
TODO("ror ubyte")
}
DataType.UWORD -> {
TODO("ror uword")
}
else -> throw AssemblyError("weird type")
}
}
"ror2" -> {
// in-place
val what = fcall.arglist.single()
val dt = what.inferType(program)!!
when(dt) {
DataType.UBYTE -> {
TODO("ror2 ubyte")
}
DataType.UWORD -> {
TODO("ror2 uword")
}
else -> throw AssemblyError("weird type")
}
}
else -> {
translateFunctionArguments(fcall.arglist, func)
asmgen.out(" jsr prog8_lib.func_$functionName")
}
}
}
private fun translateFunctionArguments(args: MutableList<Expression>, signature: FunctionSignature) {
args.forEach {
asmgen.translateExpression(it)
}
}
}

View File

@ -1,20 +1,22 @@
package prog8.functions
import prog8.ast.*
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.compiler.CompilerException
import prog8.compiler.HeapValues
import kotlin.math.PI
import kotlin.math.cos
import kotlin.math.log2
import kotlin.math.sin
import kotlin.math.*
class BuiltinFunctionParam(val name: String, val possibleDatatypes: Set<DataType>)
typealias ConstExpressionCaller = (args: List<Expression>, position: Position, program: Program) -> NumericLiteralValue
class FunctionSignature(val pure: Boolean, // does it have side effects?
val parameters: List<BuiltinFunctionParam>,
val returntype: DataType?,
val constExpressionFunc: ((args: List<IExpression>, position: Position, namespace: INameScope, heap: HeapValues) -> LiteralValue)? = null)
val constExpressionFunc: ConstExpressionCaller? = null)
val BuiltinFunctions = mapOf(
@ -26,38 +28,38 @@ val BuiltinFunctions = mapOf(
"lsl" to FunctionSignature(false, listOf(BuiltinFunctionParam("item", IntegerDatatypes)), null),
"lsr" to FunctionSignature(false, listOf(BuiltinFunctionParam("item", IntegerDatatypes)), null),
// these few have a return value depending on the argument(s):
"max" to FunctionSignature(true, listOf(BuiltinFunctionParam("values", ArrayDatatypes)), null) { a, p, n, h -> collectionArgOutputNumber(a, p, n, h) { it.max()!! }}, // type depends on args
"min" to FunctionSignature(true, listOf(BuiltinFunctionParam("values", ArrayDatatypes)), null) { a, p, n, h -> collectionArgOutputNumber(a, p, n, h) { it.min()!! }}, // type depends on args
"sum" to FunctionSignature(true, listOf(BuiltinFunctionParam("values", ArrayDatatypes)), null) { a, p, n, h -> collectionArgOutputNumber(a, p, n, h) { it.sum() }}, // type depends on args
"max" to FunctionSignature(true, listOf(BuiltinFunctionParam("values", ArrayDatatypes)), null) { a, p, _ -> collectionArgNeverConst(a, p) }, // type depends on args
"min" to FunctionSignature(true, listOf(BuiltinFunctionParam("values", ArrayDatatypes)), null) { a, p, _ -> collectionArgNeverConst(a, p) }, // type depends on args
"sum" to FunctionSignature(true, listOf(BuiltinFunctionParam("values", ArrayDatatypes)), null) { a, p, _ -> collectionArgNeverConst(a, p) }, // type depends on args
"abs" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", NumericDatatypes)), null, ::builtinAbs), // type depends on argument
"len" to FunctionSignature(true, listOf(BuiltinFunctionParam("values", IterableDatatypes)), null, ::builtinLen), // type is UBYTE or UWORD depending on actual length
// normal functions follow:
"sin" to FunctionSignature(true, listOf(BuiltinFunctionParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, n, h -> oneDoubleArg(a, p, n, h, Math::sin) },
"sin" to FunctionSignature(true, listOf(BuiltinFunctionParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::sin) },
"sin8" to FunctionSignature(true, listOf(BuiltinFunctionParam("angle8", setOf(DataType.UBYTE))), DataType.BYTE, ::builtinSin8 ),
"sin8u" to FunctionSignature(true, listOf(BuiltinFunctionParam("angle8", setOf(DataType.UBYTE))), DataType.UBYTE, ::builtinSin8u ),
"sin16" to FunctionSignature(true, listOf(BuiltinFunctionParam("angle8", setOf(DataType.UBYTE))), DataType.WORD, ::builtinSin16 ),
"sin16u" to FunctionSignature(true, listOf(BuiltinFunctionParam("angle8", setOf(DataType.UBYTE))), DataType.UWORD, ::builtinSin16u ),
"cos" to FunctionSignature(true, listOf(BuiltinFunctionParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, n, h -> oneDoubleArg(a, p, n, h, Math::cos) },
"cos" to FunctionSignature(true, listOf(BuiltinFunctionParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::cos) },
"cos8" to FunctionSignature(true, listOf(BuiltinFunctionParam("angle8", setOf(DataType.UBYTE))), DataType.BYTE, ::builtinCos8 ),
"cos8u" to FunctionSignature(true, listOf(BuiltinFunctionParam("angle8", setOf(DataType.UBYTE))), DataType.UBYTE, ::builtinCos8u ),
"cos16" to FunctionSignature(true, listOf(BuiltinFunctionParam("angle8", setOf(DataType.UBYTE))), DataType.WORD, ::builtinCos16 ),
"cos16u" to FunctionSignature(true, listOf(BuiltinFunctionParam("angle8", setOf(DataType.UBYTE))), DataType.UWORD, ::builtinCos16u ),
"tan" to FunctionSignature(true, listOf(BuiltinFunctionParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, n, h -> oneDoubleArg(a, p, n, h, Math::tan) },
"atan" to FunctionSignature(true, listOf(BuiltinFunctionParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, n, h -> oneDoubleArg(a, p, n, h, Math::atan) },
"ln" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, n, h -> oneDoubleArg(a, p, n, h, Math::log) },
"log2" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, n, h -> oneDoubleArg(a, p, n, h, ::log2) },
"sqrt16" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.UWORD))), DataType.UBYTE) { a, p, n, h -> oneIntArgOutputInt(a, p, n, h) { Math.sqrt(it.toDouble()).toInt() } },
"sqrt" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, n, h -> oneDoubleArg(a, p, n, h, Math::sqrt) },
"rad" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, n, h -> oneDoubleArg(a, p, n, h, Math::toRadians) },
"deg" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, n, h -> oneDoubleArg(a, p, n, h, Math::toDegrees) },
"avg" to FunctionSignature(true, listOf(BuiltinFunctionParam("values", ArrayDatatypes)), DataType.FLOAT, ::builtinAvg),
"round" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, n, h -> oneDoubleArgOutputWord(a, p, n, h, Math::round) },
"floor" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, n, h -> oneDoubleArgOutputWord(a, p, n, h, Math::floor) },
"ceil" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, n, h -> oneDoubleArgOutputWord(a, p, n, h, Math::ceil) },
"any" to FunctionSignature(true, listOf(BuiltinFunctionParam("values", ArrayDatatypes)), DataType.UBYTE) { a, p, n, h -> collectionArgOutputBoolean(a, p, n, h) { it.any { v -> v != 0.0} }},
"all" to FunctionSignature(true, listOf(BuiltinFunctionParam("values", ArrayDatatypes)), DataType.UBYTE) { a, p, n, h -> collectionArgOutputBoolean(a, p, n, h) { it.all { v -> v != 0.0} }},
"lsb" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.UWORD, DataType.WORD))), DataType.UBYTE) { a, p, n, h -> oneIntArgOutputInt(a, p, n, h) { x: Int -> x and 255 }},
"msb" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.UWORD, DataType.WORD))), DataType.UBYTE) { a, p, n, h -> oneIntArgOutputInt(a, p, n, h) { x: Int -> x ushr 8 and 255}},
"tan" to FunctionSignature(true, listOf(BuiltinFunctionParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::tan) },
"atan" to FunctionSignature(true, listOf(BuiltinFunctionParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::atan) },
"ln" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::log) },
"log2" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, ::log2) },
"sqrt16" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.UWORD))), DataType.UBYTE) { a, p, prg -> oneIntArgOutputInt(a, p, prg) { sqrt(it.toDouble()).toInt() } },
"sqrt" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::sqrt) },
"rad" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::toRadians) },
"deg" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::toDegrees) },
"avg" to FunctionSignature(true, listOf(BuiltinFunctionParam("values", ArrayDatatypes)), DataType.FLOAT) { a, p, _ -> collectionArgNeverConst(a, p) },
"round" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArgOutputWord(a, p, prg, Math::round) },
"floor" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArgOutputWord(a, p, prg, Math::floor) },
"ceil" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArgOutputWord(a, p, prg, Math::ceil) },
"any" to FunctionSignature(true, listOf(BuiltinFunctionParam("values", ArrayDatatypes)), DataType.UBYTE) { a, p, _ -> collectionArgNeverConst(a, p) },
"all" to FunctionSignature(true, listOf(BuiltinFunctionParam("values", ArrayDatatypes)), DataType.UBYTE) { a, p, _ -> collectionArgNeverConst(a, p) },
"lsb" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.UWORD, DataType.WORD))), DataType.UBYTE) { a, p, prg -> oneIntArgOutputInt(a, p, prg) { x: Int -> x and 255 }},
"msb" to FunctionSignature(true, listOf(BuiltinFunctionParam("value", setOf(DataType.UWORD, DataType.WORD))), DataType.UBYTE) { a, p, prg -> oneIntArgOutputInt(a, p, prg) { x: Int -> x ushr 8 and 255}},
"mkword" to FunctionSignature(true, listOf(
BuiltinFunctionParam("lsb", setOf(DataType.UBYTE)),
BuiltinFunctionParam("msb", setOf(DataType.UBYTE))), DataType.UWORD, ::builtinMkword),
@ -111,30 +113,25 @@ val BuiltinFunctions = mapOf(
)
fun builtinFunctionReturnType(function: String, args: List<IExpression>, namespace: INameScope, heap: HeapValues): DataType? {
fun builtinFunctionReturnType(function: String, args: List<Expression>, program: Program): DataType? {
fun datatypeFromIterableArg(arglist: IExpression): DataType {
if(arglist is LiteralValue) {
if(arglist.type==DataType.ARRAY_UB || arglist.type==DataType.ARRAY_UW || arglist.type==DataType.ARRAY_F) {
val dt = arglist.arrayvalue!!.map {it.resultingDatatype(namespace, heap)}
if(dt.any { it!=DataType.UBYTE && it!=DataType.UWORD && it!=DataType.FLOAT}) {
fun datatypeFromIterableArg(arglist: Expression): DataType {
if(arglist is ReferenceLiteralValue) {
if(arglist.type== DataType.ARRAY_UB || arglist.type== DataType.ARRAY_UW || arglist.type== DataType.ARRAY_F) {
val dt = arglist.array!!.map {it.inferType(program)}
if(dt.any { it!= DataType.UBYTE && it!= DataType.UWORD && it!= DataType.FLOAT}) {
throw FatalAstException("fuction $function only accepts arraysize of numeric values")
}
if(dt.any { it==DataType.FLOAT }) return DataType.FLOAT
if(dt.any { it==DataType.UWORD }) return DataType.UWORD
if(dt.any { it== DataType.FLOAT }) return DataType.FLOAT
if(dt.any { it== DataType.UWORD }) return DataType.UWORD
return DataType.UBYTE
}
}
if(arglist is IdentifierReference) {
val dt = arglist.resultingDatatype(namespace, heap)
return when(dt) {
return when(val dt = arglist.inferType(program)) {
in NumericDatatypes -> dt!!
in StringDatatypes -> dt!!
DataType.ARRAY_UB -> DataType.UBYTE
DataType.ARRAY_B -> DataType.BYTE
DataType.ARRAY_UW -> DataType.UWORD
DataType.ARRAY_W -> DataType.WORD
DataType.ARRAY_F -> DataType.FLOAT
in ArrayDatatypes -> ArrayElementTypes.getValue(dt!!)
else -> throw FatalAstException("function '$function' requires one argument which is an iterable")
}
}
@ -148,30 +145,22 @@ fun builtinFunctionReturnType(function: String, args: List<IExpression>, namespa
return when (function) {
"abs" -> {
val dt = args.single().resultingDatatype(namespace, heap)
when(dt) {
in ByteDatatypes -> DataType.UBYTE
in WordDatatypes -> DataType.UWORD
DataType.FLOAT -> DataType.FLOAT
else -> throw FatalAstException("weird datatype passed to abs $dt")
}
val dt = args.single().inferType(program)
if(dt in NumericDatatypes)
return dt
else
throw FatalAstException("weird datatype passed to abs $dt")
}
"max", "min" -> {
val dt = datatypeFromIterableArg(args.single())
when(dt) {
when(val dt = datatypeFromIterableArg(args.single())) {
in NumericDatatypes -> dt
in StringDatatypes -> DataType.UBYTE
DataType.ARRAY_UB -> DataType.UBYTE
DataType.ARRAY_B -> DataType.BYTE
DataType.ARRAY_UW -> DataType.UWORD
DataType.ARRAY_W -> DataType.WORD
DataType.ARRAY_F -> DataType.FLOAT
in ArrayDatatypes -> ArrayElementTypes.getValue(dt)
else -> null
}
}
"sum" -> {
val dt=datatypeFromIterableArg(args.single())
when(dt) {
when(datatypeFromIterableArg(args.single())) {
DataType.UBYTE, DataType.UWORD -> DataType.UWORD
DataType.BYTE, DataType.WORD -> DataType.WORD
DataType.FLOAT -> DataType.FLOAT
@ -195,181 +184,98 @@ fun builtinFunctionReturnType(function: String, args: List<IExpression>, namespa
class NotConstArgumentException: AstException("not a const argument to a built-in function")
private fun oneDoubleArg(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues, function: (arg: Double)->Number): LiteralValue {
private fun oneDoubleArg(args: List<Expression>, position: Position, program: Program, function: (arg: Double)->Number): NumericLiteralValue {
if(args.size!=1)
throw SyntaxError("built-in function requires one floating point argument", position)
val constval = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
if(constval.type!=DataType.FLOAT)
throw SyntaxError("built-in function requires one floating point argument", position)
val float = constval.asNumericValue?.toDouble()!!
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val float = constval.number.toDouble()
return numericLiteral(function(float), args[0].position)
}
private fun oneDoubleArgOutputWord(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues, function: (arg: Double)->Number): LiteralValue {
private fun oneDoubleArgOutputWord(args: List<Expression>, position: Position, program: Program, function: (arg: Double)->Number): NumericLiteralValue {
if(args.size!=1)
throw SyntaxError("built-in function requires one floating point argument", position)
val constval = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
if(constval.type!=DataType.FLOAT)
throw SyntaxError("built-in function requires one floating point argument", position)
return LiteralValue(DataType.WORD, wordvalue=function(constval.asNumericValue!!.toDouble()).toInt(), position=args[0].position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val float = constval.number.toDouble()
return NumericLiteralValue(DataType.WORD, function(float).toInt(), args[0].position)
}
private fun oneIntArgOutputInt(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues, function: (arg: Int)->Number): LiteralValue {
private fun oneIntArgOutputInt(args: List<Expression>, position: Position, program: Program, function: (arg: Int)->Number): NumericLiteralValue {
if(args.size!=1)
throw SyntaxError("built-in function requires one integer argument", position)
val constval = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
if(constval.type!=DataType.UBYTE && constval.type!=DataType.UWORD)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
if(constval.type != DataType.UBYTE && constval.type!= DataType.UWORD)
throw SyntaxError("built-in function requires one integer argument", position)
val integer = constval.asNumericValue?.toInt()!!
val integer = constval.number.toInt()
return numericLiteral(function(integer).toInt(), args[0].position)
}
private fun collectionArgOutputNumber(args: List<IExpression>, position: Position,
namespace:INameScope, heap: HeapValues,
function: (arg: Collection<Double>)->Number): LiteralValue {
private fun collectionArgNeverConst(args: List<Expression>, position: Position): NumericLiteralValue {
if(args.size!=1)
throw SyntaxError("builtin function requires one non-scalar argument", position)
val iterable = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val result = if(iterable.arrayvalue != null) {
val constants = iterable.arrayvalue.map { it.constValue(namespace, heap)?.asNumericValue }
if(null in constants)
throw NotConstArgumentException()
function(constants.map { it!!.toDouble() }).toDouble()
} else {
when(iterable.type) {
DataType.UBYTE, DataType.UWORD, DataType.FLOAT -> throw SyntaxError("function expects an iterable type", position)
else -> {
if(iterable.heapId==null)
throw FatalAstException("iterable value should be on the heap")
val array = heap.get(iterable.heapId).array ?: throw SyntaxError("function expects an iterable type", position)
function(array.map {
if(it.integer!=null)
it.integer.toDouble()
else
throw FatalAstException("cannot perform function over array that contains other values besides constant integers")
})
}
}
}
return numericLiteral(result, args[0].position)
// max/min/sum etc only work on arrays and these are never considered to be const for these functions
throw NotConstArgumentException()
}
private fun collectionArgOutputBoolean(args: List<IExpression>, position: Position,
namespace:INameScope, heap: HeapValues,
function: (arg: Collection<Double>)->Boolean): LiteralValue {
if(args.size!=1)
throw SyntaxError("builtin function requires one non-scalar argument", position)
val iterable = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val result = if(iterable.arrayvalue != null) {
val constants = iterable.arrayvalue.map { it.constValue(namespace, heap)?.asNumericValue }
if(null in constants)
throw NotConstArgumentException()
function(constants.map { it!!.toDouble() })
} else {
val array = heap.get(iterable.heapId!!).array ?: throw SyntaxError("function requires array argument", position)
function(array.map {
if(it.integer!=null)
it.integer.toDouble()
else
throw FatalAstException("cannot perform function over array that contains other values besides constant integers")
})
}
return LiteralValue.fromBoolean(result, position)
}
private fun builtinAbs(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues): LiteralValue {
// 1 arg, type = float or int, result type= same as argument type
private fun builtinAbs(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
// 1 arg, type = float or int, result type= isSameAs as argument type
if(args.size!=1)
throw SyntaxError("abs requires one numeric argument", position)
val constval = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val number = constval.asNumericValue
return when (number) {
is Int, is Byte, is Short -> numericLiteral(Math.abs(number.toInt()), args[0].position)
is Double -> numericLiteral(Math.abs(number.toDouble()), args[0].position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
return when (constval.type) {
in IntegerDatatypes -> numericLiteral(abs(constval.number.toInt()), args[0].position)
DataType.FLOAT -> numericLiteral(abs(constval.number.toDouble()), args[0].position)
else -> throw SyntaxError("abs requires one numeric argument", position)
}
}
private fun builtinAvg(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues): LiteralValue {
if(args.size!=1)
throw SyntaxError("avg requires array argument", position)
val iterable = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val result = if(iterable.arrayvalue!=null) {
val constants = iterable.arrayvalue.map { it.constValue(namespace, heap)?.asNumericValue }
if (null in constants)
throw NotConstArgumentException()
(constants.map { it!!.toDouble() }).average()
}
else {
val integerarray = heap.get(iterable.heapId!!).array
if(integerarray!=null) {
if (integerarray.all { it.integer != null }) {
integerarray.map { it.integer!! }.average()
} else {
throw ExpressionError("cannot avg() over array that does not only contain constant numerical values", position)
}
} else {
val doublearray = heap.get(iterable.heapId).doubleArray
doublearray?.average() ?: throw SyntaxError("avg requires array argument", position)
}
}
return numericLiteral(result, args[0].position)
}
private fun builtinStrlen(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues): LiteralValue {
private fun builtinStrlen(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("strlen requires one argument", position)
val argument = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val argument = args[0].constValue(program) ?: throw NotConstArgumentException()
if(argument.type !in StringDatatypes)
throw SyntaxError("strlen must have string argument", position)
val string = argument.strvalue(heap)
val zeroIdx = string.indexOf('\u0000')
return if(zeroIdx>=0)
LiteralValue.optimalInteger(zeroIdx, position=position)
else
LiteralValue.optimalInteger(string.length, position=position)
throw NotConstArgumentException() // this function is not considering the string argument a constant
}
private fun builtinLen(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues): LiteralValue {
private fun builtinLen(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
// note: in some cases the length is > 255 and then we have to return a UWORD type instead of a UBYTE.
if(args.size!=1)
throw SyntaxError("len requires one argument", position)
var argument = args[0].constValue(namespace, heap)
if(argument==null) {
val directMemVar = ((args[0] as? DirectMemoryRead)?.addressExpression as? IdentifierReference)?.targetVarDecl(namespace)
val arraySize = directMemVar?.arraysize?.size()
if(arraySize != null)
return LiteralValue.optimalInteger(arraySize, position)
if(args[0] !is IdentifierReference)
throw SyntaxError("len argument should be an identifier, but is ${args[0]}", position)
val target = (args[0] as IdentifierReference).targetStatement(namespace)
val argValue = (target as? VarDecl)?.value
argument = argValue?.constValue(namespace, heap)
?: throw NotConstArgumentException()
}
return when(argument.type) {
val constArg = args[0].constValue(program)
if(constArg!=null)
throw SyntaxError("len of weird argument ${args[0]}", position)
val directMemVar = ((args[0] as? DirectMemoryRead)?.addressExpression as? IdentifierReference)?.targetVarDecl(program.namespace)
var arraySize = directMemVar?.arraysize?.size()
if(arraySize != null)
return NumericLiteralValue.optimalInteger(arraySize, position)
if(args[0] !is IdentifierReference)
throw SyntaxError("len argument should be an identifier, but is ${args[0]}", position)
val target = (args[0] as IdentifierReference).targetVarDecl(program.namespace)!!
return when(target.datatype) {
DataType.ARRAY_UB, DataType.ARRAY_B, DataType.ARRAY_UW, DataType.ARRAY_W -> {
val arraySize = argument.arrayvalue?.size ?: heap.get(argument.heapId!!).arraysize
arraySize = target.arraysize!!.size()!!
if(arraySize>256)
throw CompilerException("array length exceeds byte limit ${argument.position}")
LiteralValue.optimalInteger(arraySize, args[0].position)
throw CompilerException("array length exceeds byte limit ${target.position}")
NumericLiteralValue.optimalInteger(arraySize, args[0].position)
}
DataType.ARRAY_F -> {
val arraySize = argument.arrayvalue?.size ?: heap.get(argument.heapId!!).arraysize
arraySize = target.arraysize!!.size()!!
if(arraySize>256)
throw CompilerException("array length exceeds byte limit ${argument.position}")
LiteralValue.optimalInteger(arraySize, args[0].position)
throw CompilerException("array length exceeds byte limit ${target.position}")
NumericLiteralValue.optimalInteger(arraySize, args[0].position)
}
in StringDatatypes -> {
val str = argument.strvalue(heap)
if(str.length>255)
throw CompilerException("string length exceeds byte limit ${argument.position}")
LiteralValue.optimalInteger(str.length, args[0].position)
val refLv = target.value as ReferenceLiteralValue
if(refLv.str!!.length>255)
throw CompilerException("string length exceeds byte limit ${refLv.position}")
NumericLiteralValue.optimalInteger(refLv.str.length, args[0].position)
}
in NumericDatatypes -> throw SyntaxError("len of weird argument ${args[0]}", position)
else -> throw CompilerException("weird datatype")
@ -377,93 +283,93 @@ private fun builtinLen(args: List<IExpression>, position: Position, namespace:IN
}
private fun builtinMkword(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues): LiteralValue {
private fun builtinMkword(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 2)
throw SyntaxError("mkword requires lsb and msb arguments", position)
val constLsb = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val constMsb = args[1].constValue(namespace, heap) ?: throw NotConstArgumentException()
val result = (constMsb.asIntegerValue!! shl 8) or constLsb.asIntegerValue!!
return LiteralValue(DataType.UWORD, wordvalue = result, position = position)
val constLsb = args[0].constValue(program) ?: throw NotConstArgumentException()
val constMsb = args[1].constValue(program) ?: throw NotConstArgumentException()
val result = (constMsb.number.toInt() shl 8) or constLsb.number.toInt()
return NumericLiteralValue(DataType.UWORD, result, position)
}
private fun builtinSin8(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues): LiteralValue {
private fun builtinSin8(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("sin8 requires one argument", position)
val constval = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val rad = constval.asNumericValue!!.toDouble() /256.0 * 2.0 * PI
return LiteralValue(DataType.BYTE, bytevalue = (127.0* sin(rad)).toShort(), position = position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.BYTE, (127.0 * sin(rad)).toShort(), position)
}
private fun builtinSin8u(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues): LiteralValue {
private fun builtinSin8u(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("sin8u requires one argument", position)
val constval = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val rad = constval.asNumericValue!!.toDouble() /256.0 * 2.0 * PI
return LiteralValue(DataType.UBYTE, bytevalue = (128.0+127.5*sin(rad)).toShort(), position = position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.UBYTE, (128.0 + 127.5 * sin(rad)).toShort(), position)
}
private fun builtinCos8(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues): LiteralValue {
private fun builtinCos8(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("cos8 requires one argument", position)
val constval = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val rad = constval.asNumericValue!!.toDouble() /256.0 * 2.0 * PI
return LiteralValue(DataType.BYTE, bytevalue = (127.0* cos(rad)).toShort(), position = position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.BYTE, (127.0 * cos(rad)).toShort(), position)
}
private fun builtinCos8u(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues): LiteralValue {
private fun builtinCos8u(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("cos8u requires one argument", position)
val constval = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val rad = constval.asNumericValue!!.toDouble() /256.0 * 2.0 * PI
return LiteralValue(DataType.UBYTE, bytevalue = (128.0 + 127.5*cos(rad)).toShort(), position = position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.UBYTE, (128.0 + 127.5 * cos(rad)).toShort(), position)
}
private fun builtinSin16(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues): LiteralValue {
private fun builtinSin16(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("sin16 requires one argument", position)
val constval = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val rad = constval.asNumericValue!!.toDouble() /256.0 * 2.0 * PI
return LiteralValue(DataType.WORD, wordvalue = (32767.0* sin(rad)).toInt(), position = position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.WORD, (32767.0 * sin(rad)).toInt(), position)
}
private fun builtinSin16u(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues): LiteralValue {
private fun builtinSin16u(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("sin16u requires one argument", position)
val constval = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val rad = constval.asNumericValue!!.toDouble() /256.0 * 2.0 * PI
return LiteralValue(DataType.UWORD, wordvalue = (32768.0+32767.5*sin(rad)).toInt(), position = position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.UWORD, (32768.0 + 32767.5 * sin(rad)).toInt(), position)
}
private fun builtinCos16(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues): LiteralValue {
private fun builtinCos16(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("cos16 requires one argument", position)
val constval = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val rad = constval.asNumericValue!!.toDouble() /256.0 * 2.0 * PI
return LiteralValue(DataType.WORD, wordvalue = (32767.0* cos(rad)).toInt(), position = position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.WORD, (32767.0 * cos(rad)).toInt(), position)
}
private fun builtinCos16u(args: List<IExpression>, position: Position, namespace:INameScope, heap: HeapValues): LiteralValue {
private fun builtinCos16u(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("cos16u requires one argument", position)
val constval = args[0].constValue(namespace, heap) ?: throw NotConstArgumentException()
val rad = constval.asNumericValue!!.toDouble() /256.0 * 2.0 * PI
return LiteralValue(DataType.UWORD, wordvalue = (32768.0+32767.5* cos(rad)).toInt(), position = position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.UWORD, (32768.0 + 32767.5 * cos(rad)).toInt(), position)
}
private fun numericLiteral(value: Number, position: Position): LiteralValue {
private fun numericLiteral(value: Number, position: Position): NumericLiteralValue {
val floatNum=value.toDouble()
val tweakedValue: Number =
if(floatNum==Math.floor(floatNum) && (floatNum>=-32768 && floatNum<=65535))
if(floatNum== floor(floatNum) && (floatNum>=-32768 && floatNum<=65535))
floatNum.toInt() // we have an integer disguised as a float.
else
floatNum
return when(tweakedValue) {
is Int -> LiteralValue.optimalNumeric(value.toInt(), position)
is Short -> LiteralValue.optimalNumeric(value.toInt(), position)
is Byte -> LiteralValue(DataType.UBYTE, bytevalue = value.toShort(), position = position)
is Double -> LiteralValue(DataType.FLOAT, floatvalue = value.toDouble(), position = position)
is Float -> LiteralValue(DataType.FLOAT, floatvalue = value.toDouble(), position = position)
is Int -> NumericLiteralValue.optimalNumeric(value.toInt(), position)
is Short -> NumericLiteralValue.optimalNumeric(value.toInt(), position)
is Byte -> NumericLiteralValue(DataType.UBYTE, value.toShort(), position)
is Double -> NumericLiteralValue(DataType.FLOAT, value.toDouble(), position)
is Float -> NumericLiteralValue(DataType.FLOAT, value.toDouble(), position)
else -> throw FatalAstException("invalid number type ${value::class}")
}
}

View File

@ -0,0 +1,221 @@
package prog8.optimizer
import prog8.ast.INameScope
import prog8.ast.Module
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.DataType
import prog8.ast.base.ParentSentinel
import prog8.ast.base.VarDeclType
import prog8.ast.base.initvarsSubName
import prog8.ast.expressions.FunctionCall
import prog8.ast.expressions.IdentifierReference
import prog8.ast.processing.IAstVisitor
import prog8.ast.statements.*
import prog8.compiler.loadAsmIncludeFile
class CallGraph(private val program: Program): IAstVisitor {
val modulesImporting = mutableMapOf<Module, List<Module>>().withDefault { mutableListOf() }
val modulesImportedBy = mutableMapOf<Module, List<Module>>().withDefault { mutableListOf() }
val subroutinesCalling = mutableMapOf<INameScope, List<Subroutine>>().withDefault { mutableListOf() }
val subroutinesCalledBy = mutableMapOf<Subroutine, List<Node>>().withDefault { mutableListOf() }
// TODO add dataflow graph: what statements use what variables
val usedSymbols = mutableSetOf<Statement>()
init {
visit(program)
}
fun forAllSubroutines(scope: INameScope, sub: (s: Subroutine) -> Unit) {
fun findSubs(scope: INameScope) {
scope.statements.forEach {
if(it is Subroutine)
sub(it)
if(it is INameScope)
findSubs(it)
}
}
findSubs(scope)
}
override fun visit(program: Program) {
super.visit(program)
program.modules.forEach {
it.importedBy.clear()
it.imports.clear()
it.importedBy.addAll(modulesImportedBy.getValue(it))
it.imports.addAll(modulesImporting.getValue(it))
forAllSubroutines(it) { sub ->
sub.calledBy.clear()
sub.calls.clear()
sub.calledBy.addAll(subroutinesCalledBy.getValue(sub))
sub.calls.addAll(subroutinesCalling.getValue(sub))
}
}
val rootmodule = program.modules.first()
rootmodule.importedBy.add(rootmodule) // don't discard root module
}
override fun visit(block: Block) {
if(block.definingModule().isLibraryModule) {
// make sure the block is not removed
addNodeAndParentScopes(block)
}
super.visit(block)
}
override fun visit(directive: Directive) {
val thisModule = directive.definingModule()
if(directive.directive=="%import") {
val importedModule: Module = program.modules.single { it.name==directive.args[0].name }
modulesImporting[thisModule] = modulesImporting.getValue(thisModule).plus(importedModule)
modulesImportedBy[importedModule] = modulesImportedBy.getValue(importedModule).plus(thisModule)
} else if (directive.directive=="%asminclude") {
val asm = loadAsmIncludeFile(directive.args[0].str!!, thisModule.source)
val scope = directive.definingScope()
scanAssemblyCode(asm, directive, scope)
}
super.visit(directive)
}
override fun visit(identifier: IdentifierReference) {
// track symbol usage
val target = identifier.targetStatement(this.program.namespace)
if(target!=null) {
addNodeAndParentScopes(target)
}
super.visit(identifier)
}
private fun addNodeAndParentScopes(stmt: Statement) {
usedSymbols.add(stmt)
var node: Node=stmt
do {
if(node is INameScope && node is Statement) {
usedSymbols.add(node)
}
node=node.parent
} while (node !is Module && node !is ParentSentinel)
}
override fun visit(subroutine: Subroutine) {
val alwaysKeepSubroutines = setOf(
Pair("main", "start"),
Pair("irq", "irq"),
Pair("prog8_lib", "init_system")
)
if(Pair(subroutine.definingScope().name, subroutine.name) in alwaysKeepSubroutines
|| subroutine.name== initvarsSubName || subroutine.definingModule().isLibraryModule) {
// make sure the entrypoint is mentioned in the used symbols
addNodeAndParentScopes(subroutine)
}
super.visit(subroutine)
}
override fun visit(decl: VarDecl) {
if(decl.autogeneratedDontRemove || (decl.definingModule().isLibraryModule && decl.type!=VarDeclType.VAR)) {
// make sure autogenerated vardecls are in the used symbols
addNodeAndParentScopes(decl)
}
if(decl.datatype==DataType.STRUCT)
addNodeAndParentScopes(decl)
super.visit(decl)
}
override fun visit(functionCall: FunctionCall) {
val otherSub = functionCall.target.targetSubroutine(program.namespace)
if(otherSub!=null) {
functionCall.definingSubroutine()?.let { thisSub ->
subroutinesCalling[thisSub] = subroutinesCalling.getValue(thisSub).plus(otherSub)
subroutinesCalledBy[otherSub] = subroutinesCalledBy.getValue(otherSub).plus(functionCall)
}
}
super.visit(functionCall)
}
override fun visit(functionCallStatement: FunctionCallStatement) {
val otherSub = functionCallStatement.target.targetSubroutine(program.namespace)
if(otherSub!=null) {
functionCallStatement.definingSubroutine()?.let { thisSub ->
subroutinesCalling[thisSub] = subroutinesCalling.getValue(thisSub).plus(otherSub)
subroutinesCalledBy[otherSub] = subroutinesCalledBy.getValue(otherSub).plus(functionCallStatement)
}
}
super.visit(functionCallStatement)
}
override fun visit(jump: Jump) {
val otherSub = jump.identifier?.targetSubroutine(program.namespace)
if(otherSub!=null) {
jump.definingSubroutine()?.let { thisSub ->
subroutinesCalling[thisSub] = subroutinesCalling.getValue(thisSub).plus(otherSub)
subroutinesCalledBy[otherSub] = subroutinesCalledBy.getValue(otherSub).plus(jump)
}
}
super.visit(jump)
}
override fun visit(structDecl: StructDecl) {
usedSymbols.add(structDecl)
usedSymbols.addAll(structDecl.statements)
}
override fun visit(inlineAssembly: InlineAssembly) {
// parse inline asm for subroutine calls (jmp, jsr)
val scope = inlineAssembly.definingScope()
scanAssemblyCode(inlineAssembly.assembly, inlineAssembly, scope)
super.visit(inlineAssembly)
}
private fun scanAssemblyCode(asm: String, context: Statement, scope: INameScope) {
val asmJumpRx = Regex("""[\-+a-zA-Z0-9_ \t]+(jmp|jsr)[ \t]+(\S+).*""", RegexOption.IGNORE_CASE)
val asmRefRx = Regex("""[\-+a-zA-Z0-9_ \t]+(...)[ \t]+(\S+).*""", RegexOption.IGNORE_CASE)
asm.lines().forEach { line ->
val matches = asmJumpRx.matchEntire(line)
if (matches != null) {
val jumptarget = matches.groups[2]?.value
if (jumptarget != null && (jumptarget[0].isLetter() || jumptarget[0] == '_')) {
val node = program.namespace.lookup(jumptarget.split('.'), context)
if (node is Subroutine) {
subroutinesCalling[scope] = subroutinesCalling.getValue(scope).plus(node)
subroutinesCalledBy[node] = subroutinesCalledBy.getValue(node).plus(context)
} else if(jumptarget.contains('.')) {
// maybe only the first part already refers to a subroutine
val node2 = program.namespace.lookup(listOf(jumptarget.substringBefore('.')), context)
if (node2 is Subroutine) {
subroutinesCalling[scope] = subroutinesCalling.getValue(scope).plus(node2)
subroutinesCalledBy[node2] = subroutinesCalledBy.getValue(node2).plus(context)
}
}
}
} else {
val matches2 = asmRefRx.matchEntire(line)
if (matches2 != null) {
val target= matches2.groups[2]?.value
if (target != null && (target[0].isLetter() || target[0] == '_')) {
if(target.contains('.')) {
val node = program.namespace.lookup(listOf(target.substringBefore('.')), context)
if (node is Subroutine) {
subroutinesCalling[scope] = subroutinesCalling.getValue(scope).plus(node)
subroutinesCalledBy[node] = subroutinesCalledBy.getValue(node).plus(context)
}
}
}
}
}
}
}
}

View File

@ -0,0 +1,274 @@
package prog8.optimizer
import prog8.ast.base.*
import prog8.ast.expressions.Expression
import prog8.ast.expressions.NumericLiteralValue
import kotlin.math.pow
class ConstExprEvaluator {
fun evaluate(left: NumericLiteralValue, operator: String, right: NumericLiteralValue): Expression {
return when(operator) {
"+" -> plus(left, right)
"-" -> minus(left, right)
"*" -> multiply(left, right)
"/" -> divide(left, right)
"%" -> remainder(left, right)
"**" -> power(left, right)
"&" -> bitwiseand(left, right)
"|" -> bitwiseor(left, right)
"^" -> bitwisexor(left, right)
"and" -> logicaland(left, right)
"or" -> logicalor(left, right)
"xor" -> logicalxor(left, right)
"<" -> NumericLiteralValue.fromBoolean(left < right, left.position)
">" -> NumericLiteralValue.fromBoolean(left > right, left.position)
"<=" -> NumericLiteralValue.fromBoolean(left <= right, left.position)
">=" -> NumericLiteralValue.fromBoolean(left >= right, left.position)
"==" -> NumericLiteralValue.fromBoolean(left == right, left.position)
"!=" -> NumericLiteralValue.fromBoolean(left != right, left.position)
"<<" -> shiftedleft(left, right)
">>" -> shiftedright(left, right)
else -> throw FatalAstException("const evaluation for invalid operator $operator")
}
}
private fun shiftedright(left: NumericLiteralValue, amount: NumericLiteralValue): Expression {
if(left.type !in IntegerDatatypes || amount.type !in IntegerDatatypes)
throw ExpressionError("cannot compute $left >> $amount", left.position)
val result =
if(left.type== DataType.UBYTE || left.type== DataType.UWORD)
left.number.toInt().ushr(amount.number.toInt())
else
left.number.toInt().shr(amount.number.toInt())
return NumericLiteralValue(left.type, result, left.position)
}
private fun shiftedleft(left: NumericLiteralValue, amount: NumericLiteralValue): Expression {
if(left.type !in IntegerDatatypes || amount.type !in IntegerDatatypes)
throw ExpressionError("cannot compute $left << $amount", left.position)
val result = left.number.toInt().shl(amount.number.toInt())
return NumericLiteralValue(left.type, result, left.position)
}
private fun logicalxor(left: NumericLiteralValue, right: NumericLiteralValue): NumericLiteralValue {
val error = "cannot compute $left locical-bitxor $right"
return when {
left.type in IntegerDatatypes -> when {
right.type in IntegerDatatypes -> NumericLiteralValue.fromBoolean((left.number.toInt() != 0) xor (right.number.toInt() != 0), left.position)
right.type == DataType.FLOAT -> NumericLiteralValue.fromBoolean((left.number.toInt() != 0) xor (right.number.toDouble() != 0.0), left.position)
else -> throw ExpressionError(error, left.position)
}
left.type == DataType.FLOAT -> when {
right.type in IntegerDatatypes -> NumericLiteralValue.fromBoolean((left.number.toDouble() != 0.0) xor (right.number.toInt() != 0), left.position)
right.type == DataType.FLOAT -> NumericLiteralValue.fromBoolean((left.number.toDouble() != 0.0) xor (right.number.toDouble() != 0.0), left.position)
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun logicalor(left: NumericLiteralValue, right: NumericLiteralValue): NumericLiteralValue {
val error = "cannot compute $left locical-or $right"
return when {
left.type in IntegerDatatypes -> when {
right.type in IntegerDatatypes -> NumericLiteralValue.fromBoolean(left.number.toInt() != 0 || right.number.toInt() != 0, left.position)
right.type == DataType.FLOAT -> NumericLiteralValue.fromBoolean(left.number.toInt() != 0 || right.number.toDouble() != 0.0, left.position)
else -> throw ExpressionError(error, left.position)
}
left.type == DataType.FLOAT -> when {
right.type in IntegerDatatypes -> NumericLiteralValue.fromBoolean(left.number.toDouble() != 0.0 || right.number.toInt() != 0, left.position)
right.type == DataType.FLOAT -> NumericLiteralValue.fromBoolean(left.number.toDouble() != 0.0 || right.number.toDouble() != 0.0, left.position)
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun logicaland(left: NumericLiteralValue, right: NumericLiteralValue): NumericLiteralValue {
val error = "cannot compute $left locical-and $right"
return when {
left.type in IntegerDatatypes -> when {
right.type in IntegerDatatypes -> NumericLiteralValue.fromBoolean(left.number.toInt() != 0 && right.number.toInt() != 0, left.position)
right.type == DataType.FLOAT -> NumericLiteralValue.fromBoolean(left.number.toInt() != 0 && right.number.toDouble() != 0.0, left.position)
else -> throw ExpressionError(error, left.position)
}
left.type == DataType.FLOAT -> when {
right.type in IntegerDatatypes -> NumericLiteralValue.fromBoolean(left.number.toDouble() != 0.0 && right.number.toInt() != 0, left.position)
right.type == DataType.FLOAT -> NumericLiteralValue.fromBoolean(left.number.toDouble() != 0.0 && right.number.toDouble() != 0.0, left.position)
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun bitwisexor(left: NumericLiteralValue, right: NumericLiteralValue): NumericLiteralValue {
if(left.type== DataType.UBYTE) {
if(right.type in IntegerDatatypes) {
return NumericLiteralValue(DataType.UBYTE, (left.number.toInt() xor (right.number.toInt() and 255)).toShort(), left.position)
}
} else if(left.type== DataType.UWORD) {
if(right.type in IntegerDatatypes) {
return NumericLiteralValue(DataType.UWORD, left.number.toInt() xor right.number.toInt(), left.position)
}
}
throw ExpressionError("cannot calculate $left ^ $right", left.position)
}
private fun bitwiseor(left: NumericLiteralValue, right: NumericLiteralValue): NumericLiteralValue {
if(left.type== DataType.UBYTE) {
if(right.type in IntegerDatatypes) {
return NumericLiteralValue(DataType.UBYTE, (left.number.toInt() or (right.number.toInt() and 255)).toShort(), left.position)
}
} else if(left.type== DataType.UWORD) {
if(right.type in IntegerDatatypes) {
return NumericLiteralValue(DataType.UWORD, left.number.toInt() or right.number.toInt(), left.position)
}
}
throw ExpressionError("cannot calculate $left | $right", left.position)
}
private fun bitwiseand(left: NumericLiteralValue, right: NumericLiteralValue): NumericLiteralValue {
if(left.type== DataType.UBYTE) {
if(right.type in IntegerDatatypes) {
return NumericLiteralValue(DataType.UBYTE, (left.number.toInt() or (right.number.toInt() and 255)).toShort(), left.position)
}
} else if(left.type== DataType.UWORD) {
if(right.type in IntegerDatatypes) {
return NumericLiteralValue(DataType.UWORD, left.number.toInt() or right.number.toInt(), left.position)
}
}
throw ExpressionError("cannot calculate $left & $right", left.position)
}
private fun power(left: NumericLiteralValue, right: NumericLiteralValue): NumericLiteralValue {
val error = "cannot calculate $left ** $right"
return when {
left.type in IntegerDatatypes -> when {
right.type in IntegerDatatypes -> NumericLiteralValue.optimalNumeric(left.number.toInt().toDouble().pow(right.number.toInt()), left.position)
right.type == DataType.FLOAT -> NumericLiteralValue(DataType.FLOAT, left.number.toInt().toDouble().pow(right.number.toDouble()), left.position)
else -> throw ExpressionError(error, left.position)
}
left.type == DataType.FLOAT -> when {
right.type in IntegerDatatypes -> NumericLiteralValue(DataType.FLOAT, left.number.toDouble().pow(right.number.toInt()), left.position)
right.type == DataType.FLOAT -> NumericLiteralValue(DataType.FLOAT, left.number.toDouble().pow(right.number.toDouble()), left.position)
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun plus(left: NumericLiteralValue, right: NumericLiteralValue): NumericLiteralValue {
val error = "cannot add $left and $right"
return when {
left.type in IntegerDatatypes -> when {
right.type in IntegerDatatypes -> NumericLiteralValue.optimalNumeric(left.number.toInt() + right.number.toInt(), left.position)
right.type == DataType.FLOAT -> NumericLiteralValue(DataType.FLOAT, left.number.toInt() + right.number.toDouble(), left.position)
else -> throw ExpressionError(error, left.position)
}
left.type == DataType.FLOAT -> when {
right.type in IntegerDatatypes -> NumericLiteralValue(DataType.FLOAT, left.number.toDouble() + right.number.toInt(), left.position)
right.type == DataType.FLOAT -> NumericLiteralValue(DataType.FLOAT, left.number.toDouble() + right.number.toDouble(), left.position)
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun minus(left: NumericLiteralValue, right: NumericLiteralValue): NumericLiteralValue {
val error = "cannot subtract $left and $right"
return when {
left.type in IntegerDatatypes -> when {
right.type in IntegerDatatypes -> NumericLiteralValue.optimalNumeric(left.number.toInt() - right.number.toInt(), left.position)
right.type == DataType.FLOAT -> NumericLiteralValue(DataType.FLOAT, left.number.toInt() - right.number.toDouble(), left.position)
else -> throw ExpressionError(error, left.position)
}
left.type == DataType.FLOAT -> when {
right.type in IntegerDatatypes -> NumericLiteralValue(DataType.FLOAT, left.number.toDouble() - right.number.toInt(), left.position)
right.type == DataType.FLOAT -> NumericLiteralValue(DataType.FLOAT, left.number.toDouble() - right.number.toDouble(), left.position)
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun multiply(left: NumericLiteralValue, right: NumericLiteralValue): NumericLiteralValue {
val error = "cannot multiply ${left.type} and ${right.type}"
return when {
left.type in IntegerDatatypes -> when {
right.type in IntegerDatatypes -> NumericLiteralValue.optimalNumeric(left.number.toInt() * right.number.toInt(), left.position)
right.type == DataType.FLOAT -> NumericLiteralValue(DataType.FLOAT, left.number.toInt() * right.number.toDouble(), left.position)
else -> throw ExpressionError(error, left.position)
}
left.type == DataType.FLOAT -> when {
right.type in IntegerDatatypes -> NumericLiteralValue(DataType.FLOAT, left.number.toDouble() * right.number.toInt(), left.position)
right.type == DataType.FLOAT -> NumericLiteralValue(DataType.FLOAT, left.number.toDouble() * right.number.toDouble(), left.position)
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun divideByZeroError(pos: Position): Unit =
throw ExpressionError("division by zero", pos)
private fun divide(left: NumericLiteralValue, right: NumericLiteralValue): NumericLiteralValue {
val error = "cannot divide $left by $right"
return when {
left.type in IntegerDatatypes -> when {
right.type in IntegerDatatypes -> {
if(right.number.toInt()==0) divideByZeroError(right.position)
val result: Int = left.number.toInt() / right.number.toInt()
NumericLiteralValue.optimalNumeric(result, left.position)
}
right.type == DataType.FLOAT -> {
if(right.number.toDouble()==0.0) divideByZeroError(right.position)
NumericLiteralValue(DataType.FLOAT, left.number.toInt() / right.number.toDouble(), left.position)
}
else -> throw ExpressionError(error, left.position)
}
left.type == DataType.FLOAT -> when {
right.type in IntegerDatatypes -> {
if(right.number.toInt()==0) divideByZeroError(right.position)
NumericLiteralValue(DataType.FLOAT, left.number.toDouble() / right.number.toInt(), left.position)
}
right.type == DataType.FLOAT -> {
if(right.number.toDouble()==0.0) divideByZeroError(right.position)
NumericLiteralValue(DataType.FLOAT, left.number.toDouble() / right.number.toDouble(), left.position)
}
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun remainder(left: NumericLiteralValue, right: NumericLiteralValue): NumericLiteralValue {
val error = "cannot compute remainder of $left by $right"
return when {
left.type in IntegerDatatypes -> when {
right.type in IntegerDatatypes -> {
if(right.number.toInt()==0) divideByZeroError(right.position)
NumericLiteralValue.optimalNumeric(left.number.toInt().toDouble() % right.number.toInt().toDouble(), left.position)
}
right.type == DataType.FLOAT -> {
if(right.number.toDouble()==0.0) divideByZeroError(right.position)
NumericLiteralValue(DataType.FLOAT, left.number.toInt() % right.number.toDouble(), left.position)
}
else -> throw ExpressionError(error, left.position)
}
left.type == DataType.FLOAT -> when {
right.type in IntegerDatatypes -> {
if(right.number.toInt()==0) divideByZeroError(right.position)
NumericLiteralValue(DataType.FLOAT, left.number.toDouble() % right.number.toInt(), left.position)
}
right.type == DataType.FLOAT -> {
if(right.number.toDouble()==0.0) divideByZeroError(right.position)
NumericLiteralValue(DataType.FLOAT, left.number.toDouble() % right.number.toDouble(), left.position)
}
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
}

View File

@ -1,194 +1,233 @@
package prog8.optimizing
package prog8.optimizer
import prog8.ast.*
import prog8.compiler.CompilerException
import prog8.compiler.HeapValues
import prog8.compiler.IntegerOrAddressOf
import prog8.compiler.target.c64.FLOAT_MAX_NEGATIVE
import prog8.compiler.target.c64.FLOAT_MAX_POSITIVE
import prog8.ast.IFunctionCall
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.processing.IAstModifyingVisitor
import prog8.ast.processing.fixupArrayDatatype
import prog8.ast.statements.*
import prog8.compiler.target.c64.MachineDefinition.FLOAT_MAX_NEGATIVE
import prog8.compiler.target.c64.MachineDefinition.FLOAT_MAX_POSITIVE
import prog8.functions.BuiltinFunctions
import kotlin.math.floor
class ConstantFolding(private val namespace: INameScope, private val heap: HeapValues) : IAstProcessor {
class ConstantFolding(private val program: Program) : IAstModifyingVisitor {
var optimizationsDone: Int = 0
var errors : MutableList<AstException> = mutableListOf()
private val reportedErrorMessages = mutableSetOf<String>()
fun addError(x: AstException) {
// check that we don't add the same error more than once
// check that we don't add the isSameAs error more than once
if(x.toString() !in reportedErrorMessages) {
reportedErrorMessages.add(x.toString())
errors.add(x)
}
}
override fun process(decl: VarDecl): IStatement {
override fun visit(decl: VarDecl): Statement {
// the initializer value can't refer to the variable itself (recursive definition)
if(decl.value?.referencesIdentifier(decl.name) == true || decl.arraysize?.index?.referencesIdentifier(decl.name) == true) {
// TODO: use call tree for this?
if(decl.value?.referencesIdentifiers(decl.name) == true || decl.arraysize?.index?.referencesIdentifiers(decl.name) == true) {
errors.add(ExpressionError("recursive var declaration", decl.position))
return decl
}
val result = super.process(decl)
if(decl.type==VarDeclType.CONST || decl.type==VarDeclType.VAR) {
val litval = decl.value as? LiteralValue
if(litval!=null && litval.isArray && litval.heapId!=null)
fixupArrayTypeOnHeap(decl, litval)
if(decl.isArray){
if(decl.arraysize==null) {
// for arrays that have no size specifier (or a non-constant one) attempt to deduce the size
val arrayval = (decl.value as? ReferenceLiteralValue)?.array
if(arrayval!=null) {
decl.arraysize = ArrayIndex(NumericLiteralValue.optimalInteger(arrayval.size, decl.position), decl.position)
optimizationsDone++
}
}
else if(decl.arraysize?.size()==null) {
val size = decl.arraysize!!.index.accept(this)
if(size is NumericLiteralValue) {
decl.arraysize = ArrayIndex(size, decl.position)
optimizationsDone++
}
}
}
when(decl.datatype) {
DataType.FLOAT -> {
// vardecl: for scalar float vars, promote constant integer initialization values to floats
if (litval != null && litval.type in IntegerDatatypes) {
val newValue = LiteralValue(DataType.FLOAT, floatvalue = litval.asNumericValue!!.toDouble(), position = litval.position)
val litval = decl.value as? NumericLiteralValue
if (litval!=null && litval.type in IntegerDatatypes) {
val newValue = NumericLiteralValue(DataType.FLOAT, litval.number.toDouble(), litval.position)
decl.value = newValue
optimizationsDone++
return super.visit(decl)
}
}
in StringDatatypes -> {
// nothing to do for strings
}
DataType.STRUCT -> {
// struct defintions don't have anything else in them
}
DataType.ARRAY_UB, DataType.ARRAY_B, DataType.ARRAY_UW, DataType.ARRAY_W -> {
val numericLv = decl.value as? NumericLiteralValue
val rangeExpr = decl.value as? RangeExpr
if(rangeExpr!=null) {
// convert the initializer range expression to an actual array (will be put on heap later)
// convert the initializer range expression to an actual array
val declArraySize = decl.arraysize?.size()
if(declArraySize!=null && declArraySize!=rangeExpr.size(heap))
if(declArraySize!=null && declArraySize!=rangeExpr.size())
errors.add(ExpressionError("range expression size doesn't match declared array size", decl.value?.position!!))
val constRange = rangeExpr.toConstantIntegerRange(heap)
val constRange = rangeExpr.toConstantIntegerRange()
if(constRange!=null) {
val eltType = rangeExpr.resultingDatatype(namespace, heap)!!
val eltType = rangeExpr.inferType(program)!!
if(eltType in ByteDatatypes) {
decl.value = LiteralValue(decl.datatype,
arrayvalue = constRange.map { LiteralValue(eltType, bytevalue=it.toShort(), position = decl.value!!.position ) }
.toTypedArray(), position=decl.value!!.position)
decl.value = ReferenceLiteralValue(decl.datatype,
array = constRange.map { NumericLiteralValue(eltType, it.toShort(), decl.value!!.position) }
.toTypedArray(), position = decl.value!!.position)
} else {
decl.value = LiteralValue(decl.datatype,
arrayvalue = constRange.map { LiteralValue(eltType, wordvalue= it, position = decl.value!!.position ) }
.toTypedArray(), position=decl.value!!.position)
decl.value = ReferenceLiteralValue(decl.datatype,
array = constRange.map { NumericLiteralValue(eltType, it, decl.value!!.position) }
.toTypedArray(), position = decl.value!!.position)
}
decl.value!!.linkParents(decl)
optimizationsDone++
return super.visit(decl)
}
}
if(litval?.type==DataType.FLOAT)
errors.add(ExpressionError("arraysize requires only integers here", litval.position))
if(decl.arraysize==null)
return decl
val size = decl.arraysize!!.size()
if ((litval==null || !litval.isArray) && size != null && rangeExpr==null) {
if(numericLv!=null && numericLv.type== DataType.FLOAT)
errors.add(ExpressionError("arraysize requires only integers here", numericLv.position))
val size = decl.arraysize?.size() ?: return decl
if (rangeExpr==null && numericLv!=null) {
// arraysize initializer is empty or a single int, and we know the size; create the arraysize.
val fillvalue = if (litval == null) 0 else litval.asIntegerValue ?: 0
val fillvalue = numericLv.number.toInt()
when(decl.datatype){
DataType.ARRAY_UB -> {
if(fillvalue !in 0..255)
errors.add(ExpressionError("ubyte value overflow", litval?.position ?: decl.position))
errors.add(ExpressionError("ubyte value overflow", numericLv.position))
}
DataType.ARRAY_B -> {
if(fillvalue !in -128..127)
errors.add(ExpressionError("byte value overflow", litval?.position ?: decl.position))
errors.add(ExpressionError("byte value overflow", numericLv.position))
}
DataType.ARRAY_UW -> {
if(fillvalue !in 0..65535)
errors.add(ExpressionError("uword value overflow", litval?.position ?: decl.position))
errors.add(ExpressionError("uword value overflow", numericLv.position))
}
DataType.ARRAY_W -> {
if(fillvalue !in -32768..32767)
errors.add(ExpressionError("word value overflow", litval?.position ?: decl.position))
errors.add(ExpressionError("word value overflow", numericLv.position))
}
else -> {}
}
val heapId = heap.addIntegerArray(decl.datatype, Array(size) { IntegerOrAddressOf(fillvalue, null) })
decl.value = LiteralValue(decl.datatype, heapId = heapId, position = litval?.position ?: decl.position)
// create the array itself, filled with the fillvalue.
val array = Array(size) {fillvalue}.map { NumericLiteralValue.optimalInteger(it, numericLv.position) as Expression}.toTypedArray()
val refValue = ReferenceLiteralValue(decl.datatype, array = array, position = numericLv.position)
refValue.addToHeap(program.heap)
decl.value = refValue
refValue.parent=decl
optimizationsDone++
return super.visit(decl)
}
}
DataType.ARRAY_F -> {
if(decl.arraysize==null)
return decl
val size = decl.arraysize!!.size()
if ((litval==null || !litval.isArray) && size != null) {
// arraysize initializer is empty or a single int, and we know the size; create the arraysize.
val fillvalue = if (litval == null) 0.0 else litval.asNumericValue?.toDouble() ?: 0.0
if(fillvalue< FLOAT_MAX_NEGATIVE || fillvalue> FLOAT_MAX_POSITIVE)
errors.add(ExpressionError("float value overflow", litval?.position ?: decl.position))
val size = decl.arraysize?.size() ?: return decl
val litval = decl.value as? NumericLiteralValue
if(litval==null) {
// there's no initialization value, but the size is known, so we're ok.
return super.visit(decl)
} else {
// arraysize initializer is a single int, and we know the size.
val fillvalue = litval.number.toDouble()
if (fillvalue < FLOAT_MAX_NEGATIVE || fillvalue > FLOAT_MAX_POSITIVE)
errors.add(ExpressionError("float value overflow", litval.position))
else {
val heapId = heap.addDoublesArray(DoubleArray(size) { fillvalue })
decl.value = LiteralValue(DataType.ARRAY_F, heapId = heapId, position = litval?.position ?: decl.position)
// create the array itself, filled with the fillvalue.
val array = Array(size) {fillvalue}.map { NumericLiteralValue(DataType.FLOAT, it, litval.position) as Expression}.toTypedArray()
val refValue = ReferenceLiteralValue(DataType.ARRAY_F, array = array, position = litval.position)
refValue.addToHeap(program.heap)
decl.value = refValue
refValue.parent=decl
optimizationsDone++
return super.visit(decl)
}
}
}
else -> return result
}
}
return result
}
private fun fixupArrayTypeOnHeap(decl: VarDecl, litval: LiteralValue) {
// fix the type of the array value that's on the heap, to match the vardecl.
// notice that checking the bounds of the actual values is not done here, but in the AstChecker later.
if(decl.datatype==litval.type)
return // already correct datatype
val heapId = litval.heapId ?: throw FatalAstException("expected array to be on heap $litval")
val array=heap.get(heapId)
when(decl.datatype) {
DataType.ARRAY_UB, DataType.ARRAY_B, DataType.ARRAY_UW, DataType.ARRAY_W -> {
if(array.array!=null) {
heap.update(heapId, HeapValues.HeapValue(decl.datatype, null, array.array, null))
decl.value = LiteralValue(decl.datatype, heapId=heapId, position = litval.position)
else -> {
// nothing to do for this type
}
}
DataType.ARRAY_F -> {
if(array.array!=null) {
// convert a non-float array to floats
val doubleArray = array.array.map { it.integer!!.toDouble() }.toDoubleArray()
heap.update(heapId, HeapValues.HeapValue(DataType.ARRAY_F, null, null, doubleArray))
decl.value = LiteralValue(decl.datatype, heapId = heapId, position = litval.position)
}
}
else -> throw FatalAstException("invalid array vardecl type ${decl.datatype}")
}
return super.visit(decl)
}
/**
* replace identifiers that refer to const value, with the value itself (if it's a simple type)
*/
override fun process(identifier: IdentifierReference): IExpression {
override fun visit(identifier: IdentifierReference): Expression {
return try {
val cval = identifier.constValue(namespace, heap) ?: return identifier
return if(cval.isNumeric) {
val copy = LiteralValue(cval.type, cval.bytevalue, cval.wordvalue, cval.floatvalue, null, cval.arrayvalue, position = identifier.position)
copy.parent = identifier.parent
copy
} else
identifier
val cval = identifier.constValue(program) ?: return identifier
return when {
cval.type in NumericDatatypes -> {
val copy = NumericLiteralValue(cval.type, cval.number, identifier.position)
copy.parent = identifier.parent
copy
}
cval.type in PassByReferenceDatatypes -> TODO("ref type $identifier")
else -> identifier
}
} catch (ax: AstException) {
addError(ax)
identifier
}
}
override fun process(functionCall: FunctionCall): IExpression {
override fun visit(functionCall: FunctionCall): Expression {
return try {
super.process(functionCall)
super.visit(functionCall)
typeCastConstArguments(functionCall)
functionCall.constValue(namespace, heap) ?: functionCall
functionCall.constValue(program) ?: functionCall
} catch (ax: AstException) {
addError(ax)
functionCall
}
}
override fun process(functionCallStatement: FunctionCallStatement): IStatement {
super.process(functionCallStatement)
override fun visit(functionCallStatement: FunctionCallStatement): Statement {
super.visit(functionCallStatement)
typeCastConstArguments(functionCallStatement)
return functionCallStatement
}
private fun typeCastConstArguments(functionCall: IFunctionCall) {
val subroutine = functionCall.target.targetSubroutine(namespace)
if(functionCall.target.nameInSource.size==1) {
val builtinFunction = BuiltinFunctions[functionCall.target.nameInSource.single()]
if(builtinFunction!=null) {
// match the arguments of a builtin function signature.
for(arg in functionCall.arglist.withIndex().zip(builtinFunction.parameters)) {
val possibleDts = arg.second.possibleDatatypes
val argConst = arg.first.value.constValue(program)
if(argConst!=null && argConst.type !in possibleDts) {
val convertedValue = argConst.cast(possibleDts.first())
if(convertedValue!=null) {
functionCall.arglist[arg.first.index] = convertedValue
optimizationsDone++
}
}
}
return
}
}
// match the arguments of a subroutine.
val subroutine = functionCall.target.targetSubroutine(program.namespace)
if(subroutine!=null) {
// if types differ, try to typecast constant arguments to the function call to the desired data type of the parameter
for(arg in functionCall.arglist.withIndex().zip(subroutine.parameters)) {
val expectedDt = arg.second.type
val argConst = arg.first.value.constValue(namespace, heap)
val argConst = arg.first.value.constValue(program)
if(argConst!=null && argConst.type!=expectedDt) {
val convertedValue = argConst.intoDatatype(expectedDt)
val convertedValue = argConst.cast(expectedDt)
if(convertedValue!=null) {
functionCall.arglist[arg.first.index] = convertedValue
optimizationsDone++
@ -198,69 +237,56 @@ class ConstantFolding(private val namespace: INameScope, private val heap: HeapV
}
}
override fun process(memread: DirectMemoryRead): IExpression {
override fun visit(memread: DirectMemoryRead): Expression {
// @( &thing ) --> thing
val addrOf = memread.addressExpression as? AddressOf
if(addrOf!=null)
return super.process(addrOf.identifier)
return super.process(memread)
}
override fun process(memwrite: DirectMemoryWrite): IExpression {
// @( &thing ) --> thing
val addrOf = memwrite.addressExpression as? AddressOf
if(addrOf!=null)
return super.process(addrOf.identifier)
return super.process(memwrite)
return super.visit(addrOf.identifier)
return super.visit(memread)
}
/**
* Try to process a unary prefix expression.
* Try to accept a unary prefix expression.
* Compile-time constant sub expressions will be evaluated on the spot.
* For instance, the expression for "- 4.5" will be optimized into the float literal -4.5
*/
override fun process(expr: PrefixExpression): IExpression {
override fun visit(expr: PrefixExpression): Expression {
return try {
super.process(expr)
val prefixExpr=super.visit(expr)
if(prefixExpr !is PrefixExpression)
return prefixExpr
val subexpr = expr.expression
if (subexpr is LiteralValue) {
// process prefixed literal values (such as -3, not true)
val subexpr = prefixExpr.expression
if (subexpr is NumericLiteralValue) {
// accept prefixed literal values (such as -3, not true)
return when {
expr.operator == "+" -> subexpr
expr.operator == "-" -> when {
subexpr.asIntegerValue!= null -> {
prefixExpr.operator == "+" -> subexpr
prefixExpr.operator == "-" -> when {
subexpr.type in IntegerDatatypes -> {
optimizationsDone++
LiteralValue.optimalNumeric(-subexpr.asIntegerValue, subexpr.position)
NumericLiteralValue.optimalNumeric(-subexpr.number.toInt(), subexpr.position)
}
subexpr.floatvalue != null -> {
subexpr.type == DataType.FLOAT -> {
optimizationsDone++
LiteralValue(DataType.FLOAT, floatvalue = -subexpr.floatvalue, position = subexpr.position)
NumericLiteralValue(DataType.FLOAT, -subexpr.number.toDouble(), subexpr.position)
}
else -> throw ExpressionError("can only take negative of int or float", subexpr.position)
}
expr.operator == "~" -> when {
subexpr.asIntegerValue != null -> {
prefixExpr.operator == "~" -> when {
subexpr.type in IntegerDatatypes -> {
optimizationsDone++
LiteralValue.optimalNumeric(subexpr.asIntegerValue.inv(), subexpr.position)
NumericLiteralValue.optimalNumeric(subexpr.number.toInt().inv(), subexpr.position)
}
else -> throw ExpressionError("can only take bitwise inversion of int", subexpr.position)
}
expr.operator == "not" -> when {
subexpr.asIntegerValue != null -> {
optimizationsDone++
LiteralValue.fromBoolean(subexpr.asIntegerValue == 0, subexpr.position)
}
subexpr.floatvalue != null -> {
optimizationsDone++
LiteralValue.fromBoolean(subexpr.floatvalue == 0.0, subexpr.position)
}
else -> throw ExpressionError("can not take logical not of $subexpr", subexpr.position)
prefixExpr.operator == "not" -> {
optimizationsDone++
NumericLiteralValue.fromBoolean(subexpr.number.toDouble() == 0.0, subexpr.position)
}
else -> throw ExpressionError(expr.operator, subexpr.position)
else -> throw ExpressionError(prefixExpr.operator, subexpr.position)
}
}
return expr
return prefixExpr
} catch (ax: AstException) {
addError(ax)
expr
@ -268,7 +294,7 @@ class ConstantFolding(private val namespace: INameScope, private val heap: HeapV
}
/**
* Try to process a binary expression.
* Try to accept a binary expression.
* Compile-time constant sub expressions will be evaluated on the spot.
* For instance, "9 * (4 + 2)" will be optimized into the integer literal 54.
*
@ -284,11 +310,15 @@ class ConstantFolding(private val namespace: INameScope, private val heap: HeapV
* (X / c1) * c2 -> X / (c2/c1)
* (X + c1) - c2 -> X + (c1-c2)
*/
override fun process(expr: BinaryExpression): IExpression {
override fun visit(expr: BinaryExpression): Expression {
return try {
super.process(expr)
val leftconst = expr.left.constValue(namespace, heap)
val rightconst = expr.right.constValue(namespace, heap)
super.visit(expr)
if(expr.left is ReferenceLiteralValue || expr.right is ReferenceLiteralValue)
TODO("binexpr with reference litval")
val leftconst = expr.left.constValue(program)
val rightconst = expr.right.constValue(program)
val subExpr: BinaryExpression? = when {
leftconst!=null -> expr.right as? BinaryExpression
@ -296,8 +326,8 @@ class ConstantFolding(private val namespace: INameScope, private val heap: HeapV
else -> null
}
if(subExpr!=null) {
val subleftconst = subExpr.left.constValue(namespace, heap)
val subrightconst = subExpr.right.constValue(namespace, heap)
val subleftconst = subExpr.left.constValue(program)
val subrightconst = subExpr.right.constValue(program)
if ((subleftconst != null && subrightconst == null) || (subleftconst==null && subrightconst!=null)) {
// try reordering.
return groupTwoConstsTogether(expr, subExpr,
@ -307,12 +337,13 @@ class ConstantFolding(private val namespace: INameScope, private val heap: HeapV
}
// const fold when both operands are a const
val evaluator = ConstExprEvaluator()
return when {
leftconst != null && rightconst != null -> {
optimizationsDone++
evaluator.evaluate(leftconst, expr.operator, rightconst, heap)
val evaluator = ConstExprEvaluator()
evaluator.evaluate(leftconst, expr.operator, rightconst)
}
else -> expr
}
} catch (ax: AstException) {
@ -326,11 +357,11 @@ class ConstantFolding(private val namespace: INameScope, private val heap: HeapV
leftIsConst: Boolean,
rightIsConst: Boolean,
subleftIsConst: Boolean,
subrightIsConst: Boolean): IExpression
subrightIsConst: Boolean): Expression
{
// @todo this implements only a small set of possible reorderings for now
if(expr.operator==subExpr.operator) {
// both operators are the same.
// both operators are the isSameAs.
// If + or *, we can simply swap the const of expr and Var in subexpr.
if(expr.operator=="+" || expr.operator=="*") {
if(leftIsConst) {
@ -361,7 +392,7 @@ class ConstantFolding(private val namespace: INameScope, private val heap: HeapV
expr
} else
BinaryExpression(
BinaryExpression(expr.left, if(expr.operator=="-") "+" else "*", subExpr.right, subExpr.position),
BinaryExpression(expr.left, if (expr.operator == "-") "+" else "*", subExpr.right, subExpr.position),
expr.operator, subExpr.left, expr.position)
} else {
return if(subleftIsConst) {
@ -370,7 +401,7 @@ class ConstantFolding(private val namespace: INameScope, private val heap: HeapV
} else
BinaryExpression(
subExpr.left, expr.operator,
BinaryExpression(expr.right, if(expr.operator=="-") "+" else "*", subExpr.right, subExpr.position),
BinaryExpression(expr.right, if (expr.operator == "-") "+" else "*", subExpr.right, subExpr.position),
expr.position)
}
}
@ -513,50 +544,50 @@ class ConstantFolding(private val namespace: INameScope, private val heap: HeapV
}
}
override fun process(forLoop: ForLoop): IStatement {
override fun visit(forLoop: ForLoop): Statement {
fun adjustRangeDt(rangeFrom: LiteralValue, targetDt: DataType, rangeTo: LiteralValue, stepLiteral: LiteralValue?, range: RangeExpr): RangeExpr {
val newFrom = rangeFrom.intoDatatype(targetDt)
val newTo = rangeTo.intoDatatype(targetDt)
fun adjustRangeDt(rangeFrom: NumericLiteralValue, targetDt: DataType, rangeTo: NumericLiteralValue, stepLiteral: NumericLiteralValue?, range: RangeExpr): RangeExpr {
val newFrom = rangeFrom.cast(targetDt)
val newTo = rangeTo.cast(targetDt)
if (newFrom != null && newTo != null) {
val newStep: IExpression =
if (stepLiteral != null) (stepLiteral.intoDatatype(targetDt) ?: stepLiteral) else range.step
val newStep: Expression =
if (stepLiteral != null) (stepLiteral.cast(targetDt) ?: stepLiteral) else range.step
return RangeExpr(newFrom, newTo, newStep, range.position)
}
return range
}
// adjust the datatype of a range expression in for loops to the loop variable.
val resultStmt = super.process(forLoop) as ForLoop
val resultStmt = super.visit(forLoop) as ForLoop
val iterableRange = resultStmt.iterable as? RangeExpr ?: return resultStmt
val rangeFrom = iterableRange.from as? LiteralValue
val rangeTo = iterableRange.to as? LiteralValue
val rangeFrom = iterableRange.from as? NumericLiteralValue
val rangeTo = iterableRange.to as? NumericLiteralValue
if(rangeFrom==null || rangeTo==null) return resultStmt
val loopvar = resultStmt.loopVar!!.targetVarDecl(namespace)
val loopvar = resultStmt.loopVar?.targetVarDecl(program.namespace)
if(loopvar!=null) {
val stepLiteral = iterableRange.step as? LiteralValue
val stepLiteral = iterableRange.step as? NumericLiteralValue
when(loopvar.datatype) {
DataType.UBYTE -> {
if(rangeFrom.type!=DataType.UBYTE) {
if(rangeFrom.type!= DataType.UBYTE) {
// attempt to translate the iterable into ubyte values
resultStmt.iterable = adjustRangeDt(rangeFrom, loopvar.datatype, rangeTo, stepLiteral, iterableRange)
}
}
DataType.BYTE -> {
if(rangeFrom.type!=DataType.BYTE) {
if(rangeFrom.type!= DataType.BYTE) {
// attempt to translate the iterable into byte values
resultStmt.iterable = adjustRangeDt(rangeFrom, loopvar.datatype, rangeTo, stepLiteral, iterableRange)
}
}
DataType.UWORD -> {
if(rangeFrom.type!=DataType.UWORD) {
if(rangeFrom.type!= DataType.UWORD) {
// attempt to translate the iterable into uword values
resultStmt.iterable = adjustRangeDt(rangeFrom, loopvar.datatype, rangeTo, stepLiteral, iterableRange)
}
}
DataType.WORD -> {
if(rangeFrom.type!=DataType.WORD) {
if(rangeFrom.type!= DataType.WORD) {
// attempt to translate the iterable into word values
resultStmt.iterable = adjustRangeDt(rangeFrom, loopvar.datatype, rangeTo, stepLiteral, iterableRange)
}
@ -567,145 +598,77 @@ class ConstantFolding(private val namespace: INameScope, private val heap: HeapV
return resultStmt
}
override fun process(literalValue: LiteralValue): LiteralValue {
if(literalValue.isString) {
// intern the string; move it into the heap
if(literalValue.strvalue(heap).length !in 1..255)
addError(ExpressionError("string literal length must be between 1 and 255", literalValue.position))
else {
val heapId = heap.addString(literalValue.type, literalValue.strvalue(heap)) // TODO: we don't know the actual string type yet, STR != STR_S etc...
val newValue = LiteralValue(literalValue.type, heapId = heapId, position = literalValue.position)
return super.process(newValue)
}
} else if(literalValue.arrayvalue!=null) {
return moveArrayToHeap(literalValue)
}
return super.process(literalValue)
}
private fun moveArrayToHeap(arraylit: LiteralValue): LiteralValue {
val array: Array<IExpression> = arraylit.arrayvalue!!.map { it.process(this) }.toTypedArray()
val allElementsAreConstantOrAddressOf = array.fold(true) { c, expr-> c and (expr is LiteralValue || expr is AddressOf)}
if(!allElementsAreConstantOrAddressOf) {
addError(ExpressionError("array literal can only consist of constant primitive numerical values or memory pointers", arraylit.position))
return arraylit
} else if(array.any {it is AddressOf}) {
val arrayDt = DataType.ARRAY_UW
val intArrayWithAddressOfs = array.map {
when (it) {
is AddressOf -> IntegerOrAddressOf(null, it)
is LiteralValue -> IntegerOrAddressOf(it.asIntegerValue, null)
else -> throw CompilerException("invalid datatype in array")
override fun visit(refLiteral: ReferenceLiteralValue): Expression {
val litval = super.visit(refLiteral)
if(litval is ReferenceLiteralValue) {
if (litval.isArray) {
val vardecl = litval.parent as? VarDecl
if (vardecl!=null) {
return fixupArrayDatatype(litval, vardecl, program.heap)
}
}
val heapId = heap.addIntegerArray(arrayDt, intArrayWithAddressOfs.toTypedArray())
return LiteralValue(arrayDt, heapId = heapId, position = arraylit.position)
} else {
// array is only constant numerical values
val valuesInArray = array.map { it.constValue(namespace, heap)!!.asNumericValue!! }
val integerArray = valuesInArray.map{ it.toInt() }
val doubleArray = valuesInArray.map{it.toDouble()}.toDoubleArray()
val typesInArray: Set<DataType> = array.mapNotNull { it.resultingDatatype(namespace, heap) }.toSet()
// Take an educated guess about the array type.
// This may be altered (if needed & if possible) to suit an array declaration type later!
// Also, the check if all values are valid for the given datatype is done later, in the AstChecker.
val arrayDt =
if(DataType.FLOAT in typesInArray)
DataType.ARRAY_F
else if(DataType.WORD in typesInArray) {
DataType.ARRAY_W
} else {
val maxValue = integerArray.max()!!
val minValue = integerArray.min()!!
if (minValue >= 0) {
// unsigned
if (maxValue <= 255)
DataType.ARRAY_UB
else
DataType.ARRAY_UW
} else {
// signed
if (maxValue <= 127)
DataType.ARRAY_B
else
DataType.ARRAY_W
}
}
val heapId = when(arrayDt) {
DataType.ARRAY_UB,
DataType.ARRAY_B,
DataType.ARRAY_UW,
DataType.ARRAY_W -> heap.addIntegerArray(arrayDt, integerArray.map { IntegerOrAddressOf(it, null) }.toTypedArray())
DataType.ARRAY_F -> heap.addDoublesArray(doubleArray)
else -> throw CompilerException("invalid arraysize type")
}
return LiteralValue(arrayDt, heapId = heapId, position = arraylit.position)
}
return litval
}
override fun process(assignment: Assignment): IStatement {
super.process(assignment)
val lv = assignment.value as? LiteralValue
override fun visit(assignment: Assignment): Statement {
super.visit(assignment)
val lv = assignment.value as? NumericLiteralValue
if(lv!=null) {
val targetDt = assignment.singleTarget?.determineDatatype(namespace, heap, assignment)
// see if we can promote/convert a literal value to the required datatype
when(targetDt) {
when(assignment.target.inferType(program, assignment)) {
DataType.UWORD -> {
// we can convert to UWORD: any UBYTE, BYTE/WORD that are >=0, FLOAT that's an integer 0..65535,
if(lv.type==DataType.UBYTE)
assignment.value = LiteralValue(DataType.UWORD, wordvalue = lv.asIntegerValue, position=lv.position)
else if(lv.type==DataType.BYTE && lv.bytevalue!!>=0)
assignment.value = LiteralValue(DataType.UWORD, wordvalue = lv.asIntegerValue, position=lv.position)
else if(lv.type==DataType.WORD && lv.wordvalue!!>=0)
assignment.value = LiteralValue(DataType.UWORD, wordvalue = lv.asIntegerValue, position=lv.position)
else if(lv.type==DataType.FLOAT) {
val d = lv.floatvalue!!
if(lv.type== DataType.UBYTE)
assignment.value = NumericLiteralValue(DataType.UWORD, lv.number.toInt(), lv.position)
else if(lv.type== DataType.BYTE && lv.number.toInt()>=0)
assignment.value = NumericLiteralValue(DataType.UWORD, lv.number.toInt(), lv.position)
else if(lv.type== DataType.WORD && lv.number.toInt()>=0)
assignment.value = NumericLiteralValue(DataType.UWORD, lv.number.toInt(), lv.position)
else if(lv.type== DataType.FLOAT) {
val d = lv.number.toDouble()
if(floor(d)==d && d>=0 && d<=65535)
assignment.value = LiteralValue(DataType.UWORD, wordvalue=floor(d).toInt(), position=lv.position)
assignment.value = NumericLiteralValue(DataType.UWORD, floor(d).toInt(), lv.position)
}
}
DataType.UBYTE -> {
// we can convert to UBYTE: UWORD <=255, BYTE >=0, FLOAT that's an integer 0..255,
if(lv.type==DataType.UWORD && lv.wordvalue!! <= 255)
assignment.value = LiteralValue(DataType.UBYTE, lv.wordvalue.toShort(), position=lv.position)
else if(lv.type==DataType.BYTE && lv.bytevalue!! >=0)
assignment.value = LiteralValue(DataType.UBYTE, lv.bytevalue.toShort(), position=lv.position)
else if(lv.type==DataType.FLOAT) {
val d = lv.floatvalue!!
if(lv.type== DataType.UWORD && lv.number.toInt() <= 255)
assignment.value = NumericLiteralValue(DataType.UBYTE, lv.number.toShort(), lv.position)
else if(lv.type== DataType.BYTE && lv.number.toInt() >=0)
assignment.value = NumericLiteralValue(DataType.UBYTE, lv.number.toShort(), lv.position)
else if(lv.type== DataType.FLOAT) {
val d = lv.number.toDouble()
if(floor(d)==d && d >=0 && d<=255)
assignment.value = LiteralValue(DataType.UBYTE, floor(d).toShort(), position=lv.position)
assignment.value = NumericLiteralValue(DataType.UBYTE, floor(d).toShort(), lv.position)
}
}
DataType.BYTE -> {
// we can convert to BYTE: UWORD/UBYTE <= 127, FLOAT that's an integer 0..127
if(lv.type==DataType.UWORD && lv.wordvalue!! <= 127)
assignment.value = LiteralValue(DataType.BYTE, lv.wordvalue.toShort(), position=lv.position)
else if(lv.type==DataType.UBYTE && lv.bytevalue!! <= 127)
assignment.value = LiteralValue(DataType.BYTE, lv.bytevalue, position=lv.position)
else if(lv.type==DataType.FLOAT) {
val d = lv.floatvalue!!
if(lv.type== DataType.UWORD && lv.number.toInt() <= 127)
assignment.value = NumericLiteralValue(DataType.BYTE, lv.number.toShort(), lv.position)
else if(lv.type== DataType.UBYTE && lv.number.toInt() <= 127)
assignment.value = NumericLiteralValue(DataType.BYTE, lv.number.toShort(), lv.position)
else if(lv.type== DataType.FLOAT) {
val d = lv.number.toDouble()
if(floor(d)==d && d>=0 && d<=127)
assignment.value = LiteralValue(DataType.BYTE, floor(d).toShort(), position=lv.position)
assignment.value = NumericLiteralValue(DataType.BYTE, floor(d).toShort(), lv.position)
}
}
DataType.WORD -> {
// we can convert to WORD: any UBYTE/BYTE, UWORD <= 32767, FLOAT that's an integer -32768..32767,
if(lv.type==DataType.UBYTE || lv.type==DataType.BYTE)
assignment.value = LiteralValue(DataType.WORD, wordvalue=lv.bytevalue!!.toInt(), position=lv.position)
else if(lv.type==DataType.UWORD && lv.wordvalue!! <= 32767)
assignment.value = LiteralValue(DataType.WORD, wordvalue=lv.wordvalue, position=lv.position)
else if(lv.type==DataType.FLOAT) {
val d = lv.floatvalue!!
if(lv.type== DataType.UBYTE || lv.type== DataType.BYTE)
assignment.value = NumericLiteralValue(DataType.WORD, lv.number.toInt(), lv.position)
else if(lv.type== DataType.UWORD && lv.number.toInt() <= 32767)
assignment.value = NumericLiteralValue(DataType.WORD, lv.number.toInt(), lv.position)
else if(lv.type== DataType.FLOAT) {
val d = lv.number.toDouble()
if(floor(d)==d && d>=-32768 && d<=32767)
assignment.value = LiteralValue(DataType.BYTE, floor(d).toShort(), position=lv.position)
assignment.value = NumericLiteralValue(DataType.BYTE, floor(d).toShort(), lv.position)
}
}
DataType.FLOAT -> {
if(lv.isNumeric)
assignment.value = LiteralValue(DataType.FLOAT, floatvalue= lv.asNumericValue?.toDouble(), position=lv.position)
assignment.value = NumericLiteralValue(DataType.FLOAT, lv.number.toDouble(), lv.position)
}
else -> {}
}

View File

@ -0,0 +1,42 @@
package prog8.optimizer
import prog8.ast.Program
import prog8.ast.base.AstException
import prog8.parser.ParsingFailedError
internal fun Program.constantFold() {
val optimizer = ConstantFolding(this)
try {
optimizer.visit(this)
} catch (ax: AstException) {
optimizer.addError(ax)
}
while(optimizer.errors.isEmpty() && optimizer.optimizationsDone>0) {
optimizer.optimizationsDone = 0
optimizer.visit(this)
}
if(optimizer.errors.isNotEmpty()) {
optimizer.errors.forEach { System.err.println(it) }
throw ParsingFailedError("There are ${optimizer.errors.size} errors.")
} else {
modules.forEach { it.linkParents(namespace) } // re-link in final configuration
}
}
internal fun Program.optimizeStatements(optimizeInlining: Boolean): Int {
val optimizer = StatementOptimizer(this, optimizeInlining)
optimizer.visit(this)
modules.forEach { it.linkParents(this.namespace) } // re-link in final configuration
return optimizer.optimizationsDone
}
internal fun Program.simplifyExpressions() : Int {
val optimizer = SimplifyExpressions(this)
optimizer.visit(this)
return optimizer.optimizationsDone
}

View File

@ -1,44 +1,92 @@
package prog8.optimizing
package prog8.optimizer
import prog8.ast.*
import prog8.compiler.HeapValues
import prog8.ast.Program
import prog8.ast.base.AstException
import prog8.ast.base.DataType
import prog8.ast.base.IntegerDatatypes
import prog8.ast.base.NumericDatatypes
import prog8.ast.expressions.*
import prog8.ast.processing.IAstModifyingVisitor
import prog8.ast.statements.Assignment
import prog8.ast.statements.Statement
import kotlin.math.abs
import kotlin.math.log2
/*
todo advanced expression optimization: common (sub) expression elimination (turn common expressions into single subroutine call + introduce variable to hold it)
Also see https://egorbo.com/peephole-optimizations.html
*/
class SimplifyExpressions(private val namespace: INameScope, private val heap: HeapValues) : IAstProcessor {
internal class SimplifyExpressions(private val program: Program) : IAstModifyingVisitor {
var optimizationsDone: Int = 0
override fun process(assignment: Assignment): IStatement {
override fun visit(assignment: Assignment): Statement {
if (assignment.aug_op != null)
throw AstException("augmented assignments should have been converted to normal assignments before this optimizer")
return super.process(assignment)
return super.visit(assignment)
}
override fun process(memread: DirectMemoryRead): IExpression {
override fun visit(memread: DirectMemoryRead): Expression {
// @( &thing ) --> thing
val addrOf = memread.addressExpression as? AddressOf
if(addrOf!=null)
return super.process(addrOf.identifier)
return super.process(memread)
return super.visit(addrOf.identifier)
return super.visit(memread)
}
override fun process(memwrite: DirectMemoryWrite): IExpression {
// @( &thing ) --> thing
val addrOf = memwrite.addressExpression as? AddressOf
if(addrOf!=null)
return super.process(addrOf.identifier)
return super.process(memwrite)
override fun visit(typecast: TypecastExpression): Expression {
var tc = typecast
// try to statically convert a literal value into one of the desired type
val literal = tc.expression as? NumericLiteralValue
if(literal!=null) {
val newLiteral = literal.cast(tc.type)
if(newLiteral!=null && newLiteral!==literal) {
optimizationsDone++
return newLiteral
}
}
// remove redundant typecasts
while(true) {
val expr = tc.expression
if(expr !is TypecastExpression || expr.type!=tc.type) {
val assignment = typecast.parent as? Assignment
if(assignment!=null) {
val targetDt = assignment.target.inferType(program, assignment)
if(tc.expression.inferType(program)==targetDt) {
optimizationsDone++
return tc.expression
}
}
val subTc = tc.expression as? TypecastExpression
if(subTc!=null) {
// if the previous typecast was casting to a 'bigger' type, just ignore that one
// if the previous typecast was casting to a similar type, ignore that one
if(subTc.type largerThan tc.type || subTc.type equalsSize tc.type) {
subTc.type = tc.type
subTc.parent = tc.parent
optimizationsDone++
return subTc
}
}
return super.visit(tc)
}
optimizationsDone++
tc = expr
}
}
override fun process(expr: PrefixExpression): IExpression {
override fun visit(expr: PrefixExpression): Expression {
if (expr.operator == "+") {
// +X --> X
optimizationsDone++
return expr.expression.process(this)
return expr.expression.accept(this)
} else if (expr.operator == "not") {
(expr.expression as? BinaryExpression)?.let {
// NOT (...) -> invert ...
@ -78,18 +126,18 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
}
}
}
return super.process(expr)
return super.visit(expr)
}
override fun process(expr: BinaryExpression): IExpression {
super.process(expr)
val leftVal = expr.left.constValue(namespace, heap)
val rightVal = expr.right.constValue(namespace, heap)
val constTrue = LiteralValue.fromBoolean(true, expr.position)
val constFalse = LiteralValue.fromBoolean(false, expr.position)
override fun visit(expr: BinaryExpression): Expression {
super.visit(expr)
val leftVal = expr.left.constValue(program)
val rightVal = expr.right.constValue(program)
val constTrue = NumericLiteralValue.fromBoolean(true, expr.position)
val constFalse = NumericLiteralValue.fromBoolean(false, expr.position)
val leftDt = expr.left.resultingDatatype(namespace, heap)
val rightDt = expr.right.resultingDatatype(namespace, heap)
val leftDt = expr.left.inferType(program)
val rightDt = expr.right.inferType(program)
if (leftDt != null && rightDt != null && leftDt != rightDt) {
// try to convert a datatype into the other (where ddd
if (adjustDatatypes(expr, leftVal, leftDt, rightVal, rightDt)) {
@ -127,10 +175,10 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
// X + (-value) --> X - value
if (expr.operator == "+" && rightVal != null) {
val rv = rightVal.asNumericValue?.toDouble()
if (rv != null && rv < 0.0) {
val rv = rightVal.number.toDouble()
if (rv < 0.0) {
expr.operator = "-"
expr.right = LiteralValue.fromNumber(-rv, rightVal.type, rightVal.position)
expr.right = NumericLiteralValue(rightVal.type, -rv, rightVal.position)
optimizationsDone++
return expr
}
@ -138,10 +186,10 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
// (-value) + X --> X - value
if (expr.operator == "+" && leftVal != null) {
val lv = leftVal.asNumericValue?.toDouble()
if (lv != null && lv < 0.0) {
val lv = leftVal.number.toDouble()
if (lv < 0.0) {
expr.operator = "-"
expr.right = LiteralValue.fromNumber(-lv, leftVal.type, leftVal.position)
expr.right = NumericLiteralValue(leftVal.type, -lv, leftVal.position)
optimizationsDone++
return expr
}
@ -157,10 +205,10 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
// X - (-value) --> X + value
if (expr.operator == "-" && rightVal != null) {
val rv = rightVal.asNumericValue?.toDouble()
if (rv != null && rv < 0.0) {
val rv = rightVal.number.toDouble()
if (rv < 0.0) {
expr.operator = "+"
expr.right = LiteralValue.fromNumber(-rv, rightVal.type, rightVal.position)
expr.right = NumericLiteralValue(rightVal.type, -rv, rightVal.position)
optimizationsDone++
return expr
}
@ -178,7 +226,7 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
val x = expr.right
val y = determineY(x, leftBinExpr)
if(y!=null) {
val yPlus1 = BinaryExpression(y, "+", LiteralValue.fromNumber(1, leftDt!!, y.position), y.position)
val yPlus1 = BinaryExpression(y, "+", NumericLiteralValue(leftDt!!, 1, y.position), y.position)
return BinaryExpression(x, "*", yPlus1, x.position)
}
} else {
@ -187,7 +235,7 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
val x = expr.right
val y = determineY(x, leftBinExpr)
if(y!=null) {
val yMinus1 = BinaryExpression(y, "-", LiteralValue.fromNumber(1, leftDt!!, y.position), y.position)
val yMinus1 = BinaryExpression(y, "-", NumericLiteralValue(leftDt!!, 1, y.position), y.position)
return BinaryExpression(x, "*", yMinus1, x.position)
}
}
@ -199,7 +247,7 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
val x = expr.left
val y = determineY(x, rightBinExpr)
if(y!=null) {
val yPlus1 = BinaryExpression(y, "+", LiteralValue.optimalInteger(1, y.position), y.position)
val yPlus1 = BinaryExpression(y, "+", NumericLiteralValue.optimalInteger(1, y.position), y.position)
return BinaryExpression(x, "*", yPlus1, x.position)
}
} else {
@ -208,7 +256,7 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
val x = expr.left
val y = determineY(x, rightBinExpr)
if(y!=null) {
val oneMinusY = BinaryExpression(LiteralValue.optimalInteger(1, y.position), "-", y, y.position)
val oneMinusY = BinaryExpression(NumericLiteralValue.optimalInteger(1, y.position), "-", y, y.position)
return BinaryExpression(x, "*", oneMinusY, x.position)
}
}
@ -294,67 +342,67 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
return expr
}
private fun determineY(x: IExpression, subBinExpr: BinaryExpression): IExpression? {
private fun determineY(x: Expression, subBinExpr: BinaryExpression): Expression? {
return when {
same(subBinExpr.left, x) -> subBinExpr.right
same(subBinExpr.right, x) -> subBinExpr.left
subBinExpr.left isSameAs x -> subBinExpr.right
subBinExpr.right isSameAs x -> subBinExpr.left
else -> null
}
}
private fun adjustDatatypes(expr: BinaryExpression,
leftConstVal: LiteralValue?, leftDt: DataType,
rightConstVal: LiteralValue?, rightDt: DataType): Boolean {
leftConstVal: NumericLiteralValue?, leftDt: DataType,
rightConstVal: NumericLiteralValue?, rightDt: DataType): Boolean {
fun adjust(value: LiteralValue, targetDt: DataType): Pair<Boolean, LiteralValue>{
fun adjust(value: NumericLiteralValue, targetDt: DataType): Pair<Boolean, NumericLiteralValue>{
if(value.type==targetDt)
return Pair(false, value)
when(value.type) {
DataType.UBYTE -> {
if (targetDt == DataType.BYTE) {
if(value.bytevalue!! < 127)
return Pair(true, LiteralValue(targetDt, value.bytevalue, position=value.position))
if(value.number.toInt() < 127)
return Pair(true, NumericLiteralValue(targetDt, value.number.toShort(), value.position))
}
else if (targetDt == DataType.UWORD || targetDt == DataType.WORD)
return Pair(true, LiteralValue(targetDt, wordvalue = value.bytevalue!!.toInt(), position=value.position))
return Pair(true, NumericLiteralValue(targetDt, value.number.toInt(), value.position))
}
DataType.BYTE -> {
if (targetDt == DataType.UBYTE) {
if(value.bytevalue!! >= 0)
return Pair(true, LiteralValue(targetDt, value.bytevalue, position=value.position))
if(value.number.toInt() >= 0)
return Pair(true, NumericLiteralValue(targetDt, value.number.toInt(), value.position))
}
else if (targetDt == DataType.UWORD) {
if(value.bytevalue!! >= 0)
return Pair(true, LiteralValue(targetDt, wordvalue=value.bytevalue.toInt(), position=value.position))
if(value.number.toInt() >= 0)
return Pair(true, NumericLiteralValue(targetDt, value.number.toInt(), value.position))
}
else if (targetDt == DataType.WORD) return Pair(true, LiteralValue(targetDt, wordvalue=value.bytevalue!!.toInt(), position=value.position))
else if (targetDt == DataType.WORD) return Pair(true, NumericLiteralValue(targetDt, value.number.toInt(), value.position))
}
DataType.UWORD -> {
if (targetDt == DataType.UBYTE) {
if(value.wordvalue!! <= 255)
return Pair(true, LiteralValue(targetDt, value.wordvalue.toShort(), position=value.position))
if(value.number.toInt() <= 255)
return Pair(true, NumericLiteralValue(targetDt, value.number.toShort(), value.position))
}
else if (targetDt == DataType.BYTE) {
if(value.wordvalue!! <= 127)
return Pair(true, LiteralValue(targetDt, value.wordvalue.toShort(), position=value.position))
if(value.number.toInt() <= 127)
return Pair(true, NumericLiteralValue(targetDt, value.number.toShort(), value.position))
}
else if (targetDt == DataType.WORD) {
if(value.wordvalue!! <= 32767)
return Pair(true, LiteralValue(targetDt, wordvalue=value.wordvalue, position=value.position))
if(value.number.toInt() <= 32767)
return Pair(true, NumericLiteralValue(targetDt, value.number.toInt(), value.position))
}
}
DataType.WORD -> {
if (targetDt == DataType.UBYTE) {
if(value.wordvalue!! in 0..255)
return Pair(true, LiteralValue(targetDt, value.wordvalue.toShort(), position=value.position))
if(value.number.toInt() in 0..255)
return Pair(true, NumericLiteralValue(targetDt, value.number.toShort(), value.position))
}
else if (targetDt == DataType.BYTE) {
if(value.wordvalue!! in -128..127)
return Pair(true, LiteralValue(targetDt, value.wordvalue.toShort(), position=value.position))
if(value.number.toInt() in -128..127)
return Pair(true, NumericLiteralValue(targetDt, value.number.toShort(), value.position))
}
else if (targetDt == DataType.UWORD) {
if(value.wordvalue!! >= 0)
return Pair(true, LiteralValue(targetDt, value.wordvalue.toShort(), position=value.position))
if(value.number.toInt() >= 0)
return Pair(true, NumericLiteralValue(targetDt, value.number.toShort(), value.position))
}
}
else -> {}
@ -363,7 +411,7 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
}
if(leftConstVal==null && rightConstVal!=null) {
if(isBiggerType(leftDt, rightDt)) {
if(leftDt largerThan rightDt) {
val (adjusted, newValue) = adjust(rightConstVal, leftDt)
if (adjusted) {
expr.right = newValue
@ -373,7 +421,7 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
}
return false
} else if(leftConstVal!=null && rightConstVal==null) {
if(isBiggerType(rightDt, leftDt)) {
if(rightDt largerThan leftDt) {
val (adjusted, newValue) = adjust(leftConstVal, rightDt)
if (adjusted) {
expr.left = newValue
@ -387,37 +435,29 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
}
}
private fun isBiggerType(type: DataType, other: DataType) =
when(type) {
in ByteDatatypes -> false
in WordDatatypes -> other in ByteDatatypes
else -> true
}
private data class ReorderedAssociativeBinaryExpr(val expr: BinaryExpression, val leftVal: NumericLiteralValue?, val rightVal: NumericLiteralValue?)
private data class ReorderedAssociativeBinaryExpr(val expr: BinaryExpression, val leftVal: LiteralValue?, val rightVal: LiteralValue?)
private fun reorderAssociative(expr: BinaryExpression, leftVal: LiteralValue?): ReorderedAssociativeBinaryExpr {
private fun reorderAssociative(expr: BinaryExpression, leftVal: NumericLiteralValue?): ReorderedAssociativeBinaryExpr {
if(expr.operator in associativeOperators && leftVal!=null) {
// swap left and right so that right is always the constant
val tmp = expr.left
expr.left = expr.right
expr.right = tmp
optimizationsDone++
return ReorderedAssociativeBinaryExpr(expr, expr.right.constValue(namespace, heap), leftVal)
return ReorderedAssociativeBinaryExpr(expr, expr.right.constValue(program), leftVal)
}
return ReorderedAssociativeBinaryExpr(expr, leftVal, expr.right.constValue(namespace, heap))
return ReorderedAssociativeBinaryExpr(expr, leftVal, expr.right.constValue(program))
}
private fun optimizeAdd(pexpr: BinaryExpression, pleftVal: LiteralValue?, prightVal: LiteralValue?): IExpression {
private fun optimizeAdd(pexpr: BinaryExpression, pleftVal: NumericLiteralValue?, prightVal: NumericLiteralValue?): Expression {
if(pleftVal==null && prightVal==null)
return pexpr
val (expr, _, rightVal) = reorderAssociative(pexpr, pleftVal)
if(rightVal!=null) {
// right value is a constant, see if we can optimize
val rightConst: LiteralValue = rightVal
when(rightConst.asNumericValue?.toDouble()) {
val rightConst: NumericLiteralValue = rightVal
when(rightConst.number.toDouble()) {
0.0 -> {
// left
optimizationsDone++
@ -430,14 +470,14 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
return expr
}
private fun optimizeSub(expr: BinaryExpression, leftVal: LiteralValue?, rightVal: LiteralValue?): IExpression {
private fun optimizeSub(expr: BinaryExpression, leftVal: NumericLiteralValue?, rightVal: NumericLiteralValue?): Expression {
if(leftVal==null && rightVal==null)
return expr
if(rightVal!=null) {
// right value is a constant, see if we can optimize
val rightConst: LiteralValue = rightVal
when(rightConst.asNumericValue?.toDouble()) {
val rightConst: NumericLiteralValue = rightVal
when(rightConst.number.toDouble()) {
0.0 -> {
// left
optimizationsDone++
@ -447,7 +487,7 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
}
if(leftVal!=null) {
// left value is a constant, see if we can optimize
when(leftVal.asNumericValue?.toDouble()) {
when(leftVal.number.toDouble()) {
0.0 -> {
// -right
optimizationsDone++
@ -459,38 +499,38 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
return expr
}
private fun optimizePower(expr: BinaryExpression, leftVal: LiteralValue?, rightVal: LiteralValue?): IExpression {
private fun optimizePower(expr: BinaryExpression, leftVal: NumericLiteralValue?, rightVal: NumericLiteralValue?): Expression {
if(leftVal==null && rightVal==null)
return expr
if(rightVal!=null) {
// right value is a constant, see if we can optimize
val rightConst: LiteralValue = rightVal
when(rightConst.asNumericValue?.toDouble()) {
val rightConst: NumericLiteralValue = rightVal
when(rightConst.number.toDouble()) {
-3.0 -> {
// -1/(left*left*left)
optimizationsDone++
return BinaryExpression(LiteralValue(DataType.FLOAT, floatvalue = -1.0, position = expr.position), "/",
return BinaryExpression(NumericLiteralValue(DataType.FLOAT, -1.0, expr.position), "/",
BinaryExpression(expr.left, "*", BinaryExpression(expr.left, "*", expr.left, expr.position), expr.position),
expr.position)
}
-2.0 -> {
// -1/(left*left)
optimizationsDone++
return BinaryExpression(LiteralValue(DataType.FLOAT, floatvalue = -1.0, position = expr.position), "/",
return BinaryExpression(NumericLiteralValue(DataType.FLOAT, -1.0, expr.position), "/",
BinaryExpression(expr.left, "*", expr.left, expr.position),
expr.position)
}
-1.0 -> {
// -1/left
optimizationsDone++
return BinaryExpression(LiteralValue(DataType.FLOAT, floatvalue = -1.0, position = expr.position), "/",
return BinaryExpression(NumericLiteralValue(DataType.FLOAT, -1.0, expr.position), "/",
expr.left, expr.position)
}
0.0 -> {
// 1
optimizationsDone++
return LiteralValue.fromNumber(1, rightConst.type, expr.position)
return NumericLiteralValue(rightConst.type, 1, expr.position)
}
0.5 -> {
// sqrt(left)
@ -516,21 +556,21 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
}
if(leftVal!=null) {
// left value is a constant, see if we can optimize
when(leftVal.asNumericValue?.toDouble()) {
when(leftVal.number.toDouble()) {
-1.0 -> {
// -1
optimizationsDone++
return LiteralValue(DataType.FLOAT, floatvalue = -1.0, position = expr.position)
return NumericLiteralValue(DataType.FLOAT, -1.0, expr.position)
}
0.0 -> {
// 0
optimizationsDone++
return LiteralValue.fromNumber(0, leftVal.type, expr.position)
return NumericLiteralValue(leftVal.type, 0, expr.position)
}
1.0 -> {
//1
optimizationsDone++
return LiteralValue.fromNumber(1, leftVal.type, expr.position)
return NumericLiteralValue(leftVal.type, 1, expr.position)
}
}
@ -539,22 +579,22 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
return expr
}
private fun optimizeRemainder(expr: BinaryExpression, leftVal: LiteralValue?, rightVal: LiteralValue?): IExpression {
private fun optimizeRemainder(expr: BinaryExpression, leftVal: NumericLiteralValue?, rightVal: NumericLiteralValue?): Expression {
if(leftVal==null && rightVal==null)
return expr
// simplify assignments A = B <operator> C
val cv = rightVal?.asIntegerValue?.toDouble()
val cv = rightVal?.number?.toInt()?.toDouble()
when(expr.operator) {
"%" -> {
if (cv == 1.0) {
optimizationsDone++
return LiteralValue.fromNumber(0, expr.resultingDatatype(namespace, heap)!!, expr.position)
return NumericLiteralValue(expr.inferType(program)!!, 0, expr.position)
} else if (cv == 2.0) {
optimizationsDone++
expr.operator = "&"
expr.right = LiteralValue.optimalInteger(1, expr.position)
expr.right = NumericLiteralValue.optimalInteger(1, expr.position)
return expr
}
}
@ -563,7 +603,7 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
}
private fun optimizeDivision(expr: BinaryExpression, leftVal: LiteralValue?, rightVal: LiteralValue?): IExpression {
private fun optimizeDivision(expr: BinaryExpression, leftVal: NumericLiteralValue?, rightVal: NumericLiteralValue?): Expression {
if(leftVal==null && rightVal==null)
return expr
@ -571,9 +611,9 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
if(rightVal!=null) {
// right value is a constant, see if we can optimize
val rightConst: LiteralValue = rightVal
val cv = rightConst.asNumericValue?.toDouble()
val leftDt = expr.left.resultingDatatype(namespace, heap)
val rightConst: NumericLiteralValue = rightVal
val cv = rightConst.number.toDouble()
val leftDt = expr.left.inferType(program)
when(cv) {
-1.0 -> {
// '/' -> -left
@ -594,7 +634,7 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
// divided by a power of two => shift right
optimizationsDone++
val numshifts = log2(cv).toInt()
return BinaryExpression(expr.left, ">>", LiteralValue.optimalInteger(numshifts, expr.position), expr.position)
return BinaryExpression(expr.left, ">>", NumericLiteralValue.optimalInteger(numshifts, expr.position), expr.position)
}
}
-2.0, -4.0, -8.0, -16.0, -32.0, -64.0, -128.0, -256.0, -512.0, -1024.0, -2048.0, -4096.0, -8192.0, -16384.0, -32768.0, -65536.0 -> {
@ -602,32 +642,32 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
// divided by a negative power of two => negate, then shift right
optimizationsDone++
val numshifts = log2(-cv).toInt()
return BinaryExpression(PrefixExpression("-", expr.left, expr.position), ">>", LiteralValue.optimalInteger(numshifts, expr.position), expr.position)
return BinaryExpression(PrefixExpression("-", expr.left, expr.position), ">>", NumericLiteralValue.optimalInteger(numshifts, expr.position), expr.position)
}
}
}
if (leftDt == DataType.UBYTE) {
if(abs(rightConst.asNumericValue!!.toDouble()) >= 256.0) {
if(abs(rightConst.number.toDouble()) >= 256.0) {
optimizationsDone++
return LiteralValue(DataType.UBYTE, 0, position = expr.position)
return NumericLiteralValue(DataType.UBYTE, 0, expr.position)
}
}
else if (leftDt == DataType.UWORD) {
if(abs(rightConst.asNumericValue!!.toDouble()) >= 65536.0) {
if(abs(rightConst.number.toDouble()) >= 65536.0) {
optimizationsDone++
return LiteralValue(DataType.UBYTE, 0, position = expr.position)
return NumericLiteralValue(DataType.UBYTE, 0, expr.position)
}
}
}
if(leftVal!=null) {
// left value is a constant, see if we can optimize
when(leftVal.asNumericValue?.toDouble()) {
when(leftVal.number.toDouble()) {
0.0 -> {
// 0
optimizationsDone++
return LiteralValue.fromNumber(0, leftVal.type, expr.position)
return NumericLiteralValue(leftVal.type, 0, expr.position)
}
}
}
@ -635,17 +675,16 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
return expr
}
private fun optimizeMultiplication(pexpr: BinaryExpression, pleftVal: LiteralValue?, prightVal: LiteralValue?): IExpression {
private fun optimizeMultiplication(pexpr: BinaryExpression, pleftVal: NumericLiteralValue?, prightVal: NumericLiteralValue?): Expression {
if(pleftVal==null && prightVal==null)
return pexpr
val (expr, _, rightVal) = reorderAssociative(pexpr, pleftVal)
if(rightVal!=null) {
// right value is a constant, see if we can optimize
val leftValue: IExpression = expr.left
val rightConst: LiteralValue = rightVal
val cv = rightConst.asNumericValue?.toDouble()
when(cv) {
val leftValue: Expression = expr.left
val rightConst: NumericLiteralValue = rightVal
when(val cv = rightConst.number.toDouble()) {
-1.0 -> {
// -left
optimizationsDone++
@ -654,7 +693,7 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
0.0 -> {
// 0
optimizationsDone++
return LiteralValue.fromNumber(0, rightConst.type, expr.position)
return NumericLiteralValue(rightConst.type, 0, expr.position)
}
1.0 -> {
// left
@ -662,19 +701,19 @@ class SimplifyExpressions(private val namespace: INameScope, private val heap: H
return expr.left
}
2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0, 1024.0, 2048.0, 4096.0, 8192.0, 16384.0, 32768.0, 65536.0 -> {
if(leftValue.resultingDatatype(namespace, heap) in IntegerDatatypes) {
if(leftValue.inferType(program) in IntegerDatatypes) {
// times a power of two => shift left
optimizationsDone++
val numshifts = log2(cv).toInt()
return BinaryExpression(expr.left, "<<", LiteralValue.optimalInteger(numshifts, expr.position), expr.position)
return BinaryExpression(expr.left, "<<", NumericLiteralValue.optimalInteger(numshifts, expr.position), expr.position)
}
}
-2.0, -4.0, -8.0, -16.0, -32.0, -64.0, -128.0, -256.0, -512.0, -1024.0, -2048.0, -4096.0, -8192.0, -16384.0, -32768.0, -65536.0 -> {
if(leftValue.resultingDatatype(namespace, heap) in IntegerDatatypes) {
if(leftValue.inferType(program) in IntegerDatatypes) {
// times a negative power of two => negate, then shift left
optimizationsDone++
val numshifts = log2(-cv).toInt()
return BinaryExpression(PrefixExpression("-", expr.left, expr.position), "<<", LiteralValue.optimalInteger(numshifts, expr.position), expr.position)
return BinaryExpression(PrefixExpression("-", expr.left, expr.position), "<<", NumericLiteralValue.optimalInteger(numshifts, expr.position), expr.position)
}
}
}

View File

@ -0,0 +1,671 @@
package prog8.optimizer
import prog8.ast.*
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.processing.IAstModifyingVisitor
import prog8.ast.processing.IAstVisitor
import prog8.ast.statements.*
import prog8.compiler.target.c64.Petscii
import prog8.functions.BuiltinFunctions
import kotlin.math.floor
/*
todo: subroutines with 1 or 2 byte args or 1 word arg can be converted to asm sub calling convention (args in registers)
todo analyse for unreachable code and remove that (f.i. code after goto or return that has no label so can never be jumped to) + print warning about this
*/
internal class StatementOptimizer(private val program: Program, private val optimizeInlining: Boolean) : IAstModifyingVisitor {
var optimizationsDone: Int = 0
private set
private val pureBuiltinFunctions = BuiltinFunctions.filter { it.value.pure }
private val callgraph = CallGraph(program)
private var generatedLabelSequenceNumber = 0
override fun visit(program: Program) {
removeUnusedCode(callgraph)
if(optimizeInlining) {
inlineSubroutines(callgraph)
}
super.visit(program)
}
private fun inlineSubroutines(callgraph: CallGraph) {
val entrypoint = program.entrypoint()
program.modules.forEach {
callgraph.forAllSubroutines(it) { sub ->
if(sub!==entrypoint && !sub.isAsmSubroutine) {
if (sub.statements.size <= 3 && !sub.expensiveToInline) {
sub.calledBy.toList().forEach { caller -> inlineSubroutine(sub, caller) }
} else if (sub.calledBy.size==1 && sub.statements.size < 50) {
inlineSubroutine(sub, sub.calledBy[0])
} else if(sub.calledBy.size<=3 && sub.statements.size < 10 && !sub.expensiveToInline) {
sub.calledBy.toList().forEach { caller -> inlineSubroutine(sub, caller) }
}
}
}
}
}
private fun inlineSubroutine(sub: Subroutine, caller: Node) {
// if the sub is called multiple times from the isSameAs scope, we can't inline (would result in duplicate definitions)
// (unless we add a sequence number to all vars/labels and references to them in the inlined code, but I skip that for now)
val scope = caller.definingScope()
if(sub.calledBy.count { it.definingScope()===scope } > 1)
return
if(caller !is IFunctionCall || caller !is Statement || sub.statements.any { it is Subroutine })
return
if(sub.parameters.isEmpty() && sub.returntypes.isEmpty()) {
// sub without params and without return value can be easily inlined
val parent = caller.parent as INameScope
val inlined = AnonymousScope(sub.statements.toMutableList(), caller.position)
parent.statements[parent.statements.indexOf(caller)] = inlined
// replace return statements in the inlined sub by a jump to the end of it
var haveNewEndLabel = false
var endLabelUsed = false
var endlabel = inlined.statements.last() as? Label
if(endlabel==null) {
endlabel = makeLabel("_prog8_auto_sub_end", inlined.statements.last().position)
endlabel.parent = inlined
haveNewEndLabel = true
}
val returns = inlined.statements.withIndex().filter { iv -> iv.value is Return }.map { iv -> Pair(iv.index, iv.value as Return)}
for(returnIdx in returns) {
val jump = Jump(null, IdentifierReference(listOf(endlabel.name), returnIdx.second.position), null, returnIdx.second.position)
inlined.statements[returnIdx.first] = jump
endLabelUsed = true
}
if(endLabelUsed && haveNewEndLabel)
inlined.statements.add(endlabel)
inlined.linkParents(caller.parent)
sub.calledBy.remove(caller) // if there are no callers left, the sub will be removed automatically later
optimizationsDone++
} else {
// TODO inline subroutine that has params or returnvalues or both
}
}
private fun makeLabel(name: String, position: Position): Label {
generatedLabelSequenceNumber++
return Label("${name}_$generatedLabelSequenceNumber", position)
}
private fun removeUnusedCode(callgraph: CallGraph) {
// remove all subroutines that aren't called, or are empty
val removeSubroutines = mutableSetOf<Subroutine>()
val entrypoint = program.entrypoint()
program.modules.forEach {
callgraph.forAllSubroutines(it) { sub ->
if (sub !== entrypoint && !sub.keepAlways && (sub.calledBy.isEmpty() || (sub.containsNoCodeNorVars() && !sub.isAsmSubroutine)))
removeSubroutines.add(sub)
}
}
if (removeSubroutines.isNotEmpty()) {
removeSubroutines.forEach {
it.definingScope().remove(it)
}
}
val removeBlocks = mutableSetOf<Block>()
program.modules.flatMap { it.statements }.filterIsInstance<Block>().forEach { block ->
if (block.containsNoCodeNorVars() && "force_output" !in block.options())
removeBlocks.add(block)
}
if (removeBlocks.isNotEmpty()) {
removeBlocks.forEach { it.definingScope().remove(it) }
}
// remove modules that are not imported, or are empty (unless it's a library modules)
val removeModules = mutableSetOf<Module>()
program.modules.forEach {
if (!it.isLibraryModule && (it.importedBy.isEmpty() || it.containsNoCodeNorVars()))
removeModules.add(it)
}
if (removeModules.isNotEmpty()) {
program.modules.removeAll(removeModules)
}
}
override fun visit(block: Block): Statement {
if("force_output" !in block.options()) {
if (block.containsNoCodeNorVars()) {
optimizationsDone++
printWarning("removing empty block '${block.name}'", block.position)
return NopStatement.insteadOf(block)
}
if (block !in callgraph.usedSymbols) {
optimizationsDone++
printWarning("removing unused block '${block.name}'", block.position)
return NopStatement.insteadOf(block) // remove unused block
}
}
return super.visit(block)
}
override fun visit(subroutine: Subroutine): Statement {
super.visit(subroutine)
val forceOutput = "force_output" in subroutine.definingBlock().options()
if(subroutine.asmAddress==null && !forceOutput) {
if(subroutine.containsNoCodeNorVars()) {
printWarning("removing empty subroutine '${subroutine.name}'", subroutine.position)
optimizationsDone++
return NopStatement.insteadOf(subroutine)
}
}
val linesToRemove = deduplicateAssignments(subroutine.statements)
if(linesToRemove.isNotEmpty()) {
linesToRemove.reversed().forEach{subroutine.statements.removeAt(it)}
}
if(subroutine.canBeAsmSubroutine) {
optimizationsDone++
return subroutine.intoAsmSubroutine() // TODO this doesn't work yet due to parameter vardecl issue
// TODO fix parameter passing so this also works:
// asmsub aa(byte arg @ Y) -> clobbers() -> () {
// byte local = arg ; @todo fix 'undefined symbol arg' by some sort of alias name for the parameter
// A=44
// }
}
if(subroutine !in callgraph.usedSymbols && !forceOutput) {
printWarning("removing unused subroutine '${subroutine.name}'", subroutine.position)
optimizationsDone++
return NopStatement.insteadOf(subroutine)
}
return subroutine
}
override fun visit(decl: VarDecl): Statement {
val forceOutput = "force_output" in decl.definingBlock().options()
if(decl !in callgraph.usedSymbols && !forceOutput) {
if(decl.type == VarDeclType.VAR)
printWarning("removing unused variable ${decl.type} '${decl.name}'", decl.position)
optimizationsDone++
return NopStatement.insteadOf(decl)
}
return super.visit(decl)
}
private fun deduplicateAssignments(statements: List<Statement>): MutableList<Int> {
// removes 'duplicate' assignments that assign the isSameAs target
val linesToRemove = mutableListOf<Int>()
var previousAssignmentLine: Int? = null
for (i in 0 until statements.size) {
val stmt = statements[i] as? Assignment
if (stmt != null && stmt.value is NumericLiteralValue) {
if (previousAssignmentLine == null) {
previousAssignmentLine = i
continue
} else {
val prev = statements[previousAssignmentLine] as Assignment
if (prev.target.isSameAs(stmt.target, program)) {
// get rid of the previous assignment, if the target is not MEMORY
if (prev.target.isNotMemory(program.namespace))
linesToRemove.add(previousAssignmentLine)
}
previousAssignmentLine = i
}
} else
previousAssignmentLine = null
}
return linesToRemove
}
override fun visit(functionCallStatement: FunctionCallStatement): Statement {
if(functionCallStatement.target.nameInSource.size==1 && functionCallStatement.target.nameInSource[0] in BuiltinFunctions) {
val functionName = functionCallStatement.target.nameInSource[0]
if (functionName in pureBuiltinFunctions) {
printWarning("statement has no effect (function return value is discarded)", functionCallStatement.position)
optimizationsDone++
return NopStatement.insteadOf(functionCallStatement)
}
}
if(functionCallStatement.target.nameInSource==listOf("c64scr", "print") ||
functionCallStatement.target.nameInSource==listOf("c64scr", "print_p")) {
// printing a literal string of just 2 or 1 characters is replaced by directly outputting those characters
val stringVar = functionCallStatement.arglist.single() as? IdentifierReference
if(stringVar!=null) {
val heapId = stringVar.heapId(program.namespace)
val string = program.heap.get(heapId).str!!
if(string.length==1) {
val petscii = Petscii.encodePetscii(string, true)[0]
functionCallStatement.arglist.clear()
functionCallStatement.arglist.add(NumericLiteralValue.optimalInteger(petscii.toInt(), functionCallStatement.position))
functionCallStatement.target = IdentifierReference(listOf("c64", "CHROUT"), functionCallStatement.target.position)
optimizationsDone++
return functionCallStatement
} else if(string.length==2) {
val petscii = Petscii.encodePetscii(string, true)
val scope = AnonymousScope(mutableListOf(), functionCallStatement.position)
scope.statements.add(FunctionCallStatement(IdentifierReference(listOf("c64", "CHROUT"), functionCallStatement.target.position),
mutableListOf(NumericLiteralValue.optimalInteger(petscii[0].toInt(), functionCallStatement.position)), functionCallStatement.position))
scope.statements.add(FunctionCallStatement(IdentifierReference(listOf("c64", "CHROUT"), functionCallStatement.target.position),
mutableListOf(NumericLiteralValue.optimalInteger(petscii[1].toInt(), functionCallStatement.position)), functionCallStatement.position))
optimizationsDone++
return scope
}
}
}
// if it calls a subroutine,
// and the first instruction in the subroutine is a jump, call that jump target instead
// if the first instruction in the subroutine is a return statement, replace with a nop instruction
val subroutine = functionCallStatement.target.targetSubroutine(program.namespace)
if(subroutine!=null) {
val first = subroutine.statements.asSequence().filterNot { it is VarDecl || it is Directive }.firstOrNull()
if(first is Jump && first.identifier!=null) {
optimizationsDone++
return FunctionCallStatement(first.identifier, functionCallStatement.arglist, functionCallStatement.position)
}
if(first is ReturnFromIrq || first is Return) {
optimizationsDone++
return NopStatement.insteadOf(functionCallStatement)
}
}
return super.visit(functionCallStatement)
}
override fun visit(functionCall: FunctionCall): Expression {
// if it calls a subroutine,
// and the first instruction in the subroutine is a jump, call that jump target instead
// if the first instruction in the subroutine is a return statement with constant value, replace with the constant value
val subroutine = functionCall.target.targetSubroutine(program.namespace)
if(subroutine!=null) {
val first = subroutine.statements.asSequence().filterNot { it is VarDecl || it is Directive }.firstOrNull()
if(first is Jump && first.identifier!=null) {
optimizationsDone++
return FunctionCall(first.identifier, functionCall.arglist, functionCall.position)
}
if(first is Return && first.value!=null) {
val constval = first.value?.constValue(program)
if(constval!=null)
return constval
}
}
return super.visit(functionCall)
}
override fun visit(ifStatement: IfStatement): Statement {
super.visit(ifStatement)
if(ifStatement.truepart.containsNoCodeNorVars() && ifStatement.elsepart.containsNoCodeNorVars()) {
optimizationsDone++
return NopStatement.insteadOf(ifStatement)
}
if(ifStatement.truepart.containsNoCodeNorVars() && ifStatement.elsepart.containsCodeOrVars()) {
// invert the condition and move else part to true part
ifStatement.truepart = ifStatement.elsepart
ifStatement.elsepart = AnonymousScope(mutableListOf(), ifStatement.elsepart.position)
ifStatement.condition = PrefixExpression("not", ifStatement.condition, ifStatement.condition.position)
optimizationsDone++
return ifStatement
}
val constvalue = ifStatement.condition.constValue(program)
if(constvalue!=null) {
return if(constvalue.asBooleanValue){
// always true -> keep only if-part
printWarning("condition is always true", ifStatement.position)
optimizationsDone++
ifStatement.truepart
} else {
// always false -> keep only else-part
printWarning("condition is always false", ifStatement.position)
optimizationsDone++
ifStatement.elsepart
}
}
return ifStatement
}
override fun visit(forLoop: ForLoop): Statement {
super.visit(forLoop)
if(forLoop.body.containsNoCodeNorVars()) {
// remove empty for loop
optimizationsDone++
return NopStatement.insteadOf(forLoop)
} else if(forLoop.body.statements.size==1) {
val loopvar = forLoop.body.statements[0] as? VarDecl
if(loopvar!=null && loopvar.name==forLoop.loopVar?.nameInSource?.singleOrNull()) {
// remove empty for loop
optimizationsDone++
return NopStatement.insteadOf(forLoop)
}
}
val range = forLoop.iterable as? RangeExpr
if(range!=null) {
if(range.size()==1) {
// for loop over a (constant) range of just a single value-- optimize the loop away
// loopvar/reg = range value , follow by block
val assignment = Assignment(AssignTarget(forLoop.loopRegister, forLoop.loopVar, null, null, forLoop.position), null, range.from, forLoop.position)
forLoop.body.statements.add(0, assignment)
optimizationsDone++
return forLoop.body
}
}
return forLoop
}
override fun visit(whileLoop: WhileLoop): Statement {
super.visit(whileLoop)
val constvalue = whileLoop.condition.constValue(program)
if(constvalue!=null) {
return if(constvalue.asBooleanValue){
// always true -> print a warning, and optimize into body + jump (if there are no continue and break statements)
printWarning("condition is always true", whileLoop.position)
if(hasContinueOrBreak(whileLoop.body))
return whileLoop
val label = Label("_prog8_back", whileLoop.condition.position)
whileLoop.body.statements.add(0, label)
whileLoop.body.statements.add(Jump(null,
IdentifierReference(listOf("_prog8_back"), whileLoop.condition.position),
null, whileLoop.condition.position))
optimizationsDone++
return whileLoop.body
} else {
// always false -> ditch whole statement
printWarning("condition is always false", whileLoop.position)
optimizationsDone++
NopStatement.insteadOf(whileLoop)
}
}
return whileLoop
}
override fun visit(repeatLoop: RepeatLoop): Statement {
super.visit(repeatLoop)
val constvalue = repeatLoop.untilCondition.constValue(program)
if(constvalue!=null) {
return if(constvalue.asBooleanValue){
// always true -> keep only the statement block (if there are no continue and break statements)
printWarning("condition is always true", repeatLoop.position)
if(hasContinueOrBreak(repeatLoop.body))
repeatLoop
else {
optimizationsDone++
repeatLoop.body
}
} else {
// always false -> print a warning, and optimize into body + jump (if there are no continue and break statements)
printWarning("condition is always false", repeatLoop.position)
if(hasContinueOrBreak(repeatLoop.body))
return repeatLoop
val label = Label("__back", repeatLoop.untilCondition.position)
repeatLoop.body.statements.add(0, label)
repeatLoop.body.statements.add(Jump(null,
IdentifierReference(listOf("__back"), repeatLoop.untilCondition.position),
null, repeatLoop.untilCondition.position))
optimizationsDone++
return repeatLoop.body
}
}
return repeatLoop
}
override fun visit(whenStatement: WhenStatement): Statement {
val choices = whenStatement.choices.toList()
for(choice in choices) {
if(choice.statements.containsNoCodeNorVars())
whenStatement.choices.remove(choice)
}
return super.visit(whenStatement)
}
private fun hasContinueOrBreak(scope: INameScope): Boolean {
class Searcher: IAstModifyingVisitor
{
var count=0
override fun visit(breakStmt: Break): Statement {
count++
return super.visit(breakStmt)
}
override fun visit(contStmt: Continue): Statement {
count++
return super.visit(contStmt)
}
}
val s=Searcher()
for(stmt in scope.statements) {
stmt.accept(s)
if(s.count>0)
return true
}
return s.count > 0
}
override fun visit(jump: Jump): Statement {
val subroutine = jump.identifier?.targetSubroutine(program.namespace)
if(subroutine!=null) {
// if the first instruction in the subroutine is another jump, shortcut this one
val first = subroutine.statements.asSequence().filterNot { it is VarDecl || it is Directive }.firstOrNull()
if(first is Jump) {
optimizationsDone++
return first
}
}
// if the jump is to the next statement, remove the jump
val scope = jump.definingScope()
val label = jump.identifier?.targetStatement(scope)
if(label!=null) {
if(scope.statements.indexOf(label) == scope.statements.indexOf(jump)+1) {
optimizationsDone++
return NopStatement.insteadOf(jump)
}
}
return jump
}
override fun visit(assignment: Assignment): Statement {
if(assignment.aug_op!=null)
throw AstException("augmented assignments should have been converted to normal assignments before this optimizer")
if(assignment.target isSameAs assignment.value) {
if(assignment.target.isNotMemory(program.namespace)) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
}
val targetDt = assignment.target.inferType(program, assignment)
val bexpr=assignment.value as? BinaryExpression
if(bexpr!=null) {
val cv = bexpr.right.constValue(program)?.number?.toDouble()
if (cv == null) {
if (bexpr.operator == "+" && targetDt != DataType.FLOAT) {
if (bexpr.left isSameAs bexpr.right && assignment.target isSameAs bexpr.left) {
bexpr.operator = "*"
bexpr.right = NumericLiteralValue.optimalInteger(2, assignment.value.position)
optimizationsDone++
return assignment
}
}
} else {
if (assignment.target isSameAs bexpr.left) {
// remove assignments that have no effect X=X , X+=0, X-=0, X*=1, X/=1, X//=1, A |= 0, A ^= 0, A<<=0, etc etc
// A = A <operator> B
val vardeclDt = (assignment.target.identifier?.targetVarDecl(program.namespace))?.type
when (bexpr.operator) {
"+" -> {
if (cv == 0.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
} else if (targetDt in IntegerDatatypes && floor(cv) == cv) {
if ((vardeclDt == VarDeclType.MEMORY && cv in 1.0..3.0) || (vardeclDt != VarDeclType.MEMORY && cv in 1.0..8.0)) {
// replace by several INCs (a bit less when dealing with memory targets)
val decs = AnonymousScope(mutableListOf(), assignment.position)
repeat(cv.toInt()) {
decs.statements.add(PostIncrDecr(assignment.target, "++", assignment.position))
}
return decs
}
}
}
"-" -> {
if (cv == 0.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
} else if (targetDt in IntegerDatatypes && floor(cv) == cv) {
if ((vardeclDt == VarDeclType.MEMORY && cv in 1.0..3.0) || (vardeclDt != VarDeclType.MEMORY && cv in 1.0..8.0)) {
// replace by several DECs (a bit less when dealing with memory targets)
val decs = AnonymousScope(mutableListOf(), assignment.position)
repeat(cv.toInt()) {
decs.statements.add(PostIncrDecr(assignment.target, "--", assignment.position))
}
return decs
}
}
}
"*" -> if (cv == 1.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
"/" -> if (cv == 1.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
"**" -> if (cv == 1.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
"|" -> if (cv == 0.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
"^" -> if (cv == 0.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
"<<" -> {
if (cv == 0.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
if (((targetDt == DataType.UWORD || targetDt == DataType.WORD) && cv > 15.0) ||
((targetDt == DataType.UBYTE || targetDt == DataType.BYTE) && cv > 7.0)) {
assignment.value = NumericLiteralValue.optimalInteger(0, assignment.value.position)
assignment.value.linkParents(assignment)
optimizationsDone++
} else {
// replace by in-place lsl(...) call
val scope = AnonymousScope(mutableListOf(), assignment.position)
var numshifts = cv.toInt()
while (numshifts > 0) {
scope.statements.add(FunctionCallStatement(IdentifierReference(listOf("lsl"), assignment.position), mutableListOf(bexpr.left), assignment.position))
numshifts--
}
optimizationsDone++
return scope
}
}
">>" -> {
if (cv == 0.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
if (((targetDt == DataType.UWORD || targetDt == DataType.WORD) && cv > 15.0) ||
((targetDt == DataType.UBYTE || targetDt == DataType.BYTE) && cv > 7.0)) {
assignment.value = NumericLiteralValue.optimalInteger(0, assignment.value.position)
assignment.value.linkParents(assignment)
optimizationsDone++
} else {
// replace by in-place lsr(...) call
val scope = AnonymousScope(mutableListOf(), assignment.position)
var numshifts = cv.toInt()
while (numshifts > 0) {
scope.statements.add(FunctionCallStatement(IdentifierReference(listOf("lsr"), assignment.position), mutableListOf(bexpr.left), assignment.position))
numshifts--
}
optimizationsDone++
return scope
}
}
}
}
}
}
return super.visit(assignment)
}
override fun visit(scope: AnonymousScope): Statement {
val linesToRemove = deduplicateAssignments(scope.statements)
if(linesToRemove.isNotEmpty()) {
linesToRemove.reversed().forEach{scope.statements.removeAt(it)}
}
return super.visit(scope)
}
override fun visit(label: Label): Statement {
// remove duplicate labels
val stmts = label.definingScope().statements
val startIdx = stmts.indexOf(label)
if(startIdx<(stmts.size-1) && stmts[startIdx+1] == label)
return NopStatement.insteadOf(label)
return super.visit(label)
}
}
internal class FlattenAnonymousScopesAndRemoveNops: IAstVisitor {
private var scopesToFlatten = mutableListOf<INameScope>()
private val nopStatements = mutableListOf<NopStatement>()
override fun visit(program: Program) {
super.visit(program)
for(scope in scopesToFlatten.reversed()) {
val namescope = scope.parent as INameScope
val idx = namescope.statements.indexOf(scope as Statement)
if(idx>=0) {
val nop = NopStatement.insteadOf(namescope.statements[idx])
nop.parent = namescope as Node
namescope.statements[idx] = nop
namescope.statements.addAll(idx, scope.statements)
scope.statements.forEach { it.parent = namescope }
visit(nop)
}
}
this.nopStatements.forEach {
it.definingScope().remove(it)
}
}
override fun visit(scope: AnonymousScope) {
if(scope.parent is INameScope) {
scopesToFlatten.add(scope) // get rid of the anonymous scope
}
return super.visit(scope)
}
override fun visit(nopStatement: NopStatement) {
nopStatements.add(nopStatement)
}
}

View File

@ -1,288 +0,0 @@
package prog8.optimizing
import prog8.ast.*
import prog8.compiler.HeapValues
import kotlin.math.pow
val associativeOperators = setOf("+", "*", "&", "|", "^", "or", "and", "xor", "==", "!=")
class ConstExprEvaluator {
fun evaluate(left: LiteralValue, operator: String, right: LiteralValue, heap: HeapValues): IExpression {
return when(operator) {
"+" -> plus(left, right, heap)
"-" -> minus(left, right)
"*" -> multiply(left, right, heap)
"/" -> divide(left, right)
"%" -> remainder(left, right)
"**" -> power(left, right)
"&" -> bitwiseand(left, right)
"|" -> bitwiseor(left, right)
"^" -> bitwisexor(left, right)
"and" -> logicaland(left, right)
"or" -> logicalor(left, right)
"xor" -> logicalxor(left, right)
"<" -> LiteralValue.fromBoolean(left < right, left.position)
">" -> LiteralValue.fromBoolean(left > right, left.position)
"<=" -> LiteralValue.fromBoolean(left <= right, left.position)
">=" -> LiteralValue.fromBoolean(left >= right, left.position)
"==" -> LiteralValue.fromBoolean(left == right, left.position)
"!=" -> LiteralValue.fromBoolean(left != right, left.position)
"<<" -> shiftedleft(left, right)
">>" -> shiftedright(left, right)
else -> throw FatalAstException("const evaluation for invalid operator $operator")
}
}
private fun shiftedright(left: LiteralValue, amount: LiteralValue): IExpression {
if(left.asIntegerValue==null || amount.asIntegerValue==null)
throw ExpressionError("cannot compute $left >> $amount", left.position)
val result =
if(left.type==DataType.UBYTE || left.type==DataType.UWORD)
left.asIntegerValue.ushr(amount.asIntegerValue)
else
left.asIntegerValue.shr(amount.asIntegerValue)
return LiteralValue.fromNumber(result, left.type, left.position)
}
private fun shiftedleft(left: LiteralValue, amount: LiteralValue): IExpression {
if(left.asIntegerValue==null || amount.asIntegerValue==null)
throw ExpressionError("cannot compute $left << $amount", left.position)
val result = left.asIntegerValue.shl(amount.asIntegerValue)
return LiteralValue.fromNumber(result, left.type, left.position)
}
private fun logicalxor(left: LiteralValue, right: LiteralValue): LiteralValue {
val error = "cannot compute $left locical-bitxor $right"
return when {
left.asIntegerValue!=null -> when {
right.asIntegerValue!=null -> LiteralValue.fromBoolean((left.asIntegerValue != 0) xor (right.asIntegerValue != 0), left.position)
right.floatvalue!=null -> LiteralValue.fromBoolean((left.asIntegerValue != 0) xor (right.floatvalue != 0.0), left.position)
else -> throw ExpressionError(error, left.position)
}
left.floatvalue!=null -> when {
right.asIntegerValue!=null -> LiteralValue.fromBoolean((left.floatvalue != 0.0) xor (right.asIntegerValue != 0), left.position)
right.floatvalue!=null -> LiteralValue.fromBoolean((left.floatvalue != 0.0) xor (right.floatvalue != 0.0), left.position)
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun logicalor(left: LiteralValue, right: LiteralValue): LiteralValue {
val error = "cannot compute $left locical-or $right"
return when {
left.asIntegerValue!=null -> when {
right.asIntegerValue!=null -> LiteralValue.fromBoolean(left.asIntegerValue != 0 || right.asIntegerValue != 0, left.position)
right.floatvalue!=null -> LiteralValue.fromBoolean(left.asIntegerValue != 0 || right.floatvalue != 0.0, left.position)
else -> throw ExpressionError(error, left.position)
}
left.floatvalue!=null -> when {
right.asIntegerValue!=null -> LiteralValue.fromBoolean(left.floatvalue != 0.0 || right.asIntegerValue != 0, left.position)
right.floatvalue!=null -> LiteralValue.fromBoolean(left.floatvalue != 0.0 || right.floatvalue != 0.0, left.position)
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun logicaland(left: LiteralValue, right: LiteralValue): LiteralValue {
val error = "cannot compute $left locical-and $right"
return when {
left.asIntegerValue!=null -> when {
right.asIntegerValue!=null -> LiteralValue.fromBoolean(left.asIntegerValue != 0 && right.asIntegerValue != 0, left.position)
right.floatvalue!=null -> LiteralValue.fromBoolean(left.asIntegerValue != 0 && right.floatvalue != 0.0, left.position)
else -> throw ExpressionError(error, left.position)
}
left.floatvalue!=null -> when {
right.asIntegerValue!=null -> LiteralValue.fromBoolean(left.floatvalue != 0.0 && right.asIntegerValue != 0, left.position)
right.floatvalue!=null -> LiteralValue.fromBoolean(left.floatvalue != 0.0 && right.floatvalue != 0.0, left.position)
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun bitwisexor(left: LiteralValue, right: LiteralValue): LiteralValue {
if(left.type== DataType.UBYTE) {
if(right.asIntegerValue!=null) {
return LiteralValue(DataType.UBYTE, bytevalue = (left.bytevalue!!.toInt() xor (right.asIntegerValue and 255)).toShort(), position = left.position)
}
} else if(left.type== DataType.UWORD) {
if(right.asIntegerValue!=null) {
return LiteralValue(DataType.UWORD, wordvalue = left.wordvalue!! xor right.asIntegerValue, position = left.position)
}
}
throw ExpressionError("cannot calculate $left ^ $right", left.position)
}
private fun bitwiseor(left: LiteralValue, right: LiteralValue): LiteralValue {
if(left.type== DataType.UBYTE) {
if(right.asIntegerValue!=null) {
return LiteralValue(DataType.UBYTE, bytevalue = (left.bytevalue!!.toInt() or (right.asIntegerValue and 255)).toShort(), position = left.position)
}
} else if(left.type== DataType.UWORD) {
if(right.asIntegerValue!=null) {
return LiteralValue(DataType.UWORD, wordvalue = left.wordvalue!! or right.asIntegerValue, position = left.position)
}
}
throw ExpressionError("cannot calculate $left | $right", left.position)
}
private fun bitwiseand(left: LiteralValue, right: LiteralValue): LiteralValue {
if(left.type== DataType.UBYTE) {
if(right.asIntegerValue!=null) {
return LiteralValue(DataType.UBYTE, bytevalue = (left.bytevalue!!.toInt() or (right.asIntegerValue and 255)).toShort(), position = left.position)
}
} else if(left.type== DataType.UWORD) {
if(right.asIntegerValue!=null) {
return LiteralValue(DataType.UWORD, wordvalue = left.wordvalue!! or right.asIntegerValue, position = left.position)
}
}
throw ExpressionError("cannot calculate $left & $right", left.position)
}
private fun power(left: LiteralValue, right: LiteralValue): LiteralValue {
val error = "cannot calculate $left ** $right"
return when {
left.asIntegerValue!=null -> when {
right.asIntegerValue!=null -> LiteralValue.optimalNumeric(left.asIntegerValue.toDouble().pow(right.asIntegerValue), left.position)
right.floatvalue!=null -> LiteralValue(DataType.FLOAT, floatvalue = left.asIntegerValue.toDouble().pow(right.floatvalue), position = left.position)
else -> throw ExpressionError(error, left.position)
}
left.floatvalue!=null -> when {
right.asIntegerValue!=null -> LiteralValue(DataType.FLOAT, floatvalue = left.floatvalue.pow(right.asIntegerValue), position = left.position)
right.floatvalue!=null -> LiteralValue(DataType.FLOAT, floatvalue = left.floatvalue.pow(right.floatvalue), position = left.position)
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun plus(left: LiteralValue, right: LiteralValue, heap: HeapValues): LiteralValue {
val error = "cannot add $left and $right"
return when {
left.asIntegerValue!=null -> when {
right.asIntegerValue!=null -> LiteralValue.optimalNumeric(left.asIntegerValue + right.asIntegerValue, left.position)
right.floatvalue!=null -> LiteralValue(DataType.FLOAT, floatvalue = left.asIntegerValue + right.floatvalue, position = left.position)
else -> throw ExpressionError(error, left.position)
}
left.floatvalue!=null -> when {
right.asIntegerValue!=null -> LiteralValue(DataType.FLOAT, floatvalue = left.floatvalue + right.asIntegerValue, position = left.position)
right.floatvalue!=null -> LiteralValue(DataType.FLOAT, floatvalue = left.floatvalue + right.floatvalue, position = left.position)
else -> throw ExpressionError(error, left.position)
}
left.isString -> when {
right.isString -> {
val newStr = left.strvalue(heap) + right.strvalue(heap)
if(newStr.length > 255) throw ExpressionError("string too long", left.position)
LiteralValue(DataType.STR, strvalue = newStr, position = left.position)
}
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun minus(left: LiteralValue, right: LiteralValue): LiteralValue {
val error = "cannot subtract $left and $right"
return when {
left.asIntegerValue!=null -> when {
right.asIntegerValue!=null -> LiteralValue.optimalNumeric(left.asIntegerValue - right.asIntegerValue, left.position)
right.floatvalue!=null -> LiteralValue(DataType.FLOAT, floatvalue = left.asIntegerValue - right.floatvalue, position = left.position)
else -> throw ExpressionError(error, left.position)
}
left.floatvalue!=null -> when {
right.asIntegerValue!=null -> LiteralValue(DataType.FLOAT, floatvalue = left.floatvalue - right.asIntegerValue, position = left.position)
right.floatvalue!=null -> LiteralValue(DataType.FLOAT, floatvalue = left.floatvalue - right.floatvalue, position = left.position)
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun multiply(left: LiteralValue, right: LiteralValue, heap: HeapValues): LiteralValue {
val error = "cannot multiply ${left.type} and ${right.type}"
return when {
left.asIntegerValue!=null -> when {
right.asIntegerValue!=null -> LiteralValue.optimalNumeric(left.asIntegerValue * right.asIntegerValue, left.position)
right.floatvalue!=null -> LiteralValue(DataType.FLOAT, floatvalue = left.asIntegerValue * right.floatvalue, position = left.position)
right.isString -> {
if(right.strvalue(heap).length * left.asIntegerValue > 255) throw ExpressionError("string too long", left.position)
LiteralValue(DataType.STR, strvalue = right.strvalue(heap).repeat(left.asIntegerValue), position = left.position)
}
else -> throw ExpressionError(error, left.position)
}
left.floatvalue!=null -> when {
right.asIntegerValue!=null -> LiteralValue(DataType.FLOAT, floatvalue = left.floatvalue * right.asIntegerValue, position = left.position)
right.floatvalue!=null -> LiteralValue(DataType.FLOAT, floatvalue = left.floatvalue * right.floatvalue, position = left.position)
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun divideByZeroError(pos: Position): Unit =
throw ExpressionError("division by zero", pos)
private fun divide(left: LiteralValue, right: LiteralValue): LiteralValue {
val error = "cannot divide $left by $right"
return when {
left.asIntegerValue!=null -> when {
right.asIntegerValue!=null -> {
if(right.asIntegerValue==0) divideByZeroError(right.position)
val result: Int = left.asIntegerValue / right.asIntegerValue
LiteralValue.optimalNumeric(result, left.position)
}
right.floatvalue!=null -> {
if(right.floatvalue==0.0) divideByZeroError(right.position)
LiteralValue(DataType.FLOAT, floatvalue = left.asIntegerValue / right.floatvalue, position = left.position)
}
else -> throw ExpressionError(error, left.position)
}
left.floatvalue!=null -> when {
right.asIntegerValue!=null -> {
if(right.asIntegerValue==0) divideByZeroError(right.position)
LiteralValue(DataType.FLOAT, floatvalue = left.floatvalue / right.asIntegerValue, position = left.position)
}
right.floatvalue!=null -> {
if(right.floatvalue==0.0) divideByZeroError(right.position)
LiteralValue(DataType.FLOAT, floatvalue = left.floatvalue / right.floatvalue, position = left.position)
}
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
private fun remainder(left: LiteralValue, right: LiteralValue): LiteralValue {
val error = "cannot compute remainder of $left by $right"
return when {
left.asIntegerValue!=null -> when {
right.asIntegerValue!=null -> {
if(right.asIntegerValue==0) divideByZeroError(right.position)
LiteralValue.optimalNumeric(left.asIntegerValue.toDouble() % right.asIntegerValue.toDouble(), left.position)
}
right.floatvalue!=null -> {
if(right.floatvalue==0.0) divideByZeroError(right.position)
LiteralValue(DataType.FLOAT, floatvalue = left.asIntegerValue % right.floatvalue, position = left.position)
}
else -> throw ExpressionError(error, left.position)
}
left.floatvalue!=null -> when {
right.asIntegerValue!=null -> {
if(right.asIntegerValue==0) divideByZeroError(right.position)
LiteralValue(DataType.FLOAT, floatvalue = left.floatvalue % right.asIntegerValue, position = left.position)
}
right.floatvalue!=null -> {
if(right.floatvalue==0.0) divideByZeroError(right.position)
LiteralValue(DataType.FLOAT, floatvalue = left.floatvalue % right.floatvalue, position = left.position)
}
else -> throw ExpressionError(error, left.position)
}
else -> throw ExpressionError(error, left.position)
}
}
}

View File

@ -1,48 +0,0 @@
package prog8.optimizing
import prog8.ast.AstException
import prog8.ast.INameScope
import prog8.ast.Module
import prog8.compiler.HeapValues
import prog8.parser.ParsingFailedError
fun Module.constantFold(globalNamespace: INameScope, heap: HeapValues) {
val optimizer = ConstantFolding(globalNamespace, heap)
try {
this.process(optimizer)
} catch (ax: AstException) {
optimizer.addError(ax)
}
while(optimizer.errors.isEmpty() && optimizer.optimizationsDone>0) {
optimizer.optimizationsDone = 0
this.process(optimizer)
}
if(optimizer.errors.isNotEmpty()) {
optimizer.errors.forEach { System.err.println(it) }
throw ParsingFailedError("There are ${optimizer.errors.size} errors.")
} else {
this.linkParents() // re-link in final configuration
}
}
fun Module.optimizeStatements(globalNamespace: INameScope, heap: HeapValues): Int {
val optimizer = StatementOptimizer(globalNamespace, heap)
this.process(optimizer)
for(stmt in optimizer.statementsToRemove) {
val scope=stmt.definingScope()
scope.remove(stmt)
}
this.linkParents() // re-link in final configuration
return optimizer.optimizationsDone
}
fun Module.simplifyExpressions(namespace: INameScope, heap: HeapValues) : Int {
val optimizer = SimplifyExpressions(namespace, heap)
this.process(optimizer)
return optimizer.optimizationsDone
}

View File

@ -1,556 +0,0 @@
package prog8.optimizing
import prog8.ast.*
import prog8.compiler.HeapValues
import prog8.compiler.target.c64.Petscii
import prog8.functions.BuiltinFunctions
import kotlin.math.floor
/*
todo: subroutines with 1 or 2 byte args or 1 word arg can be converted to asm sub calling convention (args in registers)
todo: implement usage counters for blocks, variables, subroutines, heap variables. Then:
todo remove unused blocks
todo remove unused variables
todo remove unused subroutines
todo remove unused strings and arrays from the heap
todo inline subroutines that are called exactly once (regardless of their size)
todo inline subroutines that are only called a few times (max 3?)
todo inline subroutines that are "sufficiently small" (0-3 statements)
todo analyse for unreachable code and remove that (f.i. code after goto or return that has no label so can never be jumped to)
*/
class StatementOptimizer(private val namespace: INameScope, private val heap: HeapValues) : IAstProcessor {
var optimizationsDone: Int = 0
private set
var statementsToRemove = mutableListOf<IStatement>()
private set
private val pureBuiltinFunctions = BuiltinFunctions.filter { it.value.pure }
override fun process(block: Block): IStatement {
if(block.statements.isEmpty()) {
// remove empty block
optimizationsDone++
statementsToRemove.add(block)
}
return super.process(block)
}
override fun process(subroutine: Subroutine): IStatement {
super.process(subroutine)
if(subroutine.asmAddress==null) {
if(subroutine.statements.isEmpty()) {
// remove empty subroutine
optimizationsDone++
statementsToRemove.add(subroutine)
}
}
val linesToRemove = deduplicateAssignments(subroutine.statements)
if(linesToRemove.isNotEmpty()) {
linesToRemove.reversed().forEach{subroutine.statements.removeAt(it)}
}
if(subroutine.canBeAsmSubroutine) {
optimizationsDone++
return subroutine.intoAsmSubroutine() // TODO this doesn't work yet due to parameter vardecl issue
// TODO fix parameter passing so this also works:
// asmsub aa(byte arg @ Y) -> clobbers() -> () {
// byte local = arg ; @todo fix 'undefined symbol arg' by some sort of alias name for the parameter
// A=44
// }
}
return subroutine
}
private fun deduplicateAssignments(statements: List<IStatement>): MutableList<Int> {
// removes 'duplicate' assignments that assign the same target
val linesToRemove = mutableListOf<Int>()
var previousAssignmentLine: Int? = null
for (i in 0 until statements.size) {
val stmt = statements[i] as? Assignment
if (stmt != null && stmt.value is LiteralValue) {
if (previousAssignmentLine == null) {
previousAssignmentLine = i
continue
} else {
val prev = statements[previousAssignmentLine] as Assignment
if (prev.targets.size == 1 && stmt.targets.size == 1 && same(prev.targets[0], stmt.targets[0])) {
// get rid of the previous assignment, if the target is not MEMORY
if (isNotMemory(prev.targets[0]))
linesToRemove.add(previousAssignmentLine)
}
previousAssignmentLine = i
}
} else
previousAssignmentLine = null
}
return linesToRemove
}
private fun isNotMemory(target: AssignTarget): Boolean {
if(target.register!=null)
return true
if(target.memoryAddress!=null)
return false
if(target.arrayindexed!=null) {
val targetStmt = target.arrayindexed.identifier.targetVarDecl(namespace)
if(targetStmt!=null)
return targetStmt.type!=VarDeclType.MEMORY
}
if(target.identifier!=null) {
val targetStmt = target.identifier.targetVarDecl(namespace)
if(targetStmt!=null)
return targetStmt.type!=VarDeclType.MEMORY
}
return false
}
override fun process(functionCallStatement: FunctionCallStatement): IStatement {
if(functionCallStatement.target.nameInSource.size==1 && functionCallStatement.target.nameInSource[0] in BuiltinFunctions) {
val functionName = functionCallStatement.target.nameInSource[0]
if (functionName in pureBuiltinFunctions) {
printWarning("statement has no effect (function return value is discarded)", functionCallStatement.position)
statementsToRemove.add(functionCallStatement)
return functionCallStatement
}
}
if(functionCallStatement.target.nameInSource==listOf("c64scr", "print") ||
functionCallStatement.target.nameInSource==listOf("c64scr", "print_p")) {
// printing a literal string of just 2 or 1 characters is replaced by directly outputting those characters
if(functionCallStatement.arglist.single() is LiteralValue)
throw AstException("string argument should be on heap already")
val stringVar = functionCallStatement.arglist.single() as? IdentifierReference
if(stringVar!=null) {
val heapId = stringVar.heapId(namespace)
val string = heap.get(heapId).str!!
if(string.length==1) {
val petscii = Petscii.encodePetscii(string, true)[0]
functionCallStatement.arglist.clear()
functionCallStatement.arglist.add(LiteralValue.optimalInteger(petscii, functionCallStatement.position))
functionCallStatement.target = IdentifierReference(listOf("c64", "CHROUT"), functionCallStatement.target.position)
optimizationsDone++
return functionCallStatement
} else if(string.length==2) {
val petscii = Petscii.encodePetscii(string, true)
val scope = AnonymousScope(mutableListOf(), functionCallStatement.position)
scope.statements.add(FunctionCallStatement(IdentifierReference(listOf("c64", "CHROUT"), functionCallStatement.target.position),
mutableListOf(LiteralValue.optimalInteger(petscii[0], functionCallStatement.position)), functionCallStatement.position))
scope.statements.add(FunctionCallStatement(IdentifierReference(listOf("c64", "CHROUT"), functionCallStatement.target.position),
mutableListOf(LiteralValue.optimalInteger(petscii[1], functionCallStatement.position)), functionCallStatement.position))
optimizationsDone++
return scope
}
}
}
// if it calls a subroutine,
// and the first instruction in the subroutine is a jump, call that jump target instead
// if the first instruction in the subroutine is a return statement, replace with a nop instruction
val subroutine = functionCallStatement.target.targetSubroutine(namespace)
if(subroutine!=null) {
val first = subroutine.statements.asSequence().filterNot { it is VarDecl || it is Directive }.firstOrNull()
if(first is Jump && first.identifier!=null) {
optimizationsDone++
return FunctionCallStatement(first.identifier, functionCallStatement.arglist, functionCallStatement.position)
}
if(first is ReturnFromIrq || first is Return) {
optimizationsDone++
return NopStatement(functionCallStatement.position)
}
}
return super.process(functionCallStatement)
}
override fun process(functionCall: FunctionCall): IExpression {
// if it calls a subroutine,
// and the first instruction in the subroutine is a jump, call that jump target instead
// if the first instruction in the subroutine is a return statement with constant value, replace with the constant value
val subroutine = functionCall.target.targetSubroutine(namespace)
if(subroutine!=null) {
val first = subroutine.statements.asSequence().filterNot { it is VarDecl || it is Directive }.firstOrNull()
if(first is Jump && first.identifier!=null) {
optimizationsDone++
return FunctionCall(first.identifier, functionCall.arglist, functionCall.position)
}
if(first is Return && first.values.size==1) {
val constval = first.values[0].constValue(namespace, heap)
if(constval!=null)
return constval
}
}
return super.process(functionCall)
}
override fun process(ifStatement: IfStatement): IStatement {
super.process(ifStatement)
if(ifStatement.truepart.isEmpty() && ifStatement.elsepart.isEmpty()) {
statementsToRemove.add(ifStatement)
optimizationsDone++
return ifStatement
}
if(ifStatement.truepart.isEmpty() && ifStatement.elsepart.isNotEmpty()) {
// invert the condition and move else part to true part
ifStatement.truepart = ifStatement.elsepart
ifStatement.elsepart = AnonymousScope(mutableListOf(), ifStatement.elsepart.position)
ifStatement.condition = PrefixExpression("not", ifStatement.condition, ifStatement.condition.position)
optimizationsDone++
return ifStatement
}
val constvalue = ifStatement.condition.constValue(namespace, heap)
if(constvalue!=null) {
return if(constvalue.asBooleanValue){
// always true -> keep only if-part
printWarning("condition is always true", ifStatement.position)
optimizationsDone++
ifStatement.truepart
} else {
// always false -> keep only else-part
printWarning("condition is always false", ifStatement.position)
optimizationsDone++
ifStatement.elsepart
}
}
return ifStatement
}
override fun process(forLoop: ForLoop): IStatement {
super.process(forLoop)
if(forLoop.body.isEmpty()) {
// remove empty for loop
statementsToRemove.add(forLoop)
optimizationsDone++
return forLoop
} else if(forLoop.body.statements.size==1) {
val loopvar = forLoop.body.statements[0] as? VarDecl
if(loopvar!=null && loopvar.name==forLoop.loopVar?.nameInSource?.singleOrNull()) {
// remove empty for loop
statementsToRemove.add(forLoop)
optimizationsDone++
return forLoop
}
}
val range = forLoop.iterable as? RangeExpr
if(range!=null) {
if(range.size(heap)==1) {
// for loop over a (constant) range of just a single value-- optimize the loop away
// loopvar/reg = range value , follow by block
val assignment = Assignment(listOf(AssignTarget(forLoop.loopRegister, forLoop.loopVar, null, null, forLoop.position)), null, range.from, forLoop.position)
forLoop.body.statements.add(0, assignment)
optimizationsDone++
return forLoop.body
}
}
return forLoop
}
override fun process(whileLoop: WhileLoop): IStatement {
super.process(whileLoop)
val constvalue = whileLoop.condition.constValue(namespace, heap)
if(constvalue!=null) {
return if(constvalue.asBooleanValue){
// always true -> print a warning, and optimize into body + jump (if there are no continue and break statements)
printWarning("condition is always true", whileLoop.position)
if(hasContinueOrBreak(whileLoop.body))
return whileLoop
val label = Label("__back", whileLoop.condition.position)
whileLoop.body.statements.add(0, label)
whileLoop.body.statements.add(Jump(null,
IdentifierReference(listOf("__back"), whileLoop.condition.position),
null, whileLoop.condition.position))
optimizationsDone++
return whileLoop.body
} else {
// always false -> ditch whole statement
printWarning("condition is always false", whileLoop.position)
optimizationsDone++
NopStatement(whileLoop.position)
}
}
return whileLoop
}
override fun process(repeatLoop: RepeatLoop): IStatement {
super.process(repeatLoop)
val constvalue = repeatLoop.untilCondition.constValue(namespace, heap)
if(constvalue!=null) {
return if(constvalue.asBooleanValue){
// always true -> keep only the statement block (if there are no continue and break statements)
printWarning("condition is always true", repeatLoop.position)
if(hasContinueOrBreak(repeatLoop.body))
repeatLoop
else {
optimizationsDone++
repeatLoop.body
}
} else {
// always false -> print a warning, and optimize into body + jump (if there are no continue and break statements)
printWarning("condition is always false", repeatLoop.position)
if(hasContinueOrBreak(repeatLoop.body))
return repeatLoop
val label = Label("__back", repeatLoop.untilCondition.position)
repeatLoop.body.statements.add(0, label)
repeatLoop.body.statements.add(Jump(null,
IdentifierReference(listOf("__back"), repeatLoop.untilCondition.position),
null, repeatLoop.untilCondition.position))
optimizationsDone++
return repeatLoop.body
}
}
return repeatLoop
}
private fun hasContinueOrBreak(scope: INameScope): Boolean {
class Searcher:IAstProcessor
{
var count=0
override fun process(breakStmt: Break): IStatement {
count++
return super.process(breakStmt)
}
override fun process(contStmt: Continue): IStatement {
count++
return super.process(contStmt)
}
}
val s=Searcher()
for(stmt in scope.statements) {
stmt.process(s)
if(s.count>0)
return true
}
return s.count > 0
}
override fun process(jump: Jump): IStatement {
val subroutine = jump.identifier?.targetSubroutine(namespace)
if(subroutine!=null) {
// if the first instruction in the subroutine is another jump, shortcut this one
val first = subroutine.statements.asSequence().filterNot { it is VarDecl || it is Directive }.firstOrNull()
if(first is Jump) {
optimizationsDone++
return first
}
}
return jump
}
override fun process(assignment: Assignment): IStatement {
if(assignment.aug_op!=null)
throw AstException("augmented assignments should have been converted to normal assignments before this optimizer")
if(assignment.targets.size==1) {
val target=assignment.targets[0]
if(same(target, assignment.value)) {
optimizationsDone++
return NopStatement(assignment.position)
}
val targetDt = target.determineDatatype(namespace, heap, assignment)!!
val bexpr=assignment.value as? BinaryExpression
if(bexpr!=null) {
val cv = bexpr.right.constValue(namespace, heap)?.asNumericValue?.toDouble()
if(cv==null) {
if(bexpr.operator=="+" && targetDt!=DataType.FLOAT) {
if (same(bexpr.left, bexpr.right) && same(target, bexpr.left)) {
bexpr.operator = "*"
bexpr.right = LiteralValue.optimalInteger(2, assignment.value.position)
optimizationsDone++
return assignment
}
}
} else {
if (same(target, bexpr.left)) {
// remove assignments that have no effect X=X , X+=0, X-=0, X*=1, X/=1, X//=1, A |= 0, A ^= 0, A<<=0, etc etc
// A = A <operator> B
val vardeclDt = (target.identifier?.targetVarDecl(namespace))?.type
when (bexpr.operator) {
"+" -> {
if (cv == 0.0) {
optimizationsDone++
return NopStatement(assignment.position)
} else if (targetDt in IntegerDatatypes && floor(cv) == cv) {
if((vardeclDt == VarDeclType.MEMORY && cv in 1.0..3.0) || (vardeclDt!=VarDeclType.MEMORY && cv in 1.0..8.0)) {
// replace by several INCs (a bit less when dealing with memory targets)
val decs = AnonymousScope(mutableListOf(), assignment.position)
repeat(cv.toInt()) {
decs.statements.add(PostIncrDecr(target, "++", assignment.position))
}
return decs
}
}
}
"-" -> {
if (cv == 0.0) {
optimizationsDone++
return NopStatement(assignment.position)
} else if (targetDt in IntegerDatatypes && floor(cv) == cv) {
if((vardeclDt == VarDeclType.MEMORY && cv in 1.0..3.0) || (vardeclDt!=VarDeclType.MEMORY && cv in 1.0..8.0)) {
// replace by several DECs (a bit less when dealing with memory targets)
val decs = AnonymousScope(mutableListOf(), assignment.position)
repeat(cv.toInt()) {
decs.statements.add(PostIncrDecr(target, "--", assignment.position))
}
return decs
}
}
}
"*" -> if (cv == 1.0) {
optimizationsDone++
return NopStatement(assignment.position)
}
"/" -> if (cv == 1.0) {
optimizationsDone++
return NopStatement(assignment.position)
}
"**" -> if (cv == 1.0) {
optimizationsDone++
return NopStatement(assignment.position)
}
"|" -> if (cv == 0.0) {
optimizationsDone++
return NopStatement(assignment.position)
}
"^" -> if (cv == 0.0) {
optimizationsDone++
return NopStatement(assignment.position)
}
"<<" -> {
if (cv == 0.0) {
optimizationsDone++
return NopStatement(assignment.position)
}
if (((targetDt == DataType.UWORD || targetDt == DataType.WORD) && cv > 15.0) ||
((targetDt == DataType.UBYTE || targetDt == DataType.BYTE) && cv > 7.0)) {
assignment.value = LiteralValue.optimalInteger(0, assignment.value.position)
assignment.value.linkParents(assignment)
optimizationsDone++
} else {
// replace by in-place lsl(...) call
val scope = AnonymousScope(mutableListOf(), assignment.position)
var numshifts = cv.toInt()
while (numshifts > 0) {
scope.statements.add(FunctionCallStatement(IdentifierReference(listOf("lsl"), assignment.position), mutableListOf(bexpr.left), assignment.position))
numshifts--
}
optimizationsDone++
return scope
}
}
">>" -> {
if (cv == 0.0) {
optimizationsDone++
return NopStatement(assignment.position)
}
if (((targetDt == DataType.UWORD || targetDt == DataType.WORD) && cv > 15.0) ||
((targetDt == DataType.UBYTE || targetDt == DataType.BYTE) && cv > 7.0)) {
assignment.value = LiteralValue.optimalInteger(0, assignment.value.position)
assignment.value.linkParents(assignment)
optimizationsDone++
} else {
// replace by in-place lsr(...) call
val scope = AnonymousScope(mutableListOf(), assignment.position)
var numshifts = cv.toInt()
while (numshifts > 0) {
scope.statements.add(FunctionCallStatement(IdentifierReference(listOf("lsr"), assignment.position), mutableListOf(bexpr.left), assignment.position))
numshifts--
}
optimizationsDone++
return scope
}
}
}
}
}
}
}
return super.process(assignment)
}
override fun process(scope: AnonymousScope): AnonymousScope {
val linesToRemove = deduplicateAssignments(scope.statements)
if(linesToRemove.isNotEmpty()) {
linesToRemove.reversed().forEach{scope.statements.removeAt(it)}
}
return super.process(scope)
}
private fun same(target: AssignTarget, value: IExpression): Boolean {
return when {
target.memoryAddress!=null -> false
target.register!=null -> value is RegisterExpr && value.register==target.register
target.identifier!=null -> value is IdentifierReference && value.nameInSource==target.identifier.nameInSource
target.arrayindexed!=null -> value is ArrayIndexedExpression &&
value.identifier.nameInSource==target.arrayindexed.identifier.nameInSource &&
value.arrayspec.size()!=null &&
target.arrayindexed.arrayspec.size()!=null &&
value.arrayspec.size()==target.arrayindexed.arrayspec.size()
else -> false
}
}
private fun same(target1: AssignTarget, target2: AssignTarget): Boolean {
if(target1===target2)
return true
if(target1.register!=null && target2.register!=null)
return target1.register==target2.register
if(target1.identifier!=null && target2.identifier!=null)
return target1.identifier.nameInSource==target2.identifier.nameInSource
if(target1.memoryAddress!=null && target2.memoryAddress!=null) {
val addr1 = target1.memoryAddress!!.addressExpression.constValue(namespace, heap)
val addr2 = target2.memoryAddress!!.addressExpression.constValue(namespace, heap)
return addr1!=null && addr2!=null && addr1==addr2
}
if(target1.arrayindexed!=null && target2.arrayindexed!=null) {
if(target1.arrayindexed.identifier.nameInSource == target2.arrayindexed.identifier.nameInSource) {
val x1 = target1.arrayindexed.arrayspec.index.constValue(namespace, heap)
val x2 = target2.arrayindexed.arrayspec.index.constValue(namespace, heap)
return x1!=null && x2!=null && x1==x2
}
}
return false
}
}
fun same(left: IExpression, right: IExpression): Boolean {
if(left===right)
return true
when(left) {
is RegisterExpr ->
return (right is RegisterExpr && right.register==left.register)
is IdentifierReference ->
return (right is IdentifierReference && right.nameInSource==left.nameInSource)
is PrefixExpression ->
return (right is PrefixExpression && right.operator==left.operator && same(right.expression, left.expression))
is BinaryExpression ->
return (right is BinaryExpression && right.operator==left.operator
&& same(right.left, left.left)
&& same(right.right, left.right))
is ArrayIndexedExpression -> {
return (right is ArrayIndexedExpression && right.identifier.nameInSource == left.identifier.nameInSource
&& same(right.arrayspec.index, left.arrayspec.index))
}
is LiteralValue -> return (right is LiteralValue && right==left)
}
return false
}

View File

@ -4,7 +4,7 @@ import org.antlr.v4.runtime.CommonTokenStream
import org.antlr.v4.runtime.Lexer
class CommentHandlingTokenStream(lexer: Lexer) : CommonTokenStream(lexer) {
internal class CommentHandlingTokenStream(lexer: Lexer) : CommonTokenStream(lexer) {
data class Comment(val type: String, val line: Int, val comment: String)

View File

@ -1,21 +1,21 @@
package prog8.parser
import org.antlr.v4.runtime.*
import prog8.ast.*
import prog8.compiler.LauncherType
import prog8.compiler.OutputType
import prog8.determineCompilationOptions
import prog8.ast.Module
import prog8.ast.Program
import prog8.ast.antlr.toAst
import prog8.ast.base.Position
import prog8.ast.base.SyntaxError
import prog8.ast.base.checkImportedValid
import prog8.ast.statements.Directive
import prog8.ast.statements.DirectiveArg
import java.io.InputStream
import java.nio.file.Files
import java.nio.file.Path
import java.nio.file.Paths
import java.util.*
class ParsingFailedError(override var message: String) : Exception(message)
private val importedModules : HashMap<String, Module> = hashMapOf()
internal class ParsingFailedError(override var message: String) : Exception(message)
private class LexerErrorListener: BaseErrorListener() {
@ -29,8 +29,36 @@ private class LexerErrorListener: BaseErrorListener() {
internal class CustomLexer(val modulePath: Path, input: CharStream?) : prog8Lexer(input)
fun importModule(stream: CharStream, modulePath: Path, isLibrary: Boolean): Module {
val moduleName = modulePath.fileName
internal fun moduleName(fileName: Path) = fileName.toString().substringBeforeLast('.')
internal fun importModule(program: Program, filePath: Path): Module {
print("importing '${moduleName(filePath.fileName)}'")
if(filePath.parent!=null) {
var importloc = filePath.toString()
val curdir = Paths.get("").toAbsolutePath().toString()
if(importloc.startsWith(curdir))
importloc = "." + importloc.substring(curdir.length)
println(" (from '$importloc')")
}
else
println("")
if(!Files.isReadable(filePath))
throw ParsingFailedError("No such file: $filePath")
val input = CharStreams.fromPath(filePath)
return importModule(program, input, filePath, false)
}
internal fun importLibraryModule(program: Program, name: String): Module? {
val import = Directive("%import", listOf(
DirectiveArg("", name, 42, position = Position("<<<implicit-import>>>", 0, 0, 0))
), Position("<<<implicit-import>>>", 0, 0, 0))
return executeImportDirective(program, import, Paths.get(""))
}
internal fun importModule(program: Program, stream: CharStream, modulePath: Path, isLibrary: Boolean): Module {
val moduleName = moduleName(modulePath.fileName)
val lexer = CustomLexer(modulePath, stream)
val lexerErrors = LexerErrorListener()
lexer.addErrorListener(lexerErrors)
@ -45,68 +73,25 @@ fun importModule(stream: CharStream, modulePath: Path, isLibrary: Boolean): Modu
// tokens.commentTokens().forEach { println(it) }
// convert to Ast
val moduleAst = parseTree.toAst(moduleName.toString(), isLibrary, modulePath)
importedModules[moduleAst.name] = moduleAst
val moduleAst = parseTree.toAst(moduleName, isLibrary, modulePath)
moduleAst.program = program
moduleAst.linkParents(program.namespace)
program.modules.add(moduleAst)
// process imports
// accept additional imports
val lines = moduleAst.statements.toMutableList()
if(!moduleAst.position.file.startsWith("c64utils.") && !moduleAst.isLibraryModule) {
// if the output is a PRG or BASIC program, include the c64utils library
val compilerOptions = determineCompilationOptions(moduleAst)
if(compilerOptions.launcher==LauncherType.BASIC || compilerOptions.output==OutputType.PRG) {
lines.add(0, Directive("%import", listOf(DirectiveArg(null, "c64utils", null, moduleAst.position)), moduleAst.position))
}
}
// always import the prog8lib and math compiler libraries
if(!moduleAst.position.file.startsWith("math."))
lines.add(0, Directive("%import", listOf(DirectiveArg(null, "math", null, moduleAst.position)), moduleAst.position))
if(!moduleAst.position.file.startsWith("prog8lib."))
lines.add(0, Directive("%import", listOf(DirectiveArg(null, "prog8lib", null, moduleAst.position)), moduleAst.position))
val imports = lines
.asSequence()
.mapIndexed { i, it -> Pair(i, it) }
.filter { (it.second as? Directive)?.directive == "%import" }
.map { Pair(it.first, executeImportDirective(it.second as Directive, modulePath)) }
.toList()
imports.reversed().forEach {
if(it.second==null) {
// this import was already satisfied. just remove this line.
lines.removeAt(it.first)
} else {
// merge imported lines at this spot
lines.addAll(it.first, it.second!!.statements)
}
}
lines.asSequence()
.mapIndexed { i, it -> Pair(i, it) }
.filter { (it.second as? Directive)?.directive == "%import" }
.forEach { executeImportDirective(program, it.second as Directive, modulePath) }
moduleAst.statements = lines
return moduleAst
}
fun importModule(filePath: Path) : Module {
print("importing '${filePath.fileName}'")
if(filePath.parent!=null) {
var importloc = filePath.toString()
val curdir = Paths.get("").toAbsolutePath().toString()
if(importloc.startsWith(curdir))
importloc = "." + importloc.substring(curdir.length)
println(" (from '$importloc')")
}
else
println("")
if(!Files.isReadable(filePath))
throw ParsingFailedError("No such file: $filePath")
val input = CharStreams.fromPath(filePath)
return importModule(input, filePath, filePath.parent==null)
}
private fun discoverImportedModuleFile(name: String, importedFrom: Path, position: Position?): Path {
private fun discoverImportedModuleFile(name: String, source: Path, position: Position?): Path {
val fileName = "$name.p8"
val locations = mutableListOf(Paths.get(importedFrom.parent.toString()))
val locations = mutableListOf(Paths.get(source.parent.toString()))
val propPath = System.getProperty("prog8.libdir")
if(propPath!=null)
@ -124,13 +109,15 @@ private fun discoverImportedModuleFile(name: String, importedFrom: Path, positio
throw ParsingFailedError("$position Import: no module source file '$fileName' found (I've looked in: $locations)")
}
private fun executeImportDirective(import: Directive, importedFrom: Path): Module? {
private fun executeImportDirective(program: Program, import: Directive, source: Path): Module? {
if(import.directive!="%import" || import.args.size!=1 || import.args[0].name==null)
throw SyntaxError("invalid import directive", import.position)
val moduleName = import.args[0].name!!
if("$moduleName.p8" == import.position.file)
throw SyntaxError("cannot import self", import.position)
if(importedModules.containsKey(moduleName))
val existing = program.modules.singleOrNull { it.name == moduleName }
if(existing!=null)
return null
val resource = tryGetEmbeddedResource(moduleName+".p8")
@ -138,18 +125,21 @@ private fun executeImportDirective(import: Directive, importedFrom: Path): Modul
if(resource!=null) {
// load the module from the embedded resource
resource.use {
println("importing '$moduleName' (embedded library)")
importModule(CharStreams.fromStream(it), Paths.get("@embedded@/$moduleName"), true)
if(import.args[0].int==42)
println("importing '$moduleName' (library, auto)")
else
println("importing '$moduleName' (library)")
importModule(program, CharStreams.fromStream(it), Paths.get("@embedded@/$moduleName"), true)
}
} else {
val modulePath = discoverImportedModuleFile(moduleName, importedFrom, import.position)
importModule(modulePath)
val modulePath = discoverImportedModuleFile(moduleName, source, import.position)
importModule(program, modulePath)
}
importedModule.checkImportedValid()
return importedModule
}
fun tryGetEmbeddedResource(name: String): InputStream? {
internal fun tryGetEmbeddedResource(name: String): InputStream? {
return object{}.javaClass.getResourceAsStream("/prog8lib/$name")
}

View File

@ -1,102 +0,0 @@
package prog8.stackvm
import prog8.compiler.target.c64.Mflpt5
import prog8.compiler.target.c64.Petscii
import kotlin.math.abs
class Memory {
private val mem = ShortArray(65536) // shorts because byte is signed and we store values 0..255
fun getUByte(address: Int): Short {
return mem[address]
}
fun getSByte(address: Int): Short {
val ubyte = getUByte(address)
if(ubyte <= 127)
return ubyte
return (-((ubyte.toInt() xor 255)+1)).toShort() // 2's complement
}
fun setUByte(address: Int, value: Short) {
if(value !in 0..255)
throw VmExecutionException("ubyte value out of range")
mem[address] = value
}
fun setSByte(address: Int, value: Short) {
if(value !in -128..127) throw VmExecutionException("byte value out of range")
if(value>=0)
mem[address] = value
else
mem[address] = ((abs(value.toInt()) xor 255)+1).toShort() // 2's complement
}
fun getUWord(address: Int): Int {
return mem[address] + 256*mem[address+1]
}
fun getSWord(address: Int): Int {
val uword = getUWord(address)
if(uword <= 32767)
return uword
return -((uword xor 65535)+1) // 2's complement
}
fun setUWord(address: Int, value: Int) {
if(value !in 0..65535)
throw VmExecutionException("uword value out of range")
mem[address] = value.and(255).toShort()
mem[address+1] = (value / 256).toShort()
}
fun setSWord(address: Int, value: Int) {
if(value !in -32768..32767) throw VmExecutionException("word value out of range")
if(value>=0)
setUWord(address, value)
else
setUWord(address, (abs(value) xor 65535)+1) // 2's complement
}
fun setFloat(address: Int, value: Double) {
val mflpt5 = Mflpt5.fromNumber(value)
mem[address] = mflpt5.b0
mem[address+1] = mflpt5.b1
mem[address+2] = mflpt5.b2
mem[address+3] = mflpt5.b3
mem[address+4] = mflpt5.b4
}
fun getFloat(address: Int): Double {
return Mflpt5(mem[address], mem[address + 1], mem[address + 2], mem[address + 3], mem[address + 4]).toDouble()
}
fun setString(address: Int, str: String) {
// lowercase PETSCII
val petscii = Petscii.encodePetscii(str, true)
var addr = address
for (c in petscii) mem[addr++] = c
mem[addr] = 0
}
fun getString(strAddress: Int): String {
// lowercase PETSCII
val petscii = mutableListOf<Short>()
var addr = strAddress
while(true) {
val byte = mem[addr++]
if(byte==0.toShort()) break
petscii.add(byte)
}
return Petscii.decodePetscii(petscii, true)
}
fun clear() {
for(i in 0..65535) mem[i]=0
}
fun copy(from: Int, to: Int, numbytes: Int) {
for(i in 0 until numbytes)
mem[to+i] = mem[from+i]
}
}

View File

@ -0,0 +1,633 @@
package prog8.vm
import prog8.ast.base.*
import prog8.ast.expressions.NumericLiteralValue
import prog8.ast.expressions.ReferenceLiteralValue
import prog8.compiler.HeapValues
import prog8.compiler.target.c64.Petscii
import kotlin.math.abs
import kotlin.math.pow
/**
* Rather than a literal value (NumericLiteralValue) that occurs in the parsed source code,
* this runtime value can be used to *execute* the parsed Ast (or another intermediary form)
* It contains a value of a variable during run time of the program and provides arithmetic operations on the value.
*/
open class RuntimeValue(val type: DataType, num: Number?=null, val str: String?=null,
val array: Array<Number>?=null, val heapId: Int?=null) {
val byteval: Short?
val wordval: Int?
val floatval: Double?
val asBoolean: Boolean
companion object {
fun fromLv(literalValue: NumericLiteralValue): RuntimeValue {
return RuntimeValue(literalValue.type, num = literalValue.number)
}
fun fromLv(literalValue: ReferenceLiteralValue, heap: HeapValues): RuntimeValue {
return when(literalValue.type) {
in StringDatatypes -> fromHeapId(literalValue.heapId!!, heap)
in ArrayDatatypes -> fromHeapId(literalValue.heapId!!, heap)
else -> throw IllegalArgumentException("weird source value $literalValue")
}
}
fun fromHeapId(heapId: Int, heap: HeapValues): RuntimeValue {
val value = heap.get(heapId)
return when {
value.type in StringDatatypes ->
RuntimeValue(value.type, str = value.str!!, heapId = heapId)
value.type in ArrayDatatypes ->
if (value.type == DataType.ARRAY_F) {
RuntimeValue(value.type, array = value.doubleArray!!.toList().toTypedArray(), heapId = heapId)
} else {
val array = value.array!!
val resultArray = mutableListOf<Number>()
for(elt in array.withIndex()){
if(elt.value.integer!=null)
resultArray.add(elt.value.integer!!)
else {
TODO("ADDRESSOF ${elt.value}")
}
}
RuntimeValue(value.type, array = resultArray.toTypedArray(), heapId = heapId)
//RuntimeValue(value.type, array = array.map { it.integer!! }.toTypedArray(), heapId = heapId)
}
else -> throw IllegalArgumentException("weird value type on heap $value")
}
}
}
init {
when(type) {
DataType.UBYTE -> {
val inum = num!!.toInt()
if(inum !in 0 .. 255)
throw IllegalArgumentException("invalid value for ubyte: $inum")
byteval = inum.toShort()
wordval = null
floatval = null
asBoolean = byteval != 0.toShort()
}
DataType.BYTE -> {
val inum = num!!.toInt()
if(inum !in -128 .. 127)
throw IllegalArgumentException("invalid value for byte: $inum")
byteval = inum.toShort()
wordval = null
floatval = null
asBoolean = byteval != 0.toShort()
}
DataType.UWORD -> {
val inum = num!!.toInt()
if(inum !in 0 .. 65535)
throw IllegalArgumentException("invalid value for uword: $inum")
wordval = inum
byteval = null
floatval = null
asBoolean = wordval != 0
}
DataType.WORD -> {
val inum = num!!.toInt()
if(inum !in -32768 .. 32767)
throw IllegalArgumentException("invalid value for word: $inum")
wordval = inum
byteval = null
floatval = null
asBoolean = wordval != 0
}
DataType.FLOAT -> {
floatval = num!!.toDouble()
byteval = null
wordval = null
asBoolean = floatval != 0.0
}
else -> {
byteval = null
wordval = null
floatval = null
asBoolean = true
}
}
}
override fun toString(): String {
return when(type) {
DataType.UBYTE -> "ub:%02x".format(byteval)
DataType.BYTE -> {
if(byteval!!<0)
"b:-%02x".format(abs(byteval.toInt()))
else
"b:%02x".format(byteval)
}
DataType.UWORD -> "uw:%04x".format(wordval)
DataType.WORD -> {
if(wordval!!<0)
"w:-%04x".format(abs(wordval))
else
"w:%04x".format(wordval)
}
DataType.FLOAT -> "f:$floatval"
else -> "heap:$heapId"
}
}
fun numericValue(): Number {
return when(type) {
in ByteDatatypes -> byteval!!
in WordDatatypes -> wordval!!
DataType.FLOAT -> floatval!!
else -> throw ArithmeticException("invalid datatype for numeric value: $type")
}
}
fun integerValue(): Int {
return when(type) {
in ByteDatatypes -> byteval!!.toInt()
in WordDatatypes -> wordval!!
DataType.FLOAT -> throw ArithmeticException("float to integer loss of precision")
else -> throw ArithmeticException("invalid datatype for integer value: $type")
}
}
override fun hashCode(): Int {
val bh = byteval?.hashCode() ?: 0x10001234
val wh = wordval?.hashCode() ?: 0x01002345
val fh = floatval?.hashCode() ?: 0x00103456
return bh xor wh xor fh xor heapId.hashCode() xor type.hashCode()
}
override fun equals(other: Any?): Boolean {
if(other==null || other !is RuntimeValue)
return false
if(type==other.type)
return if (type in IterableDatatypes) heapId==other.heapId else compareTo(other)==0
return compareTo(other)==0 // note: datatype doesn't matter
}
operator fun compareTo(other: RuntimeValue): Int {
return if (type in NumericDatatypes && other.type in NumericDatatypes)
numericValue().toDouble().compareTo(other.numericValue().toDouble())
else throw ArithmeticException("comparison can only be done between two numeric values")
}
private fun arithResult(leftDt: DataType, result: Number, rightDt: DataType, op: String): RuntimeValue {
if(leftDt!=rightDt)
throw ArithmeticException("left and right datatypes are not the same")
if(result.toDouble() < 0 ) {
return when(leftDt) {
DataType.UBYTE, DataType.UWORD -> {
// storing a negative number in an unsigned one is done by storing the 2's complement instead
val number = abs(result.toDouble().toInt())
if(leftDt== DataType.UBYTE)
RuntimeValue(DataType.UBYTE, (number xor 255) + 1)
else
RuntimeValue(DataType.UWORD, (number xor 65535) + 1)
}
DataType.BYTE -> {
val v=result.toInt() and 255
if(v<128)
RuntimeValue(DataType.BYTE, v)
else
RuntimeValue(DataType.BYTE, v-256)
}
DataType.WORD -> {
val v=result.toInt() and 65535
if(v<32768)
RuntimeValue(DataType.WORD, v)
else
RuntimeValue(DataType.WORD, v-65536)
}
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, result)
else -> throw ArithmeticException("$op on non-numeric type")
}
}
return when(leftDt) {
DataType.UBYTE -> RuntimeValue(DataType.UBYTE, result.toInt() and 255)
DataType.BYTE -> {
val v = result.toInt() and 255
if(v<128)
RuntimeValue(DataType.BYTE, v)
else
RuntimeValue(DataType.BYTE, v-256)
}
DataType.UWORD -> RuntimeValue(DataType.UWORD, result.toInt() and 65535)
DataType.WORD -> {
val v = result.toInt() and 65535
if(v<32768)
RuntimeValue(DataType.WORD, v)
else
RuntimeValue(DataType.WORD, v-65536)
}
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, result)
else -> throw ArithmeticException("$op on non-numeric type")
}
}
fun add(other: RuntimeValue): RuntimeValue {
if(other.type == DataType.FLOAT && (type!= DataType.FLOAT))
throw ArithmeticException("floating point loss of precision on type $type")
val v1 = numericValue()
val v2 = other.numericValue()
val result = v1.toDouble() + v2.toDouble()
return arithResult(type, result, other.type, "add")
}
fun sub(other: RuntimeValue): RuntimeValue {
if(other.type == DataType.FLOAT && (type!= DataType.FLOAT))
throw ArithmeticException("floating point loss of precision on type $type")
val v1 = numericValue()
val v2 = other.numericValue()
val result = v1.toDouble() - v2.toDouble()
return arithResult(type, result, other.type, "sub")
}
fun mul(other: RuntimeValue): RuntimeValue {
if(other.type == DataType.FLOAT && (type!= DataType.FLOAT))
throw ArithmeticException("floating point loss of precision on type $type")
val v1 = numericValue()
val v2 = other.numericValue()
val result = v1.toDouble() * v2.toDouble()
return arithResult(type, result, other.type, "mul")
}
fun div(other: RuntimeValue): RuntimeValue {
if(other.type == DataType.FLOAT && (type!= DataType.FLOAT))
throw ArithmeticException("floating point loss of precision on type $type")
val v1 = numericValue()
val v2 = other.numericValue()
if(v2.toDouble()==0.0) {
when (type) {
DataType.UBYTE -> return RuntimeValue(DataType.UBYTE, 255)
DataType.BYTE -> return RuntimeValue(DataType.BYTE, 127)
DataType.UWORD -> return RuntimeValue(DataType.UWORD, 65535)
DataType.WORD -> return RuntimeValue(DataType.WORD, 32767)
else -> {}
}
}
val result = v1.toDouble() / v2.toDouble()
// NOTE: integer division returns integer result!
return when(type) {
DataType.UBYTE -> RuntimeValue(DataType.UBYTE, result)
DataType.BYTE -> RuntimeValue(DataType.BYTE, result)
DataType.UWORD -> RuntimeValue(DataType.UWORD, result)
DataType.WORD -> RuntimeValue(DataType.WORD, result)
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, result)
else -> throw ArithmeticException("div on non-numeric type")
}
}
fun remainder(other: RuntimeValue): RuntimeValue {
val v1 = numericValue()
val v2 = other.numericValue()
val result = v1.toDouble() % v2.toDouble()
return arithResult(type, result, other.type, "remainder")
}
fun pow(other: RuntimeValue): RuntimeValue {
val v1 = numericValue()
val v2 = other.numericValue()
val result = v1.toDouble().pow(v2.toDouble())
return arithResult(type, result, other.type,"pow")
}
fun shl(): RuntimeValue {
val v = integerValue()
return when (type) {
DataType.UBYTE -> RuntimeValue(type, (v shl 1) and 255)
DataType.UWORD -> RuntimeValue(type, (v shl 1) and 65535)
DataType.BYTE -> {
val value = v shl 1
if(value<128)
RuntimeValue(type, value)
else
RuntimeValue(type, value-256)
}
DataType.WORD -> {
val value = v shl 1
if(value<32768)
RuntimeValue(type, value)
else
RuntimeValue(type, value-65536)
}
else -> throw ArithmeticException("invalid type for shl: $type")
}
}
fun shr(): RuntimeValue {
val v = integerValue()
return when(type){
DataType.UBYTE -> RuntimeValue(type, v ushr 1)
DataType.BYTE -> RuntimeValue(type, v shr 1)
DataType.UWORD -> RuntimeValue(type, v ushr 1)
DataType.WORD -> RuntimeValue(type, v shr 1)
else -> throw ArithmeticException("invalid type for shr: $type")
}
}
fun rol(carry: Boolean): Pair<RuntimeValue, Boolean> {
// 9 or 17 bit rotate left (with carry))
return when(type) {
DataType.UBYTE, DataType.BYTE -> {
val v = byteval!!.toInt()
val newCarry = (v and 0x80) != 0
val newval = (v and 0x7f shl 1) or (if(carry) 1 else 0)
Pair(RuntimeValue(DataType.UBYTE, newval), newCarry)
}
DataType.UWORD, DataType.WORD -> {
val v = wordval!!
val newCarry = (v and 0x8000) != 0
val newval = (v and 0x7fff shl 1) or (if(carry) 1 else 0)
Pair(RuntimeValue(DataType.UWORD, newval), newCarry)
}
else -> throw ArithmeticException("rol can only work on byte/word")
}
}
fun ror(carry: Boolean): Pair<RuntimeValue, Boolean> {
// 9 or 17 bit rotate right (with carry)
return when(type) {
DataType.UBYTE, DataType.BYTE -> {
val v = byteval!!.toInt()
val newCarry = v and 1 != 0
val newval = (v ushr 1) or (if(carry) 0x80 else 0)
Pair(RuntimeValue(DataType.UBYTE, newval), newCarry)
}
DataType.UWORD, DataType.WORD -> {
val v = wordval!!
val newCarry = v and 1 != 0
val newval = (v ushr 1) or (if(carry) 0x8000 else 0)
Pair(RuntimeValue(DataType.UWORD, newval), newCarry)
}
else -> throw ArithmeticException("ror2 can only work on byte/word")
}
}
fun rol2(): RuntimeValue {
// 8 or 16 bit rotate left
return when(type) {
DataType.UBYTE, DataType.BYTE -> {
val v = byteval!!.toInt()
val carry = (v and 0x80) ushr 7
val newval = (v and 0x7f shl 1) or carry
RuntimeValue(DataType.UBYTE, newval)
}
DataType.UWORD, DataType.WORD -> {
val v = wordval!!
val carry = (v and 0x8000) ushr 15
val newval = (v and 0x7fff shl 1) or carry
RuntimeValue(DataType.UWORD, newval)
}
else -> throw ArithmeticException("rol2 can only work on byte/word")
}
}
fun ror2(): RuntimeValue {
// 8 or 16 bit rotate right
return when(type) {
DataType.UBYTE, DataType.BYTE -> {
val v = byteval!!.toInt()
val carry = v and 1 shl 7
val newval = (v ushr 1) or carry
RuntimeValue(DataType.UBYTE, newval)
}
DataType.UWORD, DataType.WORD -> {
val v = wordval!!
val carry = v and 1 shl 15
val newval = (v ushr 1) or carry
RuntimeValue(DataType.UWORD, newval)
}
else -> throw ArithmeticException("ror2 can only work on byte/word")
}
}
fun neg(): RuntimeValue {
return when(type) {
DataType.BYTE -> RuntimeValue(DataType.BYTE, -(byteval!!))
DataType.WORD -> RuntimeValue(DataType.WORD, -(wordval!!))
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, -(floatval)!!)
else -> throw ArithmeticException("neg can only work on byte/word/float")
}
}
fun abs(): RuntimeValue {
return when(type) {
DataType.BYTE -> RuntimeValue(DataType.BYTE, abs(byteval!!.toInt()))
DataType.WORD -> RuntimeValue(DataType.WORD, abs(wordval!!))
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, abs(floatval!!))
else -> throw ArithmeticException("abs can only work on byte/word/float")
}
}
fun bitand(other: RuntimeValue): RuntimeValue {
val v1 = integerValue()
val v2 = other.integerValue()
val result = v1 and v2
return RuntimeValue(type, result)
}
fun bitor(other: RuntimeValue): RuntimeValue {
val v1 = integerValue()
val v2 = other.integerValue()
val result = v1 or v2
return RuntimeValue(type, result)
}
fun bitxor(other: RuntimeValue): RuntimeValue {
val v1 = integerValue()
val v2 = other.integerValue()
val result = v1 xor v2
return RuntimeValue(type, result)
}
fun and(other: RuntimeValue) = RuntimeValue(DataType.UBYTE, if (this.asBoolean && other.asBoolean) 1 else 0)
fun or(other: RuntimeValue) = RuntimeValue(DataType.UBYTE, if (this.asBoolean || other.asBoolean) 1 else 0)
fun xor(other: RuntimeValue) = RuntimeValue(DataType.UBYTE, if (this.asBoolean xor other.asBoolean) 1 else 0)
fun not() = RuntimeValue(DataType.UBYTE, if (this.asBoolean) 0 else 1)
fun inv(): RuntimeValue {
return when(type) {
DataType.UBYTE -> RuntimeValue(type, byteval!!.toInt().inv() and 255)
DataType.UWORD -> RuntimeValue(type, wordval!!.inv() and 65535)
DataType.BYTE -> RuntimeValue(type, byteval!!.toInt().inv())
DataType.WORD -> RuntimeValue(type, wordval!!.inv())
else -> throw ArithmeticException("inv can only work on byte/word")
}
}
fun inc(): RuntimeValue {
return when(type) {
DataType.UBYTE -> RuntimeValue(type, (byteval!! + 1) and 255)
DataType.UWORD -> RuntimeValue(type, (wordval!! + 1) and 65535)
DataType.BYTE -> {
val newval = byteval!! + 1
if(newval == 128)
RuntimeValue(type, -128)
else
RuntimeValue(type, newval)
}
DataType.WORD -> {
val newval = wordval!! + 1
if(newval == 32768)
RuntimeValue(type, -32768)
else
RuntimeValue(type, newval)
}
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, floatval!! + 1)
else -> throw ArithmeticException("inc can only work on numeric types")
}
}
fun dec(): RuntimeValue {
return when(type) {
DataType.UBYTE -> RuntimeValue(type, (byteval!! - 1) and 255)
DataType.UWORD -> RuntimeValue(type, (wordval!! - 1) and 65535)
DataType.BYTE -> {
val newval = byteval!! - 1
if(newval == -129)
RuntimeValue(type, 127)
else
RuntimeValue(type, newval)
}
DataType.WORD -> {
val newval = wordval!! - 1
if(newval == -32769)
RuntimeValue(type, 32767)
else
RuntimeValue(type, newval)
}
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, floatval!! - 1)
else -> throw ArithmeticException("dec can only work on numeric types")
}
}
fun msb(): RuntimeValue {
return when(type) {
in ByteDatatypes -> RuntimeValue(DataType.UBYTE, 0)
in WordDatatypes -> RuntimeValue(DataType.UBYTE, wordval!! ushr 8 and 255)
else -> throw ArithmeticException("msb can only work on (u)byte/(u)word")
}
}
fun cast(targetType: DataType): RuntimeValue {
return when (type) {
DataType.UBYTE -> {
when (targetType) {
DataType.UBYTE -> this
DataType.BYTE -> {
val nval=byteval!!.toInt()
if(nval<128)
RuntimeValue(DataType.BYTE, nval)
else
RuntimeValue(DataType.BYTE, nval-256)
}
DataType.UWORD -> RuntimeValue(DataType.UWORD, numericValue())
DataType.WORD -> {
val nval = numericValue().toInt()
if(nval<32768)
RuntimeValue(DataType.WORD, nval)
else
RuntimeValue(DataType.WORD, nval-65536)
}
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, numericValue())
else -> throw ArithmeticException("invalid type cast from $type to $targetType")
}
}
DataType.BYTE -> {
when (targetType) {
DataType.BYTE -> this
DataType.UBYTE -> RuntimeValue(DataType.UBYTE, integerValue() and 255)
DataType.UWORD -> RuntimeValue(DataType.UWORD, integerValue() and 65535)
DataType.WORD -> RuntimeValue(DataType.WORD, integerValue())
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, numericValue())
else -> throw ArithmeticException("invalid type cast from $type to $targetType")
}
}
DataType.UWORD -> {
when (targetType) {
DataType.BYTE -> {
val v=integerValue()
if(v<128)
RuntimeValue(DataType.BYTE, v)
else
RuntimeValue(DataType.BYTE, v-256)
}
DataType.UBYTE -> RuntimeValue(DataType.UBYTE, integerValue() and 255)
DataType.UWORD -> this
DataType.WORD -> {
val v=integerValue()
if(v<32768)
RuntimeValue(DataType.WORD, v)
else
RuntimeValue(DataType.WORD, v-65536)
}
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, numericValue())
else -> throw ArithmeticException("invalid type cast from $type to $targetType")
}
}
DataType.WORD -> {
when (targetType) {
DataType.BYTE -> {
val v = integerValue() and 255
if(v<128)
RuntimeValue(DataType.BYTE, v)
else
RuntimeValue(DataType.BYTE, v-256)
}
DataType.UBYTE -> RuntimeValue(DataType.UBYTE, integerValue() and 65535)
DataType.UWORD -> RuntimeValue(DataType.UWORD, integerValue())
DataType.WORD -> this
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, numericValue())
else -> throw ArithmeticException("invalid type cast from $type to $targetType")
}
}
DataType.FLOAT -> {
when (targetType) {
DataType.BYTE -> {
val integer=numericValue().toInt()
if(integer in -128..127)
RuntimeValue(DataType.BYTE, integer)
else
throw ArithmeticException("overflow when casting float to byte: $this")
}
DataType.UBYTE -> RuntimeValue(DataType.UBYTE, numericValue().toInt())
DataType.UWORD -> RuntimeValue(DataType.UWORD, numericValue().toInt())
DataType.WORD -> {
val integer=numericValue().toInt()
if(integer in -32768..32767)
RuntimeValue(DataType.WORD, integer)
else
throw ArithmeticException("overflow when casting float to word: $this")
}
DataType.FLOAT -> this
else -> throw ArithmeticException("invalid type cast from $type to $targetType")
}
}
else -> throw ArithmeticException("invalid type cast from $type to $targetType")
}
}
open fun iterator(): Iterator<Number> {
return when (type) {
in StringDatatypes -> {
Petscii.encodePetscii(str!!, true).iterator()
}
in ArrayDatatypes -> {
array!!.iterator()
}
else -> throw IllegalArgumentException("cannot iterate over $this")
}
}
}
class RuntimeValueRange(type: DataType, val range: IntProgression): RuntimeValue(type, array=range.toList().toTypedArray()) {
override fun iterator(): Iterator<Number> {
return range.iterator()
}
}

View File

@ -0,0 +1,961 @@
package prog8.vm.astvm
import prog8.ast.INameScope
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.Expression
import prog8.ast.expressions.IdentifierReference
import prog8.ast.expressions.NumericLiteralValue
import prog8.ast.statements.*
import prog8.compiler.IntegerOrAddressOf
import prog8.compiler.target.c64.MachineDefinition
import prog8.compiler.target.c64.Petscii
import prog8.vm.RuntimeValue
import prog8.vm.RuntimeValueRange
import java.awt.EventQueue
import java.io.CharConversionException
import java.util.*
import kotlin.NoSuchElementException
import kotlin.concurrent.fixedRateTimer
import kotlin.math.*
import kotlin.random.Random
class VmExecutionException(msg: String?) : Exception(msg)
class VmTerminationException(msg: String?) : Exception(msg)
class VmBreakpointException : Exception("breakpoint")
class StatusFlags {
var carry: Boolean = false
var zero: Boolean = true
var negative: Boolean = false
var irqd: Boolean = false
private fun setFlags(value: NumericLiteralValue?) {
if (value != null) {
when (value.type) {
DataType.UBYTE -> {
val v = value.number.toInt()
negative = v > 127
zero = v == 0
}
DataType.BYTE -> {
val v = value.number.toInt()
negative = v < 0
zero = v == 0
}
DataType.UWORD -> {
val v = value.number.toInt()
negative = v > 32767
zero = v == 0
}
DataType.WORD -> {
val v = value.number.toInt()
negative = v < 0
zero = v == 0
}
DataType.FLOAT -> {
val flt = value.number.toDouble()
negative = flt < 0.0
zero = flt == 0.0
}
else -> {
// no flags for non-numeric type
}
}
}
}
}
class RuntimeVariables {
fun define(scope: INameScope, name: String, initialValue: RuntimeValue) {
val where = vars.getValue(scope)
where[name] = initialValue
vars[scope] = where
}
fun defineMemory(scope: INameScope, name: String, address: Int) {
val where = memvars.getValue(scope)
where[name] = address
memvars[scope] = where
}
fun set(scope: INameScope, name: String, value: RuntimeValue) {
val where = vars.getValue(scope)
val existing = where[name]
if(existing==null) {
if(memvars.getValue(scope)[name]!=null)
throw NoSuchElementException("this is a memory mapped var, not a normal var: ${scope.name}.$name")
throw NoSuchElementException("no such runtime variable: ${scope.name}.$name")
}
if(existing.type!=value.type)
throw VmExecutionException("new value is of different datatype ${value.type} expected ${existing.type} for $name")
where[name] = value
vars[scope] = where
}
fun get(scope: INameScope, name: String): RuntimeValue {
val where = vars.getValue(scope)
return where[name] ?: throw NoSuchElementException("no such runtime variable: ${scope.name}.$name")
}
fun getMemoryAddress(scope: INameScope, name: String): Int {
val where = memvars.getValue(scope)
return where[name] ?: throw NoSuchElementException("no such runtime memory-variable: ${scope.name}.$name")
}
fun swap(a1: VarDecl, a2: VarDecl) = swap(a1.definingScope(), a1.name, a2.definingScope(), a2.name)
fun swap(scope1: INameScope, name1: String, scope2: INameScope, name2: String) {
val v1 = get(scope1, name1)
val v2 = get(scope2, name2)
set(scope1, name1, v2)
set(scope2, name2, v1)
}
private val vars = mutableMapOf<INameScope, MutableMap<String, RuntimeValue>>().withDefault { mutableMapOf() }
private val memvars = mutableMapOf<INameScope, MutableMap<String, Int>>().withDefault { mutableMapOf() }
}
class AstVm(val program: Program) {
val mem = Memory(::memread, ::memwrite)
val statusflags = StatusFlags()
private var dialog = ScreenDialog("AstVM")
var instructionCounter = 0
val bootTime = System.currentTimeMillis()
var rtcOffset = bootTime
private val rnd = Random(0)
private val statusFlagsSave = Stack<StatusFlags>()
private val registerXsave = Stack<RuntimeValue>()
private val registerYsave = Stack<RuntimeValue>()
private val registerAsave = Stack<RuntimeValue>()
init {
// observe the jiffyclock and screen matrix
mem.observe(0xa0, 0xa1, 0xa2)
for(i in 1024..2023)
mem.observe(i)
dialog.requestFocusInWindow()
EventQueue.invokeLater {
dialog.pack()
dialog.isVisible = true
dialog.start()
}
fixedRateTimer("60hz-irq", true, period=1000/60) {
irq(this.scheduledExecutionTime())
}
}
fun memread(address: Int, value: Short): Short {
// println("MEM READ $address -> $value")
return value
}
fun memwrite(address: Int, value: Short): Short {
if(address==0xa0 || address==0xa1 || address==0xa2) {
// a write to the jiffy clock, update the clock offset for the irq
val time_hi = if(address==0xa0) value else mem.getUByte_DMA(0xa0)
val time_mid = if(address==0xa1) value else mem.getUByte_DMA(0xa1)
val time_lo = if(address==0xa2) value else mem.getUByte_DMA(0xa2)
val jiffies = (time_hi.toInt() shl 16) + (time_mid.toInt() shl 8) + time_lo
rtcOffset = bootTime - (jiffies*1000/60)
}
if(address in 1024..2023) {
// write to the screen matrix
val scraddr = address-1024
dialog.canvas.setChar(scraddr % 40, scraddr / 40, value, 1)
}
return value
}
fun run() {
try {
val init = VariablesCreator(runtimeVariables, program.heap)
init.visit(program)
// initialize all global variables
for (m in program.modules) {
for (b in m.statements.filterIsInstance<Block>()) {
for (s in b.statements.filterIsInstance<Subroutine>()) {
if (s.name == initvarsSubName) {
try {
executeSubroutine(s, emptyList(), null)
} catch (x: LoopControlReturn) {
// regular return
}
}
}
}
}
var entrypoint: Subroutine? = program.entrypoint() ?: throw VmTerminationException("no valid entrypoint found")
var startlabel: Label? = null
while(entrypoint!=null) {
try {
executeSubroutine(entrypoint, emptyList(), startlabel)
entrypoint = null
} catch (rx: LoopControlReturn) {
// regular return
} catch (jx: LoopControlJump) {
if (jx.address != null)
throw VmTerminationException("doesn't support jumping to machine address ${jx.address}")
when {
jx.generatedLabel != null -> {
val label = entrypoint.getLabelOrVariable(jx.generatedLabel) as Label
TODO("generatedlabel $label")
}
jx.identifier != null -> {
when (val jumptarget = entrypoint.lookup(jx.identifier.nameInSource, jx.identifier.parent)) {
is Label -> {
startlabel = jumptarget
entrypoint = jumptarget.definingSubroutine()
}
is Subroutine -> entrypoint = jumptarget
else -> throw VmTerminationException("weird jump target $jumptarget")
}
}
else -> throw VmTerminationException("unspecified jump target")
}
}
}
dialog.canvas.printText("\n<program ended>", true)
println("PROGRAM EXITED!")
dialog.title = "PROGRAM EXITED"
} catch (tx: VmTerminationException) {
println("Execution halted: ${tx.message}")
} catch (xx: VmExecutionException) {
println("Execution error: ${xx.message}")
throw xx
}
}
private fun irq(timeStamp: Long) {
// 60hz IRQ handling
if(statusflags.irqd)
return // interrupt is disabled
var jiffies = (timeStamp-rtcOffset)*60/1000
if(jiffies>24*3600*60-1) {
jiffies = 0
rtcOffset = timeStamp
}
// update the C-64 60hz jiffy clock in the ZP addresses:
mem.setUByte_DMA(0x00a0, (jiffies ushr 16).toShort())
mem.setUByte_DMA(0x00a1, (jiffies ushr 8 and 255).toShort())
mem.setUByte_DMA(0x00a2, (jiffies and 255).toShort())
}
private val runtimeVariables = RuntimeVariables()
private val evalCtx = EvalContext(program, mem, statusflags, runtimeVariables, ::performBuiltinFunction, ::executeSubroutine)
class LoopControlBreak : Exception()
class LoopControlContinue : Exception()
class LoopControlReturn(val returnvalue: RuntimeValue?) : Exception()
class LoopControlJump(val identifier: IdentifierReference?, val address: Int?, val generatedLabel: String?) : Exception()
internal fun executeSubroutine(sub: Subroutine, arguments: List<RuntimeValue>, startAtLabel: Label?=null): RuntimeValue? {
if(sub.isAsmSubroutine) {
return performSyscall(sub, arguments)
}
if (sub.statements.isEmpty())
throw VmTerminationException("scope contains no statements: $sub")
if (arguments.size != sub.parameters.size)
throw VmTerminationException("number of args doesn't match number of required parameters")
for (arg in sub.parameters.zip(arguments)) {
val idref = IdentifierReference(listOf(arg.first.name), sub.position)
performAssignment(AssignTarget(null, idref, null, null, idref.position),
arg.second, sub.statements.first(), evalCtx)
}
val statements = sub.statements.iterator()
if(startAtLabel!=null) {
do {
val stmt = statements.next()
} while(stmt!==startAtLabel)
}
try {
while(statements.hasNext()) {
val s = statements.next()
try {
executeStatement(sub, s)
}
catch (b: VmBreakpointException) {
print("BREAKPOINT HIT at ${s.position} - Press enter to continue:")
readLine()
}
}
} catch (r: LoopControlReturn) {
return r.returnvalue
}
throw VmTerminationException("instruction pointer overflow, is a return missing? $sub")
}
internal fun executeAnonymousScope(scope: INameScope) {
for (s in scope.statements) {
executeStatement(scope, s)
}
}
private fun executeStatement(sub: INameScope, stmt: Statement) {
instructionCounter++
if (instructionCounter % 200 == 0)
Thread.sleep(1)
when (stmt) {
is NopStatement, is Label, is Subroutine -> {
// do nothing, skip this instruction
}
is Directive -> {
if (stmt.directive == "%breakpoint")
throw VmBreakpointException()
else if (stmt.directive == "%asm")
throw VmExecutionException("can't execute assembly code")
}
is VarDecl -> {
// should have been defined already when the program started
}
is FunctionCallStatement -> {
val target = stmt.target.targetStatement(program.namespace)
when (target) {
is Subroutine -> {
val args = evaluate(stmt.arglist)
if (target.isAsmSubroutine) {
performSyscall(target, args)
} else {
executeSubroutine(target, args, null)
// any return value(s) are discarded
}
}
is BuiltinFunctionStatementPlaceholder -> {
if(target.name=="swap") {
// swap cannot be implemented as a function, so inline it here
executeSwap(stmt)
} else {
val args = evaluate(stmt.arglist)
performBuiltinFunction(target.name, args, statusflags)
}
}
else -> {
TODO("weird call $target")
}
}
}
is Return -> {
val value =
if(stmt.value==null)
null
else
evaluate(stmt.value!!, evalCtx)
throw LoopControlReturn(value)
}
is Continue -> throw LoopControlContinue()
is Break -> throw LoopControlBreak()
is Assignment -> {
if (stmt.aug_op != null)
throw VmExecutionException("augmented assignment should have been converted into regular one $stmt")
val value = evaluate(stmt.value, evalCtx)
performAssignment(stmt.target, value, stmt, evalCtx)
}
is PostIncrDecr -> {
when {
stmt.target.identifier != null -> {
val ident = stmt.definingScope().lookup(stmt.target.identifier!!.nameInSource, stmt) as VarDecl
val identScope = ident.definingScope()
when(ident.type){
VarDeclType.VAR -> {
var value = runtimeVariables.get(identScope, ident.name)
value = when {
stmt.operator == "++" -> value.add(RuntimeValue(value.type, 1))
stmt.operator == "--" -> value.sub(RuntimeValue(value.type, 1))
else -> throw VmExecutionException("strange postincdec operator $stmt")
}
runtimeVariables.set(identScope, ident.name, value)
}
VarDeclType.MEMORY -> {
val addr=ident.value!!.constValue(program)!!.number.toInt()
val newval = when {
stmt.operator == "++" -> mem.getUByte(addr)+1 and 255
stmt.operator == "--" -> mem.getUByte(addr)-1 and 255
else -> throw VmExecutionException("strange postincdec operator $stmt")
}
mem.setUByte(addr,newval.toShort())
}
VarDeclType.CONST -> throw VmExecutionException("can't be const")
}
}
stmt.target.memoryAddress != null -> {
val addr = evaluate(stmt.target.memoryAddress!!.addressExpression, evalCtx).integerValue()
val newval = when {
stmt.operator == "++" -> mem.getUByte(addr)+1 and 255
stmt.operator == "--" -> mem.getUByte(addr)-1 and 255
else -> throw VmExecutionException("strange postincdec operator $stmt")
}
mem.setUByte(addr,newval.toShort())
}
stmt.target.arrayindexed != null -> {
val arrayvar = stmt.target.arrayindexed!!.identifier.targetVarDecl(program.namespace)!!
val arrayvalue = runtimeVariables.get(arrayvar.definingScope(), arrayvar.name)
val elementType = stmt.target.arrayindexed!!.inferType(program)!!
val index = evaluate(stmt.target.arrayindexed!!.arrayspec.index, evalCtx).integerValue()
var value = RuntimeValue(elementType, arrayvalue.array!![index].toInt())
value = when {
stmt.operator == "++" -> value.inc()
stmt.operator == "--" -> value.dec()
else -> throw VmExecutionException("strange postincdec operator $stmt")
}
arrayvalue.array[index] = value.numericValue()
}
stmt.target.register != null -> {
var value = runtimeVariables.get(program.namespace, stmt.target.register!!.name)
value = when {
stmt.operator == "++" -> value.add(RuntimeValue(value.type, 1))
stmt.operator == "--" -> value.sub(RuntimeValue(value.type, 1))
else -> throw VmExecutionException("strange postincdec operator $stmt")
}
runtimeVariables.set(program.namespace, stmt.target.register!!.name, value)
}
else -> throw VmExecutionException("empty postincrdecr? $stmt")
}
}
is Jump -> throw LoopControlJump(stmt.identifier, stmt.address, stmt.generatedLabel)
is InlineAssembly -> {
if (sub is Subroutine) {
val args = sub.parameters.map { runtimeVariables.get(sub, it.name) }
performSyscall(sub, args)
throw LoopControlReturn(null)
}
throw VmExecutionException("can't execute inline assembly in $sub")
}
is AnonymousScope -> executeAnonymousScope(stmt)
is IfStatement -> {
val condition = evaluate(stmt.condition, evalCtx)
if (condition.asBoolean)
executeAnonymousScope(stmt.truepart)
else
executeAnonymousScope(stmt.elsepart)
}
is BranchStatement -> {
when(stmt.condition) {
BranchCondition.CS -> if(statusflags.carry) executeAnonymousScope(stmt.truepart) else executeAnonymousScope(stmt.elsepart)
BranchCondition.CC -> if(!statusflags.carry) executeAnonymousScope(stmt.truepart) else executeAnonymousScope(stmt.elsepart)
BranchCondition.EQ, BranchCondition.Z -> if(statusflags.zero) executeAnonymousScope(stmt.truepart) else executeAnonymousScope(stmt.elsepart)
BranchCondition.NE, BranchCondition.NZ -> if(statusflags.zero) executeAnonymousScope(stmt.truepart) else executeAnonymousScope(stmt.elsepart)
BranchCondition.MI, BranchCondition.NEG -> if(statusflags.negative) executeAnonymousScope(stmt.truepart) else executeAnonymousScope(stmt.elsepart)
BranchCondition.PL, BranchCondition.POS -> if(statusflags.negative) executeAnonymousScope(stmt.truepart) else executeAnonymousScope(stmt.elsepart)
BranchCondition.VS, BranchCondition.VC -> TODO("overflow status")
}
}
is ForLoop -> {
val iterable = evaluate(stmt.iterable, evalCtx)
if (iterable.type !in IterableDatatypes && iterable !is RuntimeValueRange)
throw VmExecutionException("can only iterate over an iterable value: $stmt")
val loopvarDt: DataType
val loopvar: IdentifierReference
if (stmt.loopRegister != null) {
loopvarDt = DataType.UBYTE
loopvar = IdentifierReference(listOf(stmt.loopRegister.name), stmt.position)
} else {
loopvarDt = stmt.loopVar!!.inferType(program)!!
loopvar = stmt.loopVar!!
}
val iterator = iterable.iterator()
for (loopvalue in iterator) {
try {
oneForCycle(stmt, loopvarDt, loopvalue, loopvar)
} catch (b: LoopControlBreak) {
break
} catch (c: LoopControlContinue) {
continue
}
}
}
is WhileLoop -> {
var condition = evaluate(stmt.condition, evalCtx)
while (condition.asBoolean) {
try {
executeAnonymousScope(stmt.body)
condition = evaluate(stmt.condition, evalCtx)
} catch (b: LoopControlBreak) {
break
} catch (c: LoopControlContinue) {
continue
}
}
}
is RepeatLoop -> {
do {
val condition = evaluate(stmt.untilCondition, evalCtx)
try {
executeAnonymousScope(stmt.body)
} catch (b: LoopControlBreak) {
break
} catch (c: LoopControlContinue) {
continue
}
} while (!condition.asBoolean)
}
is WhenStatement -> {
val condition=evaluate(stmt.condition, evalCtx)
for(choice in stmt.choices) {
if(choice.values==null) {
// the 'else' choice
executeAnonymousScope(choice.statements)
break
} else {
val value = choice.values!!.single().constValue(evalCtx.program) ?: throw VmExecutionException("can only use const values in when choices ${choice.position}")
val rtval = RuntimeValue.fromLv(value)
if(condition==rtval) {
executeAnonymousScope(choice.statements)
break
}
}
}
}
else -> {
TODO("implement $stmt")
}
}
}
private fun executeSwap(swap: FunctionCallStatement) {
val v1 = swap.arglist[0]
val v2 = swap.arglist[1]
val value1 = evaluate(v1, evalCtx)
val value2 = evaluate(v2, evalCtx)
val target1 = AssignTarget.fromExpr(v1)
val target2 = AssignTarget.fromExpr(v2)
performAssignment(target1, value2, swap, evalCtx)
performAssignment(target2, value1, swap, evalCtx)
}
fun performAssignment(target: AssignTarget, value: RuntimeValue, contextStmt: Statement, evalCtx: EvalContext) {
val targetIdent = target.identifier
val targetArrayIndexed = target.arrayindexed
when {
targetIdent != null -> {
val decl = contextStmt.definingScope().lookup(targetIdent.nameInSource, contextStmt) as? VarDecl
?: throw VmExecutionException("can't find assignment target $targetIdent")
if (decl.type == VarDeclType.MEMORY) {
val address = runtimeVariables.getMemoryAddress(decl.definingScope(), decl.name)
when (decl.datatype) {
DataType.UBYTE -> mem.setUByte(address, value.byteval!!)
DataType.BYTE -> mem.setSByte(address, value.byteval!!)
DataType.UWORD -> mem.setUWord(address, value.wordval!!)
DataType.WORD -> mem.setSWord(address, value.wordval!!)
DataType.FLOAT -> mem.setFloat(address, value.floatval!!)
DataType.STR -> mem.setString(address, value.str!!)
DataType.STR_S -> mem.setScreencodeString(address, value.str!!)
else -> throw VmExecutionException("weird memaddress type $decl")
}
} else
runtimeVariables.set(decl.definingScope(), decl.name, value)
}
target.memoryAddress != null -> {
val address = evaluate(target.memoryAddress.addressExpression, evalCtx).wordval!!
evalCtx.mem.setUByte(address, value.byteval!!)
}
targetArrayIndexed != null -> {
val vardecl = targetArrayIndexed.identifier.targetVarDecl(program.namespace)!!
if(vardecl.type==VarDeclType.VAR) {
val array = evaluate(targetArrayIndexed.identifier, evalCtx)
val index = evaluate(targetArrayIndexed.arrayspec.index, evalCtx)
when (array.type) {
DataType.ARRAY_UB -> {
if (value.type != DataType.UBYTE)
throw VmExecutionException("new value is of different datatype ${value.type} for $array")
}
DataType.ARRAY_B -> {
if (value.type != DataType.BYTE)
throw VmExecutionException("new value is of different datatype ${value.type} for $array")
}
DataType.ARRAY_UW -> {
if (value.type != DataType.UWORD)
throw VmExecutionException("new value is of different datatype ${value.type} for $array")
}
DataType.ARRAY_W -> {
if (value.type != DataType.WORD)
throw VmExecutionException("new value is of different datatype ${value.type} for $array")
}
DataType.ARRAY_F -> {
if (value.type != DataType.FLOAT)
throw VmExecutionException("new value is of different datatype ${value.type} for $array")
}
DataType.STR, DataType.STR_S -> {
if (value.type !in ByteDatatypes)
throw VmExecutionException("new value is of different datatype ${value.type} for $array")
}
else -> throw VmExecutionException("strange array type ${array.type}")
}
if (array.type in ArrayDatatypes)
array.array!![index.integerValue()] = value.numericValue()
else if (array.type in StringDatatypes) {
val indexInt = index.integerValue()
val newchr = Petscii.decodePetscii(listOf(value.numericValue().toShort()), true)
val newstr = array.str!!.replaceRange(indexInt, indexInt + 1, newchr)
val ident = contextStmt.definingScope().lookup(targetArrayIndexed.identifier.nameInSource, contextStmt) as? VarDecl
?: throw VmExecutionException("can't find assignment target ${target.identifier}")
val identScope = ident.definingScope()
program.heap.update(array.heapId!!, newstr)
runtimeVariables.set(identScope, ident.name, RuntimeValue(array.type, str = newstr, heapId = array.heapId))
}
}
else {
val address = (vardecl.value as NumericLiteralValue).number.toInt()
val index = evaluate(targetArrayIndexed.arrayspec.index, evalCtx).integerValue()
val elementType = targetArrayIndexed.inferType(program)!!
when(elementType) {
DataType.UBYTE -> mem.setUByte(address+index, value.byteval!!)
DataType.BYTE -> mem.setSByte(address+index, value.byteval!!)
DataType.UWORD -> mem.setUWord(address+index*2, value.wordval!!)
DataType.WORD -> mem.setSWord(address+index*2, value.wordval!!)
DataType.FLOAT -> mem.setFloat(address+index* MachineDefinition.Mflpt5.MemorySize, value.floatval!!)
else -> throw VmExecutionException("strange array elt type $elementType")
}
}
}
target.register != null -> {
runtimeVariables.set(program.namespace, target.register.name, value)
}
else -> TODO("assign $target")
}
}
private fun oneForCycle(stmt: ForLoop, loopvarDt: DataType, loopValue: Number, loopVar: IdentifierReference) {
// assign the new loop value to the loopvar, and run the code
performAssignment(AssignTarget(null, loopVar, null, null, loopVar.position),
RuntimeValue(loopvarDt, loopValue), stmt.body.statements.first(), evalCtx)
executeAnonymousScope(stmt.body)
}
private fun evaluate(args: List<Expression>) = args.map { evaluate(it, evalCtx) }
private fun performSyscall(sub: Subroutine, args: List<RuntimeValue>): RuntimeValue? {
var result: RuntimeValue? = null
when (sub.scopedname) {
"c64scr.print" -> {
// if the argument is an UWORD, consider it to be the "address" of the string (=heapId)
if (args[0].wordval != null) {
val str = program.heap.get(args[0].wordval!!).str!!
dialog.canvas.printText(str, true)
} else
dialog.canvas.printText(args[0].str!!, true)
}
"c64scr.print_ub" -> {
dialog.canvas.printText(args[0].byteval!!.toString(), true)
}
"c64scr.print_ub0" -> {
dialog.canvas.printText("%03d".format(args[0].byteval!!), true)
}
"c64scr.print_b" -> {
dialog.canvas.printText(args[0].byteval!!.toString(), true)
}
"c64scr.print_uw" -> {
dialog.canvas.printText(args[0].wordval!!.toString(), true)
}
"c64scr.print_uw0" -> {
dialog.canvas.printText("%05d".format(args[0].wordval!!), true)
}
"c64scr.print_w" -> {
dialog.canvas.printText(args[0].wordval!!.toString(), true)
}
"c64scr.print_ubhex" -> {
val number = args[0].byteval!!
val prefix = if (args[1].asBoolean) "$" else ""
dialog.canvas.printText("$prefix${number.toString(16).padStart(2, '0')}", true)
}
"c64scr.print_uwhex" -> {
val number = args[0].wordval!!
val prefix = if (args[1].asBoolean) "$" else ""
dialog.canvas.printText("$prefix${number.toString(16).padStart(4, '0')}", true)
}
"c64scr.print_uwbin" -> {
val number = args[0].wordval!!
val prefix = if (args[1].asBoolean) "%" else ""
dialog.canvas.printText("$prefix${number.toString(2).padStart(16, '0')}", true)
}
"c64scr.print_ubbin" -> {
val number = args[0].byteval!!
val prefix = if (args[1].asBoolean) "%" else ""
dialog.canvas.printText("$prefix${number.toString(2).padStart(8, '0')}", true)
}
"c64scr.clear_screenchars" -> {
dialog.canvas.clearScreen(6)
}
"c64scr.clear_screen" -> {
dialog.canvas.clearScreen(args[0].integerValue().toShort())
}
"c64scr.setcc" -> {
dialog.canvas.setChar(args[0].integerValue(), args[1].integerValue(), args[2].integerValue().toShort(), args[3].integerValue().toShort())
}
"c64scr.plot" -> {
dialog.canvas.setCursorPos(args[0].integerValue(), args[1].integerValue())
}
"c64scr.input_chars" -> {
val input=mutableListOf<Char>()
for(i in 0 until 80) {
while(dialog.keyboardBuffer.isEmpty()) {
Thread.sleep(10)
}
val char=dialog.keyboardBuffer.pop()
if(char=='\n')
break
else {
input.add(char)
val printChar = try {
Petscii.encodePetscii("" + char, true).first()
} catch (cv: CharConversionException) {
0x3f.toShort()
}
dialog.canvas.printPetscii(printChar)
}
}
val inputStr = input.joinToString("")
val heapId = args[0].wordval!!
val origStr = program.heap.get(heapId).str!!
val paddedStr=inputStr.padEnd(origStr.length+1, '\u0000').substring(0, origStr.length)
program.heap.update(heapId, paddedStr)
result = RuntimeValue(DataType.UBYTE, paddedStr.indexOf('\u0000'))
}
"c64flt.print_f" -> {
dialog.canvas.printText(args[0].floatval.toString(), false)
}
"c64.CHROUT" -> {
dialog.canvas.printPetscii(args[0].byteval!!)
}
"c64.CLEARSCR" -> {
dialog.canvas.clearScreen(6)
}
"c64.CHRIN" -> {
while(dialog.keyboardBuffer.isEmpty()) {
Thread.sleep(10)
}
val char=dialog.keyboardBuffer.pop()
result = RuntimeValue(DataType.UBYTE, char.toShort())
}
"c64utils.str2uword" -> {
val heapId = args[0].wordval!!
val argString = program.heap.get(heapId).str!!
val numericpart = argString.takeWhile { it.isDigit() }
result = RuntimeValue(DataType.UWORD, numericpart.toInt() and 65535)
}
else -> TODO("syscall ${sub.scopedname} $sub")
}
return result
}
private fun performBuiltinFunction(name: String, args: List<RuntimeValue>, statusflags: StatusFlags): RuntimeValue? {
return when (name) {
"rnd" -> RuntimeValue(DataType.UBYTE, rnd.nextInt() and 255)
"rndw" -> RuntimeValue(DataType.UWORD, rnd.nextInt() and 65535)
"rndf" -> RuntimeValue(DataType.FLOAT, rnd.nextDouble())
"lsb" -> RuntimeValue(DataType.UBYTE, args[0].integerValue() and 255)
"msb" -> RuntimeValue(DataType.UBYTE, (args[0].integerValue() ushr 8) and 255)
"sin" -> RuntimeValue(DataType.FLOAT, sin(args[0].numericValue().toDouble()))
"sin8" -> {
val rad = args[0].numericValue().toDouble() / 256.0 * 2.0 * PI
RuntimeValue(DataType.BYTE, (127.0 * sin(rad)).toShort())
}
"sin8u" -> {
val rad = args[0].numericValue().toDouble() / 256.0 * 2.0 * PI
RuntimeValue(DataType.UBYTE, (128.0 + 127.5 * sin(rad)).toShort())
}
"sin16" -> {
val rad = args[0].numericValue().toDouble() / 256.0 * 2.0 * PI
RuntimeValue(DataType.BYTE, (32767.0 * sin(rad)).toShort())
}
"sin16u" -> {
val rad = args[0].numericValue().toDouble() / 256.0 * 2.0 * PI
RuntimeValue(DataType.UBYTE, (32768.0 + 32767.5 * sin(rad)).toShort())
}
"cos" -> RuntimeValue(DataType.FLOAT, cos(args[0].numericValue().toDouble()))
"cos8" -> {
val rad = args[0].numericValue().toDouble() / 256.0 * 2.0 * PI
RuntimeValue(DataType.BYTE, (127.0 * cos(rad)).toShort())
}
"cos8u" -> {
val rad = args[0].numericValue().toDouble() / 256.0 * 2.0 * PI
RuntimeValue(DataType.UBYTE, (128.0 + 127.5 * cos(rad)).toShort())
}
"cos16" -> {
val rad = args[0].numericValue().toDouble() / 256.0 * 2.0 * PI
RuntimeValue(DataType.BYTE, (32767.0 * cos(rad)).toShort())
}
"cos16u" -> {
val rad = args[0].numericValue().toDouble() / 256.0 * 2.0 * PI
RuntimeValue(DataType.UBYTE, (32768.0 + 32767.5 * cos(rad)).toShort())
}
"tan" -> RuntimeValue(DataType.FLOAT, tan(args[0].numericValue().toDouble()))
"atan" -> RuntimeValue(DataType.FLOAT, atan(args[0].numericValue().toDouble()))
"ln" -> RuntimeValue(DataType.FLOAT, ln(args[0].numericValue().toDouble()))
"log2" -> RuntimeValue(DataType.FLOAT, log2(args[0].numericValue().toDouble()))
"sqrt" -> RuntimeValue(DataType.FLOAT, sqrt(args[0].numericValue().toDouble()))
"sqrt16" -> RuntimeValue(DataType.UBYTE, sqrt(args[0].wordval!!.toDouble()).toInt())
"rad" -> RuntimeValue(DataType.FLOAT, Math.toRadians(args[0].numericValue().toDouble()))
"deg" -> RuntimeValue(DataType.FLOAT, Math.toDegrees(args[0].numericValue().toDouble()))
"round" -> RuntimeValue(DataType.FLOAT, round(args[0].numericValue().toDouble()))
"floor" -> RuntimeValue(DataType.FLOAT, floor(args[0].numericValue().toDouble()))
"ceil" -> RuntimeValue(DataType.FLOAT, ceil(args[0].numericValue().toDouble()))
"rol" -> {
val (result, newCarry) = args[0].rol(statusflags.carry)
statusflags.carry = newCarry
return result
}
"rol2" -> args[0].rol2()
"ror" -> {
val (result, newCarry) = args[0].ror(statusflags.carry)
statusflags.carry = newCarry
return result
}
"ror2" -> args[0].ror2()
"lsl" -> args[0].shl()
"lsr" -> args[0].shr()
"abs" -> {
when (args[0].type) {
DataType.UBYTE -> args[0]
DataType.BYTE -> RuntimeValue(DataType.UBYTE, abs(args[0].numericValue().toDouble()))
DataType.UWORD -> args[0]
DataType.WORD -> RuntimeValue(DataType.UWORD, abs(args[0].numericValue().toDouble()))
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, abs(args[0].numericValue().toDouble()))
else -> throw VmExecutionException("strange abs type ${args[0]}")
}
}
"max" -> {
val numbers = args.single().array!!.map { it.toDouble() }
RuntimeValue(ArrayElementTypes.getValue(args[0].type), numbers.max())
}
"min" -> {
val numbers = args.single().array!!.map { it.toDouble() }
RuntimeValue(ArrayElementTypes.getValue(args[0].type), numbers.min())
}
"avg" -> {
val numbers = args.single().array!!.map { it.toDouble() }
RuntimeValue(DataType.FLOAT, numbers.average())
}
"sum" -> {
val sum = args.single().array!!.map { it.toDouble() }.sum()
when (args[0].type) {
DataType.ARRAY_UB -> RuntimeValue(DataType.UWORD, sum)
DataType.ARRAY_B -> RuntimeValue(DataType.WORD, sum)
DataType.ARRAY_UW -> RuntimeValue(DataType.UWORD, sum)
DataType.ARRAY_W -> RuntimeValue(DataType.WORD, sum)
DataType.ARRAY_F -> RuntimeValue(DataType.FLOAT, sum)
else -> throw VmExecutionException("weird sum type ${args[0]}")
}
}
"any" -> {
val numbers = args.single().array!!.map { it.toDouble() }
RuntimeValue(DataType.UBYTE, if (numbers.any { it != 0.0 }) 1 else 0)
}
"all" -> {
val numbers = args.single().array!!.map { it.toDouble() }
RuntimeValue(DataType.UBYTE, if (numbers.all { it != 0.0 }) 1 else 0)
}
"swap" ->
throw VmExecutionException("swap() cannot be implemented as a function")
"strlen" -> {
val zeroIndex = args[0].str!!.indexOf(0.toChar())
if (zeroIndex >= 0)
RuntimeValue(DataType.UBYTE, zeroIndex)
else
RuntimeValue(DataType.UBYTE, args[0].str!!.length)
}
"memset" -> {
val heapId = args[0].wordval!!
val target = program.heap.get(heapId).array ?: throw VmExecutionException("memset target is not an array")
val amount = args[1].integerValue()
val value = args[2].integerValue()
for (i in 0 until amount) {
target[i] = IntegerOrAddressOf(value, null)
}
null
}
"memsetw" -> {
val heapId = args[0].wordval!!
val target = program.heap.get(heapId).array ?: throw VmExecutionException("memset target is not an array")
val amount = args[1].integerValue()
val value = args[2].integerValue()
for (i in 0 until amount step 2) {
target[i * 2] = IntegerOrAddressOf(value and 255, null)
target[i * 2 + 1] = IntegerOrAddressOf(value ushr 8, null)
}
null
}
"memcopy" -> {
val sourceHeapId = args[0].wordval!!
val destHeapId = args[1].wordval!!
val source = program.heap.get(sourceHeapId).array!!
val dest = program.heap.get(destHeapId).array!!
val amount = args[2].integerValue()
for(i in 0 until amount) {
dest[i] = source[i]
}
null
}
"mkword" -> {
val result = (args[1].integerValue() shl 8) or args[0].integerValue()
RuntimeValue(DataType.UWORD, result)
}
"set_carry" -> {
statusflags.carry=true
null
}
"clear_carry" -> {
statusflags.carry=false
null
}
"set_irqd" -> {
statusflags.irqd=true
null
}
"clear_irqd" -> {
statusflags.irqd=false
null
}
"read_flags" -> {
val carry = if(statusflags.carry) 1 else 0
val zero = if(statusflags.zero) 2 else 0
val irqd = if(statusflags.irqd) 4 else 0
val negative = if(statusflags.negative) 128 else 0
RuntimeValue(DataType.UBYTE, carry or zero or irqd or negative)
}
"rsave" -> {
statusFlagsSave.push(statusflags)
registerAsave.push(runtimeVariables.get(program.namespace, Register.A.name))
registerXsave.push(runtimeVariables.get(program.namespace, Register.X.name))
registerYsave.push(runtimeVariables.get(program.namespace, Register.Y.name))
null
}
"rrestore" -> {
val flags = statusFlagsSave.pop()
statusflags.carry = flags.carry
statusflags.negative = flags.negative
statusflags.zero = flags.zero
statusflags.irqd = flags.irqd
runtimeVariables.set(program.namespace, Register.A.name, registerAsave.pop())
runtimeVariables.set(program.namespace, Register.X.name, registerXsave.pop())
runtimeVariables.set(program.namespace, Register.Y.name, registerYsave.pop())
null
}
else -> TODO("builtin function $name")
}
}
}

View File

@ -0,0 +1,176 @@
package prog8.vm.astvm
import prog8.ast.Program
import prog8.ast.base.ArrayElementTypes
import prog8.ast.base.DataType
import prog8.ast.base.FatalAstException
import prog8.ast.base.VarDeclType
import prog8.ast.expressions.*
import prog8.ast.statements.BuiltinFunctionStatementPlaceholder
import prog8.ast.statements.Label
import prog8.ast.statements.Subroutine
import prog8.ast.statements.VarDecl
import prog8.vm.RuntimeValue
import prog8.vm.RuntimeValueRange
import kotlin.math.abs
typealias BuiltinfunctionCaller = (name: String, args: List<RuntimeValue>, flags: StatusFlags) -> RuntimeValue?
typealias SubroutineCaller = (sub: Subroutine, args: List<RuntimeValue>, startAtLabel: Label?) -> RuntimeValue?
class EvalContext(val program: Program, val mem: Memory, val statusflags: StatusFlags,
val runtimeVars: RuntimeVariables,
val performBuiltinFunction: BuiltinfunctionCaller,
val executeSubroutine: SubroutineCaller)
fun evaluate(expr: Expression, ctx: EvalContext): RuntimeValue {
val constval = expr.constValue(ctx.program)
if(constval!=null)
return RuntimeValue.fromLv(constval)
when(expr) {
is NumericLiteralValue -> {
return RuntimeValue.fromLv(expr)
}
is ReferenceLiteralValue -> {
return RuntimeValue.fromLv(expr, ctx.program.heap)
}
is PrefixExpression -> {
return when(expr.operator) {
"-" -> evaluate(expr.expression, ctx).neg()
"~" -> evaluate(expr.expression, ctx).inv()
"not" -> evaluate(expr.expression, ctx).not()
// unary '+' should have been optimized away
else -> throw VmExecutionException("unsupported prefix operator "+expr.operator)
}
}
is BinaryExpression -> {
val left = evaluate(expr.left, ctx)
val right = evaluate(expr.right, ctx)
return when(expr.operator) {
"<" -> RuntimeValue(DataType.UBYTE, if (left < right) 1 else 0)
"<=" -> RuntimeValue(DataType.UBYTE, if (left <= right) 1 else 0)
">" -> RuntimeValue(DataType.UBYTE, if (left > right) 1 else 0)
">=" -> RuntimeValue(DataType.UBYTE, if (left >= right) 1 else 0)
"==" -> RuntimeValue(DataType.UBYTE, if (left == right) 1 else 0)
"!=" -> RuntimeValue(DataType.UBYTE, if (left != right) 1 else 0)
"+" -> left.add(right)
"-" -> left.sub(right)
"*" -> left.mul(right)
"/" -> left.div(right)
"**" -> left.pow(right)
"<<" -> {
var result = left
repeat(right.integerValue()) {result = result.shl()}
result
}
">>" -> {
var result = left
repeat(right.integerValue()) {result = result.shr()}
result
}
"%" -> left.remainder(right)
"|" -> left.bitor(right)
"&" -> left.bitand(right)
"^" -> left.bitxor(right)
"and" -> left.and(right)
"or" -> left.or(right)
"xor" -> left.xor(right)
else -> throw VmExecutionException("unsupported operator "+expr.operator)
}
}
is ArrayIndexedExpression -> {
val array = evaluate(expr.identifier, ctx)
val index = evaluate(expr.arrayspec.index, ctx)
val value = array.array!![index.integerValue()]
return RuntimeValue(ArrayElementTypes.getValue(array.type), value)
}
is TypecastExpression -> {
return evaluate(expr.expression, ctx).cast(expr.type)
}
is AddressOf -> {
// we support: address of heap var -> the heap id
return try {
val heapId = expr.identifier.heapId(ctx.program.namespace)
RuntimeValue(DataType.UWORD, heapId)
} catch( f: FatalAstException) {
// fallback: use the hash of the name, so we have at least *a* value...
val address = expr.identifier.hashCode() and 65535
RuntimeValue(DataType.UWORD, address)
}
}
is DirectMemoryRead -> {
val address = evaluate(expr.addressExpression, ctx).wordval!!
return RuntimeValue(DataType.UBYTE, ctx.mem.getUByte(address))
}
is RegisterExpr -> return ctx.runtimeVars.get(ctx.program.namespace, expr.register.name)
is IdentifierReference -> {
val scope = expr.definingScope()
val variable = scope.lookup(expr.nameInSource, expr)
if(variable is VarDecl) {
when {
variable.type==VarDeclType.VAR -> return ctx.runtimeVars.get(variable.definingScope(), variable.name)
variable.datatype==DataType.STRUCT -> throw VmExecutionException("cannot process structs by-value. at ${expr.position}")
else -> {
val address = ctx.runtimeVars.getMemoryAddress(variable.definingScope(), variable.name)
return when(variable.datatype) {
DataType.UBYTE -> RuntimeValue(DataType.UBYTE, ctx.mem.getUByte(address))
DataType.BYTE -> RuntimeValue(DataType.BYTE, ctx.mem.getSByte(address))
DataType.UWORD -> RuntimeValue(DataType.UWORD, ctx.mem.getUWord(address))
DataType.WORD -> RuntimeValue(DataType.WORD, ctx.mem.getSWord(address))
DataType.FLOAT -> RuntimeValue(DataType.FLOAT, ctx.mem.getFloat(address))
DataType.STR -> RuntimeValue(DataType.STR, str = ctx.mem.getString(address))
DataType.STR_S -> RuntimeValue(DataType.STR_S, str = ctx.mem.getScreencodeString(address))
else -> throw VmExecutionException("unexpected datatype $variable")
}
}
}
} else
throw VmExecutionException("weird identifier reference $variable")
}
is FunctionCall -> {
val sub = expr.target.targetStatement(ctx.program.namespace)
val args = expr.arglist.map { evaluate(it, ctx) }
return when(sub) {
is Subroutine -> {
val result = ctx.executeSubroutine(sub, args, null)
?: throw VmExecutionException("expected a result from functioncall $expr")
result
}
is BuiltinFunctionStatementPlaceholder -> {
val result = ctx.performBuiltinFunction(sub.name, args, ctx.statusflags)
?: throw VmExecutionException("expected 1 result from functioncall $expr")
result
}
else -> {
throw VmExecutionException("unimplemented function call target $sub")
}
}
}
is RangeExpr -> {
val cRange = expr.toConstantIntegerRange()
if(cRange!=null)
return RuntimeValueRange(expr.inferType(ctx.program)!!, cRange)
val fromVal = evaluate(expr.from, ctx).integerValue()
val toVal = evaluate(expr.to, ctx).integerValue()
val stepVal = evaluate(expr.step, ctx).integerValue()
val range = when {
fromVal <= toVal -> when {
stepVal <= 0 -> IntRange.EMPTY
stepVal == 1 -> fromVal..toVal
else -> fromVal..toVal step stepVal
}
else -> when {
stepVal >= 0 -> IntRange.EMPTY
stepVal == -1 -> fromVal downTo toVal
else -> fromVal downTo toVal step abs(stepVal)
}
}
return RuntimeValueRange(expr.inferType(ctx.program)!!, range)
}
else -> {
throw VmExecutionException("unimplemented expression node $expr")
}
}
}

View File

@ -0,0 +1,144 @@
package prog8.vm.astvm
import prog8.compiler.target.c64.MachineDefinition
import prog8.compiler.target.c64.Petscii
import kotlin.math.abs
class Memory(private val readObserver: (address: Int, value: Short) -> Short,
private val writeObserver: (address: Int, value: Short) -> Short)
{
private val mem = ShortArray(65536) // shorts because byte is signed and we store values 0..255
private val observed = BooleanArray(65536) // what addresses are observed
fun observe(vararg address: Int) {
address.forEach { observed[it]=true }
}
fun getUByte(address: Int): Short {
return if(observed[address]) readObserver(address, mem[address])
else mem[address]
}
fun getUByte_DMA(address: Int): Short {
return mem[address]
}
fun getSByte(address: Int): Short {
val ubyte = getUByte(address)
return if(ubyte <= 127) ubyte
else (-((ubyte.toInt() xor 255)+1)).toShort() // 2's complement
}
fun setUByte(address: Int, value: Short) {
if(value !in 0..255)
throw VmExecutionException("ubyte value out of range $value")
mem[address] =
if(observed[address]) writeObserver(address, value)
else value
}
fun setUByte_DMA(address: Int, value: Short) {
if(value !in 0..255)
throw VmExecutionException("ubyte value out of range $value")
mem[address] = value
}
fun setSByte(address: Int, value: Short) {
if(value !in -128..127) throw VmExecutionException("byte value out of range $value")
val ubyte =
if(value>=0) value
else ((abs(value.toInt()) xor 255)+1).toShort() // 2's complement
setUByte(address, ubyte)
}
fun getUWord(address: Int): Int {
return getUByte(address) + 256*getUByte(address+1)
}
fun getSWord(address: Int): Int {
val uword = getUWord(address)
if(uword <= 32767)
return uword
return -((uword xor 65535)+1) // 2's complement
}
fun setUWord(address: Int, value: Int) {
if(value !in 0..65535)
throw VmExecutionException("uword value out of range $value")
setUByte(address, value.and(255).toShort())
setUByte(address+1, (value / 256).toShort())
}
fun setSWord(address: Int, value: Int) {
if(value !in -32768..32767) throw VmExecutionException("word value out of range $value")
if(value>=0)
setUWord(address, value)
else
setUWord(address, (abs(value) xor 65535)+1) // 2's complement
}
fun setFloat(address: Int, value: Double) {
val mflpt5 = MachineDefinition.Mflpt5.fromNumber(value)
setUByte(address, mflpt5.b0)
setUByte(address+1, mflpt5.b1)
setUByte(address+2, mflpt5.b2)
setUByte(address+3, mflpt5.b3)
setUByte(address+4, mflpt5.b4)
}
fun getFloat(address: Int): Double {
return MachineDefinition.Mflpt5(getUByte(address), getUByte(address + 1), getUByte(address + 2),
getUByte(address + 3), getUByte(address + 4)).toDouble()
}
fun setString(address: Int, str: String) {
// lowercase PETSCII
val petscii = Petscii.encodePetscii(str, true)
var addr = address
for (c in petscii) setUByte(addr++, c)
setUByte(addr, 0)
}
fun getString(strAddress: Int): String {
// lowercase PETSCII
val petscii = mutableListOf<Short>()
var addr = strAddress
while(true) {
val byte = getUByte(addr++)
if(byte==0.toShort()) break
petscii.add(byte)
}
return Petscii.decodePetscii(petscii, true)
}
fun clear() {
for(i in 0..65535) setUByte(i, 0)
}
fun copy(from: Int, to: Int, numbytes: Int) {
for(i in 0 until numbytes)
setUByte(to+i, getUByte(from+i))
}
fun getScreencodeString(strAddress: Int): String? {
// lowercase Screencodes
val screencodes = mutableListOf<Short>()
var addr = strAddress
while(true) {
val byte = getUByte(addr++)
if(byte==0.toShort()) break
screencodes.add(byte)
}
return Petscii.decodeScreencode(screencodes, true)
}
fun setScreencodeString(address: Int, str: String) {
// lowercase screencodes
val screencodes = Petscii.encodeScreencode(str, true)
var addr = address
for (c in screencodes) setUByte(addr++, c)
setUByte(addr, 0)
}
}

View File

@ -1,11 +1,12 @@
package prog8.stackvm
package prog8.vm.astvm
import prog8.compiler.target.c64.Charset
import prog8.compiler.target.c64.MachineDefinition
import prog8.compiler.target.c64.Petscii
import java.awt.*
import java.awt.event.KeyEvent
import java.awt.event.KeyListener
import java.awt.image.BufferedImage
import java.util.*
import javax.swing.JFrame
import javax.swing.JPanel
import javax.swing.Timer
@ -17,6 +18,7 @@ class BitmapScreenPanel : KeyListener, JPanel() {
private val g2d = image.graphics as Graphics2D
private var cursorX: Int=0
private var cursorY: Int=0
val keyboardBuffer: Deque<Char> = LinkedList()
init {
val size = Dimension(image.width * SCALING, image.height * SCALING)
@ -29,14 +31,14 @@ class BitmapScreenPanel : KeyListener, JPanel() {
addKeyListener(this)
}
override fun keyTyped(p0: KeyEvent?) {}
override fun keyTyped(p0: KeyEvent) {
keyboardBuffer.add(p0.keyChar)
}
override fun keyPressed(p0: KeyEvent?) {
println("pressed: $p0.k")
override fun keyPressed(p0: KeyEvent) {
}
override fun keyReleased(p0: KeyEvent?) {
println("released: $p0")
}
override fun paint(graphics: Graphics?) {
@ -47,63 +49,84 @@ class BitmapScreenPanel : KeyListener, JPanel() {
g2d.drawImage(image, 0, 0, image.width * 3, image.height * 3, null)
}
fun clearScreen(color: Int) {
g2d.background = palette[color and 15]
g2d.clearRect(0, 0, BitmapScreenPanel.SCREENWIDTH, BitmapScreenPanel.SCREENHEIGHT)
fun clearScreen(color: Short) {
g2d.background = MachineDefinition.colorPalette[color % MachineDefinition.colorPalette.size]
g2d.clearRect(0, 0, SCREENWIDTH, SCREENHEIGHT)
cursorX = 0
cursorY = 0
}
fun setPixel(x: Int, y: Int, color: Int) {
image.setRGB(x, y, palette[color and 15].rgb)
fun setPixel(x: Int, y: Int, color: Short) {
image.setRGB(x, y, MachineDefinition.colorPalette[color % MachineDefinition.colorPalette.size].rgb)
}
fun drawLine(x1: Int, y1: Int, x2: Int, y2: Int, color: Int) {
g2d.color = palette[color and 15]
fun drawLine(x1: Int, y1: Int, x2: Int, y2: Int, color: Short) {
g2d.color = MachineDefinition.colorPalette[color % MachineDefinition.colorPalette.size]
g2d.drawLine(x1, y1, x2, y2)
}
fun printText(text: String, color: Int, lowercase: Boolean) {
val lines = text.split('\n')
fun printText(text: String, lowercase: Boolean, inverseVideo: Boolean=false) {
val t2 = text.substringBefore(0.toChar())
val lines = t2.split('\n')
for(line in lines.withIndex()) {
printTextSingleLine(line.value, color, lowercase)
val petscii = Petscii.encodePetscii(line.value, lowercase)
petscii.forEach { printPetscii(it, inverseVideo) }
if(line.index<lines.size-1) {
cursorX=0
cursorY++
}
}
}
private fun printTextSingleLine(text: String, color: Int, lowercase: Boolean) {
if(color!=1) {
TODO("text can only be white for now")
}
for(clearx in cursorX until cursorX+text.length) {
g2d.clearRect(8*clearx, 8*y, 8, 8)
}
for(sc in Petscii.encodeScreencode(text, lowercase)) {
setChar(cursorX, cursorY, sc)
cursorX++
if(cursorX>=(SCREENWIDTH/8)) {
cursorY++
cursorX=0
printPetscii(13) // newline
}
}
}
fun printChar(char: Short) {
fun printPetscii(char: Short, inverseVideo: Boolean=false) {
if(char==13.toShort() || char==141.toShort()) {
cursorX=0
cursorY++
} else {
setChar(cursorX, cursorY, char)
setPetscii(cursorX, cursorY, char, 1, inverseVideo)
cursorX++
if (cursorX >= (SCREENWIDTH / 8)) {
cursorY++
cursorX = 0
}
}
while(cursorY>=(SCREENHEIGHT/8)) {
// scroll the screen up because the cursor went past the last line
Thread.sleep(10)
val screen = image.copy()
val graphics = image.graphics as Graphics2D
graphics.drawImage(screen, 0, -8, null)
val color = graphics.color
graphics.color = MachineDefinition.colorPalette[6]
graphics.fillRect(0, 24*8, SCREENWIDTH, 25*8)
graphics.color=color
cursorY--
}
}
fun setChar(x: Int, y: Int, screenCode: Short) {
fun writeTextAt(x: Int, y: Int, text: String, color: Short, lowercase: Boolean, inverseVideo: Boolean=false) {
val colorIdx = (color % MachineDefinition.colorPalette.size).toShort()
var xx=x
for(clearx in xx until xx+text.length) {
g2d.clearRect(8*clearx, 8*y, 8, 8)
}
for(sc in Petscii.encodePetscii(text, lowercase)) {
if(sc==0.toShort())
break
setPetscii(xx++, y, sc, colorIdx, inverseVideo)
}
}
fun setPetscii(x: Int, y: Int, petscii: Short, color: Short, inverseVideo: Boolean) {
g2d.clearRect(8*x, 8*y, 8, 8)
g2d.drawImage(Charset.shiftedChars[screenCode.toInt()], 8*x, 8*y , null)
val colorIdx = (color % MachineDefinition.colorPalette.size).toShort()
val screencode = Petscii.petscii2scr(petscii, inverseVideo)
val coloredImage = MachineDefinition.Charset.getColoredChar(screencode, colorIdx)
g2d.drawImage(coloredImage, 8*x, 8*y , null)
}
fun setChar(x: Int, y: Int, screencode: Short, color: Short) {
g2d.clearRect(8*x, 8*y, 8, 8)
val colorIdx = (color % MachineDefinition.colorPalette.size).toShort()
val coloredImage = MachineDefinition.Charset.getColoredChar(screencode, colorIdx)
g2d.drawImage(coloredImage, 8*x, 8*y , null)
}
fun setCursorPos(x: Int, y: Int) {
@ -115,72 +138,40 @@ class BitmapScreenPanel : KeyListener, JPanel() {
return Pair(cursorX, cursorY)
}
fun writeText(x: Int, y: Int, text: String, color: Int, lowercase: Boolean) {
var xx=x
if(color!=1) {
TODO("text can only be white for now")
}
for(clearx in xx until xx+text.length) {
g2d.clearRect(8*clearx, 8*y, 8, 8)
}
for(sc in Petscii.encodeScreencode(text, lowercase)) {
setChar(xx++, y, sc)
}
}
companion object {
const val SCREENWIDTH = 320
const val SCREENHEIGHT = 200
const val SCALING = 3
val palette = listOf( // this is Pepto's Commodore-64 palette http://www.pepto.de/projects/colorvic/
Color(0x000000), // 0 = black
Color(0xFFFFFF), // 1 = white
Color(0x813338), // 2 = red
Color(0x75cec8), // 3 = cyan
Color(0x8e3c97), // 4 = purple
Color(0x56ac4d), // 5 = green
Color(0x2e2c9b), // 6 = blue
Color(0xedf171), // 7 = yellow
Color(0x8e5029), // 8 = orange
Color(0x553800), // 9 = brown
Color(0xc46c71), // 10 = light red
Color(0x4a4a4a), // 11 = dark grey
Color(0x7b7b7b), // 12 = medium grey
Color(0xa9ff9f), // 13 = light green
Color(0x706deb), // 14 = light blue
Color(0xb2b2b2) // 15 = light grey
)
}
}
class ScreenDialog : JFrame() {
class ScreenDialog(title: String) : JFrame(title) {
val canvas = BitmapScreenPanel()
val keyboardBuffer = canvas.keyboardBuffer
init {
val borderWidth = 16
title = "StackVm graphics. Text I/O goes to console."
layout = GridBagLayout()
defaultCloseOperation = JFrame.EXIT_ON_CLOSE
defaultCloseOperation = EXIT_ON_CLOSE
isResizable = false
// the borders (top, left, right, bottom)
val borderTop = JPanel().apply {
preferredSize = Dimension(BitmapScreenPanel.SCALING * (BitmapScreenPanel.SCREENWIDTH+2*borderWidth), BitmapScreenPanel.SCALING * borderWidth)
background = BitmapScreenPanel.palette[14]
preferredSize = Dimension(BitmapScreenPanel.SCALING * (BitmapScreenPanel.SCREENWIDTH +2*borderWidth), BitmapScreenPanel.SCALING * borderWidth)
background = MachineDefinition.colorPalette[14]
}
val borderBottom = JPanel().apply {
preferredSize =Dimension(BitmapScreenPanel.SCALING * (BitmapScreenPanel.SCREENWIDTH+2*borderWidth), BitmapScreenPanel.SCALING * borderWidth)
background = BitmapScreenPanel.palette[14]
preferredSize =Dimension(BitmapScreenPanel.SCALING * (BitmapScreenPanel.SCREENWIDTH +2*borderWidth), BitmapScreenPanel.SCALING * borderWidth)
background = MachineDefinition.colorPalette[14]
}
val borderLeft = JPanel().apply {
preferredSize =Dimension(BitmapScreenPanel.SCALING * borderWidth, BitmapScreenPanel.SCALING * BitmapScreenPanel.SCREENHEIGHT)
background = BitmapScreenPanel.palette[14]
background = MachineDefinition.colorPalette[14]
}
val borderRight = JPanel().apply {
preferredSize =Dimension(BitmapScreenPanel.SCALING * borderWidth, BitmapScreenPanel.SCALING * BitmapScreenPanel.SCREENHEIGHT)
background = BitmapScreenPanel.palette[14]
background = MachineDefinition.colorPalette[14]
}
var c = GridBagConstraints()
c.gridx=0; c.gridy=1; c.gridwidth=3
@ -207,3 +198,12 @@ class ScreenDialog : JFrame() {
repaintTimer.start()
}
}
private fun BufferedImage.copy(): BufferedImage {
val bcopy = BufferedImage(this.width, this.height, this.type)
val g = bcopy.graphics
g.drawImage(this, 0, 0, null)
g.dispose()
return bcopy
}

View File

@ -0,0 +1,77 @@
package prog8.vm.astvm
import prog8.ast.Program
import prog8.ast.base.DataType
import prog8.ast.base.Position
import prog8.ast.base.Register
import prog8.ast.base.VarDeclType
import prog8.ast.expressions.NumericLiteralValue
import prog8.ast.expressions.ReferenceLiteralValue
import prog8.ast.processing.IAstModifyingVisitor
import prog8.ast.statements.Statement
import prog8.ast.statements.StructDecl
import prog8.ast.statements.VarDecl
import prog8.ast.statements.ZeropageWish
import prog8.compiler.HeapValues
import prog8.vm.RuntimeValue
class VariablesCreator(private val runtimeVariables: RuntimeVariables, private val heap: HeapValues) : IAstModifyingVisitor {
override fun visit(program: Program) {
// define the three registers as global variables
runtimeVariables.define(program.namespace, Register.A.name, RuntimeValue(DataType.UBYTE, 0))
runtimeVariables.define(program.namespace, Register.X.name, RuntimeValue(DataType.UBYTE, 255))
runtimeVariables.define(program.namespace, Register.Y.name, RuntimeValue(DataType.UBYTE, 0))
val globalpos = Position("<<global>>", 0, 0, 0)
val vdA = VarDecl(VarDeclType.VAR, DataType.UBYTE, ZeropageWish.DONTCARE, null, Register.A.name, null,
NumericLiteralValue.optimalInteger(0, globalpos), isArray = false, autogeneratedDontRemove = true, position = globalpos)
val vdX = VarDecl(VarDeclType.VAR, DataType.UBYTE, ZeropageWish.DONTCARE, null, Register.X.name, null,
NumericLiteralValue.optimalInteger(255, globalpos), isArray = false, autogeneratedDontRemove = true, position = globalpos)
val vdY = VarDecl(VarDeclType.VAR, DataType.UBYTE, ZeropageWish.DONTCARE, null, Register.Y.name, null,
NumericLiteralValue.optimalInteger(0, globalpos), isArray = false, autogeneratedDontRemove = true, position = globalpos)
vdA.linkParents(program.namespace)
vdX.linkParents(program.namespace)
vdY.linkParents(program.namespace)
program.namespace.statements.add(vdA)
program.namespace.statements.add(vdX)
program.namespace.statements.add(vdY)
super.visit(program)
}
override fun visit(decl: VarDecl): Statement {
// if the decl is part of a struct, just skip it
if(decl.parent !is StructDecl) {
when (decl.type) {
VarDeclType.VAR -> {
if(decl.datatype!=DataType.STRUCT) {
val numericLv = decl.value as? NumericLiteralValue
val value = if(numericLv!=null) {
RuntimeValue.fromLv(numericLv)
} else {
val referenceLv = decl.value as ReferenceLiteralValue
RuntimeValue.fromLv(referenceLv, heap)
}
runtimeVariables.define(decl.definingScope(), decl.name, value)
}
}
VarDeclType.MEMORY -> {
runtimeVariables.defineMemory(decl.definingScope(), decl.name, (decl.value as NumericLiteralValue).number.toInt())
}
VarDeclType.CONST -> {
// consts should have been const-folded away
}
}
}
return super.visit(decl)
}
// override fun accept(assignment: Assignment): Statement {
// if(assignment is VariableInitializationAssignment) {
// println("INIT VAR $assignment")
// }
// return super.accept(assignment)
// }
}

View File

@ -0,0 +1,145 @@
package prog8tests
import org.junit.jupiter.api.Test
import org.junit.jupiter.api.TestInstance
import prog8.ast.base.DataType
import prog8.ast.base.Position
import prog8.ast.expressions.NumericLiteralValue
import prog8.ast.expressions.ReferenceLiteralValue
import kotlin.test.assertEquals
import kotlin.test.assertFalse
import kotlin.test.assertNotEquals
import kotlin.test.assertTrue
private fun sameValueAndType(lv1: NumericLiteralValue, lv2: NumericLiteralValue): Boolean {
return lv1.type==lv2.type && lv1==lv2
}
private fun sameValueAndType(rv1: ReferenceLiteralValue, rv2: ReferenceLiteralValue): Boolean {
return rv1.type==rv2.type && rv1==rv2
}
@TestInstance(TestInstance.Lifecycle.PER_CLASS)
class TestParserNumericLiteralValue {
private val dummyPos = Position("test", 0, 0, 0)
@Test
fun testIdentity() {
val v = NumericLiteralValue(DataType.UWORD, 12345, dummyPos)
assertEquals(v, v)
assertFalse(v != v)
assertTrue(v <= v)
assertTrue(v >= v)
assertFalse(v < v)
assertFalse(v > v)
assertTrue(sameValueAndType(NumericLiteralValue(DataType.UWORD, 12345, dummyPos), NumericLiteralValue(DataType.UWORD, 12345, dummyPos)))
}
@Test
fun testEqualsAndNotEquals() {
assertEquals(NumericLiteralValue(DataType.UBYTE, 100, dummyPos), NumericLiteralValue(DataType.UBYTE, 100, dummyPos))
assertEquals(NumericLiteralValue(DataType.UBYTE, 100, dummyPos), NumericLiteralValue(DataType.UWORD, 100, dummyPos))
assertEquals(NumericLiteralValue(DataType.UBYTE, 100, dummyPos), NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos))
assertEquals(NumericLiteralValue(DataType.UWORD, 254, dummyPos), NumericLiteralValue(DataType.UBYTE, 254, dummyPos))
assertEquals(NumericLiteralValue(DataType.UWORD, 12345, dummyPos), NumericLiteralValue(DataType.UWORD, 12345, dummyPos))
assertEquals(NumericLiteralValue(DataType.UWORD, 12345, dummyPos), NumericLiteralValue(DataType.FLOAT, 12345.0, dummyPos))
assertEquals(NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos), NumericLiteralValue(DataType.UBYTE, 100, dummyPos))
assertEquals(NumericLiteralValue(DataType.FLOAT, 22239.0, dummyPos), NumericLiteralValue(DataType.UWORD, 22239, dummyPos))
assertEquals(NumericLiteralValue(DataType.FLOAT, 9.99, dummyPos), NumericLiteralValue(DataType.FLOAT, 9.99, dummyPos))
assertTrue(sameValueAndType(NumericLiteralValue(DataType.UBYTE, 100, dummyPos), NumericLiteralValue(DataType.UBYTE, 100, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.UBYTE, 100, dummyPos), NumericLiteralValue(DataType.UWORD, 100, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.UBYTE, 100, dummyPos), NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.UWORD, 254, dummyPos), NumericLiteralValue(DataType.UBYTE, 254, dummyPos)))
assertTrue(sameValueAndType(NumericLiteralValue(DataType.UWORD, 12345, dummyPos), NumericLiteralValue(DataType.UWORD, 12345, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.UWORD, 12345, dummyPos), NumericLiteralValue(DataType.FLOAT, 12345.0, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos), NumericLiteralValue(DataType.UBYTE, 100, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.FLOAT, 22239.0, dummyPos), NumericLiteralValue(DataType.UWORD, 22239, dummyPos)))
assertTrue(sameValueAndType(NumericLiteralValue(DataType.FLOAT, 9.99, dummyPos), NumericLiteralValue(DataType.FLOAT, 9.99, dummyPos)))
assertNotEquals(NumericLiteralValue(DataType.UBYTE, 100, dummyPos), NumericLiteralValue(DataType.UBYTE, 101, dummyPos))
assertNotEquals(NumericLiteralValue(DataType.UBYTE, 100, dummyPos), NumericLiteralValue(DataType.UWORD, 101, dummyPos))
assertNotEquals(NumericLiteralValue(DataType.UBYTE, 100, dummyPos), NumericLiteralValue(DataType.FLOAT, 101.0, dummyPos))
assertNotEquals(NumericLiteralValue(DataType.UWORD, 245, dummyPos), NumericLiteralValue(DataType.UBYTE, 246, dummyPos))
assertNotEquals(NumericLiteralValue(DataType.UWORD, 12345, dummyPos), NumericLiteralValue(DataType.UWORD, 12346, dummyPos))
assertNotEquals(NumericLiteralValue(DataType.UWORD, 12345, dummyPos), NumericLiteralValue(DataType.FLOAT, 12346.0, dummyPos))
assertNotEquals(NumericLiteralValue(DataType.FLOAT, 9.99, dummyPos), NumericLiteralValue(DataType.UBYTE, 9, dummyPos))
assertNotEquals(NumericLiteralValue(DataType.FLOAT, 9.99, dummyPos), NumericLiteralValue(DataType.UWORD, 9, dummyPos))
assertNotEquals(NumericLiteralValue(DataType.FLOAT, 9.99, dummyPos), NumericLiteralValue(DataType.FLOAT, 9.0, dummyPos))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.UBYTE, 100, dummyPos), NumericLiteralValue(DataType.UBYTE, 101, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.UBYTE, 100, dummyPos), NumericLiteralValue(DataType.UWORD, 101, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.UBYTE, 100, dummyPos), NumericLiteralValue(DataType.FLOAT, 101.0, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.UWORD, 245, dummyPos), NumericLiteralValue(DataType.UBYTE, 246, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.UWORD, 12345, dummyPos), NumericLiteralValue(DataType.UWORD, 12346, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.UWORD, 12345, dummyPos), NumericLiteralValue(DataType.FLOAT, 12346.0, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.FLOAT, 9.99, dummyPos), NumericLiteralValue(DataType.UBYTE, 9, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.FLOAT, 9.99, dummyPos), NumericLiteralValue(DataType.UWORD, 9, dummyPos)))
assertFalse(sameValueAndType(NumericLiteralValue(DataType.FLOAT, 9.99, dummyPos), NumericLiteralValue(DataType.FLOAT, 9.0, dummyPos)))
}
@Test
fun testEqualsRef() {
assertTrue(sameValueAndType(ReferenceLiteralValue(DataType.STR, str = "hello", position = dummyPos), ReferenceLiteralValue(DataType.STR, str = "hello", position = dummyPos)))
assertFalse(sameValueAndType(ReferenceLiteralValue(DataType.STR, str = "hello", position = dummyPos), ReferenceLiteralValue(DataType.STR, str = "bye", position = dummyPos)))
val lvOne = NumericLiteralValue(DataType.UBYTE, 1, dummyPos)
val lvTwo = NumericLiteralValue(DataType.UBYTE, 2, dummyPos)
val lvThree = NumericLiteralValue(DataType.UBYTE, 3, dummyPos)
val lvOneR = NumericLiteralValue(DataType.UBYTE, 1, dummyPos)
val lvTwoR = NumericLiteralValue(DataType.UBYTE, 2, dummyPos)
val lvThreeR = NumericLiteralValue(DataType.UBYTE, 3, dummyPos)
val lvFour= NumericLiteralValue(DataType.UBYTE, 4, dummyPos)
val lv1 = ReferenceLiteralValue(DataType.ARRAY_UB, array = arrayOf(lvOne, lvTwo, lvThree), position = dummyPos)
val lv2 = ReferenceLiteralValue(DataType.ARRAY_UB, array = arrayOf(lvOneR, lvTwoR, lvThreeR), position = dummyPos)
val lv3 = ReferenceLiteralValue(DataType.ARRAY_UB, array = arrayOf(lvOneR, lvTwoR, lvFour), position = dummyPos)
assertEquals(lv1, lv2)
assertNotEquals(lv1, lv3)
}
@Test
fun testGreaterThan(){
assertTrue(NumericLiteralValue(DataType.UBYTE, 100, dummyPos) > NumericLiteralValue(DataType.UBYTE, 99, dummyPos))
assertTrue(NumericLiteralValue(DataType.UWORD, 254, dummyPos) > NumericLiteralValue(DataType.UWORD, 253, dummyPos))
assertTrue(NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos) > NumericLiteralValue(DataType.FLOAT, 99.9, dummyPos))
assertTrue(NumericLiteralValue(DataType.UBYTE, 100, dummyPos) >= NumericLiteralValue(DataType.UBYTE, 100, dummyPos))
assertTrue(NumericLiteralValue(DataType.UWORD, 254, dummyPos) >= NumericLiteralValue(DataType.UWORD, 254, dummyPos))
assertTrue(NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos) >= NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos))
assertFalse(NumericLiteralValue(DataType.UBYTE, 100, dummyPos) > NumericLiteralValue(DataType.UBYTE, 100, dummyPos))
assertFalse(NumericLiteralValue(DataType.UWORD, 254, dummyPos) > NumericLiteralValue(DataType.UWORD, 254, dummyPos))
assertFalse(NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos) > NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos))
assertFalse(NumericLiteralValue(DataType.UBYTE, 100, dummyPos) >= NumericLiteralValue(DataType.UBYTE, 101, dummyPos))
assertFalse(NumericLiteralValue(DataType.UWORD, 254, dummyPos) >= NumericLiteralValue(DataType.UWORD, 255, dummyPos))
assertFalse(NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos) >= NumericLiteralValue(DataType.FLOAT, 100.1, dummyPos))
}
@Test
fun testLessThan() {
assertTrue(NumericLiteralValue(DataType.UBYTE, 100, dummyPos) < NumericLiteralValue(DataType.UBYTE, 101, dummyPos))
assertTrue(NumericLiteralValue(DataType.UWORD, 254, dummyPos) < NumericLiteralValue(DataType.UWORD, 255, dummyPos))
assertTrue(NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos) < NumericLiteralValue(DataType.FLOAT, 100.1, dummyPos))
assertTrue(NumericLiteralValue(DataType.UBYTE, 100, dummyPos) <= NumericLiteralValue(DataType.UBYTE, 100, dummyPos))
assertTrue(NumericLiteralValue(DataType.UWORD, 254, dummyPos) <= NumericLiteralValue(DataType.UWORD, 254, dummyPos))
assertTrue(NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos) <= NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos))
assertFalse(NumericLiteralValue(DataType.UBYTE, 100, dummyPos) < NumericLiteralValue(DataType.UBYTE, 100, dummyPos))
assertFalse(NumericLiteralValue(DataType.UWORD, 254, dummyPos) < NumericLiteralValue(DataType.UWORD, 254, dummyPos))
assertFalse(NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos) < NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos))
assertFalse(NumericLiteralValue(DataType.UBYTE, 100, dummyPos) <= NumericLiteralValue(DataType.UBYTE, 99, dummyPos))
assertFalse(NumericLiteralValue(DataType.UWORD, 254, dummyPos) <= NumericLiteralValue(DataType.UWORD, 253, dummyPos))
assertFalse(NumericLiteralValue(DataType.FLOAT, 100.0, dummyPos) <= NumericLiteralValue(DataType.FLOAT, 99.9, dummyPos))
}
}

View File

@ -0,0 +1,369 @@
package prog8tests
import org.junit.jupiter.api.Test
import org.junit.jupiter.api.TestInstance
import prog8.ast.base.DataType
import prog8.vm.RuntimeValue
import kotlin.test.*
private fun sameValueAndType(v1: RuntimeValue, v2: RuntimeValue): Boolean {
return v1.type==v2.type && v1==v2
}
@TestInstance(TestInstance.Lifecycle.PER_CLASS)
class TestRuntimeValue {
@Test
fun testValueRanges() {
assertEquals(0, RuntimeValue(DataType.UBYTE, 0).integerValue())
assertEquals(255, RuntimeValue(DataType.UBYTE, 255).integerValue())
assertFailsWith<IllegalArgumentException> { RuntimeValue(DataType.UBYTE, -1)}
assertFailsWith<IllegalArgumentException> { RuntimeValue(DataType.UBYTE, 256)}
assertEquals(0, RuntimeValue(DataType.BYTE, 0).integerValue())
assertEquals(-128, RuntimeValue(DataType.BYTE, -128).integerValue())
assertEquals(127, RuntimeValue(DataType.BYTE, 127).integerValue())
assertFailsWith<IllegalArgumentException> { RuntimeValue(DataType.BYTE, -129)}
assertFailsWith<IllegalArgumentException> { RuntimeValue(DataType.BYTE, 128)}
assertEquals(0, RuntimeValue(DataType.UWORD, 0).integerValue())
assertEquals(65535, RuntimeValue(DataType.UWORD, 65535).integerValue())
assertFailsWith<IllegalArgumentException> { RuntimeValue(DataType.UWORD, -1)}
assertFailsWith<IllegalArgumentException> { RuntimeValue(DataType.UWORD, 65536)}
assertEquals(0, RuntimeValue(DataType.WORD, 0).integerValue())
assertEquals(-32768, RuntimeValue(DataType.WORD, -32768).integerValue())
assertEquals(32767, RuntimeValue(DataType.WORD, 32767).integerValue())
assertFailsWith<IllegalArgumentException> { RuntimeValue(DataType.WORD, -32769)}
assertFailsWith<IllegalArgumentException> { RuntimeValue(DataType.WORD, 32768)}
}
@Test
fun testTruthiness()
{
assertFalse(RuntimeValue(DataType.BYTE, 0).asBoolean)
assertFalse(RuntimeValue(DataType.UBYTE, 0).asBoolean)
assertFalse(RuntimeValue(DataType.WORD, 0).asBoolean)
assertFalse(RuntimeValue(DataType.UWORD, 0).asBoolean)
assertFalse(RuntimeValue(DataType.FLOAT, 0.0).asBoolean)
assertTrue(RuntimeValue(DataType.BYTE, 42).asBoolean)
assertTrue(RuntimeValue(DataType.UBYTE, 42).asBoolean)
assertTrue(RuntimeValue(DataType.WORD, 42).asBoolean)
assertTrue(RuntimeValue(DataType.UWORD, 42).asBoolean)
assertTrue(RuntimeValue(DataType.FLOAT, 42.0).asBoolean)
assertTrue(RuntimeValue(DataType.BYTE, -42).asBoolean)
assertTrue(RuntimeValue(DataType.WORD, -42).asBoolean)
assertTrue(RuntimeValue(DataType.FLOAT, -42.0).asBoolean)
}
@Test
fun testIdentity() {
val v = RuntimeValue(DataType.UWORD, 12345)
assertEquals(v, v)
assertFalse(v != v)
assertTrue(v<=v)
assertTrue(v>=v)
assertFalse(v<v)
assertFalse(v>v)
assertTrue(sameValueAndType(RuntimeValue(DataType.UBYTE, 100), RuntimeValue(DataType.UBYTE, 100)))
}
@Test
fun testEqualsAndNotEquals() {
assertEquals(RuntimeValue(DataType.UBYTE, 100), RuntimeValue(DataType.UBYTE, 100))
assertEquals(RuntimeValue(DataType.UBYTE, 100), RuntimeValue(DataType.UWORD, 100))
assertEquals(RuntimeValue(DataType.UBYTE, 100), RuntimeValue(DataType.FLOAT, 100))
assertEquals(RuntimeValue(DataType.UWORD, 254), RuntimeValue(DataType.UBYTE, 254))
assertEquals(RuntimeValue(DataType.UWORD, 12345), RuntimeValue(DataType.UWORD, 12345))
assertEquals(RuntimeValue(DataType.UWORD, 12345), RuntimeValue(DataType.FLOAT, 12345))
assertEquals(RuntimeValue(DataType.FLOAT, 100.0), RuntimeValue(DataType.UBYTE, 100))
assertEquals(RuntimeValue(DataType.FLOAT, 22239.0), RuntimeValue(DataType.UWORD, 22239))
assertEquals(RuntimeValue(DataType.FLOAT, 9.99), RuntimeValue(DataType.FLOAT, 9.99))
assertTrue(sameValueAndType(RuntimeValue(DataType.UBYTE, 100), RuntimeValue(DataType.UBYTE, 100)))
assertFalse(sameValueAndType(RuntimeValue(DataType.UBYTE, 100), RuntimeValue(DataType.UWORD, 100)))
assertFalse(sameValueAndType(RuntimeValue(DataType.UBYTE, 100), RuntimeValue(DataType.FLOAT, 100)))
assertFalse(sameValueAndType(RuntimeValue(DataType.UWORD, 254), RuntimeValue(DataType.UBYTE, 254)))
assertTrue(sameValueAndType(RuntimeValue(DataType.UWORD, 12345), RuntimeValue(DataType.UWORD, 12345)))
assertFalse(sameValueAndType(RuntimeValue(DataType.UWORD, 12345), RuntimeValue(DataType.FLOAT, 12345)))
assertFalse(sameValueAndType(RuntimeValue(DataType.FLOAT, 100.0), RuntimeValue(DataType.UBYTE, 100)))
assertFalse(sameValueAndType(RuntimeValue(DataType.FLOAT, 22239.0), RuntimeValue(DataType.UWORD, 22239)))
assertTrue(sameValueAndType(RuntimeValue(DataType.FLOAT, 9.99), RuntimeValue(DataType.FLOAT, 9.99)))
assertNotEquals(RuntimeValue(DataType.UBYTE, 100), RuntimeValue(DataType.UBYTE, 101))
assertNotEquals(RuntimeValue(DataType.UBYTE, 100), RuntimeValue(DataType.UWORD, 101))
assertNotEquals(RuntimeValue(DataType.UBYTE, 100), RuntimeValue(DataType.FLOAT, 101))
assertNotEquals(RuntimeValue(DataType.UWORD, 245), RuntimeValue(DataType.UBYTE, 246))
assertNotEquals(RuntimeValue(DataType.UWORD, 12345), RuntimeValue(DataType.UWORD, 12346))
assertNotEquals(RuntimeValue(DataType.UWORD, 12345), RuntimeValue(DataType.FLOAT, 12346))
assertNotEquals(RuntimeValue(DataType.FLOAT, 9.99), RuntimeValue(DataType.UBYTE, 9))
assertNotEquals(RuntimeValue(DataType.FLOAT, 9.99), RuntimeValue(DataType.UWORD, 9))
assertNotEquals(RuntimeValue(DataType.FLOAT, 9.99), RuntimeValue(DataType.FLOAT, 9.0))
assertFalse(sameValueAndType(RuntimeValue(DataType.UBYTE, 100), RuntimeValue(DataType.UBYTE, 101)))
assertFalse(sameValueAndType(RuntimeValue(DataType.UBYTE, 100), RuntimeValue(DataType.UWORD, 101)))
assertFalse(sameValueAndType(RuntimeValue(DataType.UBYTE, 100), RuntimeValue(DataType.FLOAT, 101)))
assertFalse(sameValueAndType(RuntimeValue(DataType.UWORD, 245), RuntimeValue(DataType.UBYTE, 246)))
assertFalse(sameValueAndType(RuntimeValue(DataType.UWORD, 12345), RuntimeValue(DataType.UWORD, 12346)))
assertFalse(sameValueAndType(RuntimeValue(DataType.UWORD, 12345), RuntimeValue(DataType.FLOAT, 12346)))
assertFalse(sameValueAndType(RuntimeValue(DataType.FLOAT, 9.99), RuntimeValue(DataType.UBYTE, 9)))
assertFalse(sameValueAndType(RuntimeValue(DataType.FLOAT, 9.99), RuntimeValue(DataType.UWORD, 9)))
assertFalse(sameValueAndType(RuntimeValue(DataType.FLOAT, 9.99), RuntimeValue(DataType.FLOAT, 9.0)))
}
@Test
fun testEqualityHeapTypes()
{
assertTrue(sameValueAndType(RuntimeValue(DataType.STR, heapId = 999), RuntimeValue(DataType.STR, heapId = 999)))
assertFalse(sameValueAndType(RuntimeValue(DataType.STR, heapId = 999), RuntimeValue(DataType.STR, heapId = 222)))
assertTrue(sameValueAndType(RuntimeValue(DataType.ARRAY_UB, heapId = 99), RuntimeValue(DataType.ARRAY_UB, heapId = 99)))
assertFalse(sameValueAndType(RuntimeValue(DataType.ARRAY_UB, heapId = 99), RuntimeValue(DataType.ARRAY_UB, heapId = 22)))
assertTrue(sameValueAndType(RuntimeValue(DataType.ARRAY_UW, heapId = 999), RuntimeValue(DataType.ARRAY_UW, heapId = 999)))
assertFalse(sameValueAndType(RuntimeValue(DataType.ARRAY_UW, heapId = 999), RuntimeValue(DataType.ARRAY_UW, heapId = 222)))
assertTrue(sameValueAndType(RuntimeValue(DataType.ARRAY_F, heapId = 999), RuntimeValue(DataType.ARRAY_F, heapId = 999)))
assertFalse(sameValueAndType(RuntimeValue(DataType.ARRAY_F, heapId = 999), RuntimeValue(DataType.ARRAY_UW, heapId = 999)))
assertFalse(sameValueAndType(RuntimeValue(DataType.ARRAY_F, heapId = 999), RuntimeValue(DataType.ARRAY_F, heapId = 222)))
}
@Test
fun testGreaterThan(){
assertTrue(RuntimeValue(DataType.UBYTE, 100) > RuntimeValue(DataType.UBYTE, 99))
assertTrue(RuntimeValue(DataType.UWORD, 254) > RuntimeValue(DataType.UWORD, 253))
assertTrue(RuntimeValue(DataType.FLOAT, 100.0) > RuntimeValue(DataType.FLOAT, 99.9))
assertTrue(RuntimeValue(DataType.UBYTE, 100) >= RuntimeValue(DataType.UBYTE, 100))
assertTrue(RuntimeValue(DataType.UWORD, 254) >= RuntimeValue(DataType.UWORD, 254))
assertTrue(RuntimeValue(DataType.FLOAT, 100.0) >= RuntimeValue(DataType.FLOAT, 100.0))
assertFalse(RuntimeValue(DataType.UBYTE, 100) > RuntimeValue(DataType.UBYTE, 100))
assertFalse(RuntimeValue(DataType.UWORD, 254) > RuntimeValue(DataType.UWORD, 254))
assertFalse(RuntimeValue(DataType.FLOAT, 100.0) > RuntimeValue(DataType.FLOAT, 100.0))
assertFalse(RuntimeValue(DataType.UBYTE, 100) >= RuntimeValue(DataType.UBYTE, 101))
assertFalse(RuntimeValue(DataType.UWORD, 254) >= RuntimeValue(DataType.UWORD, 255))
assertFalse(RuntimeValue(DataType.FLOAT, 100.0) >= RuntimeValue(DataType.FLOAT, 100.1))
}
@Test
fun testLessThan() {
assertTrue(RuntimeValue(DataType.UBYTE, 100) < RuntimeValue(DataType.UBYTE, 101))
assertTrue(RuntimeValue(DataType.UWORD, 254) < RuntimeValue(DataType.UWORD, 255))
assertTrue(RuntimeValue(DataType.FLOAT, 100.0) < RuntimeValue(DataType.FLOAT, 100.1))
assertTrue(RuntimeValue(DataType.UBYTE, 100) <= RuntimeValue(DataType.UBYTE, 100))
assertTrue(RuntimeValue(DataType.UWORD, 254) <= RuntimeValue(DataType.UWORD, 254))
assertTrue(RuntimeValue(DataType.FLOAT, 100.0) <= RuntimeValue(DataType.FLOAT, 100.0))
assertFalse(RuntimeValue(DataType.UBYTE, 100) < RuntimeValue(DataType.UBYTE, 100))
assertFalse(RuntimeValue(DataType.UWORD, 254) < RuntimeValue(DataType.UWORD, 254))
assertFalse(RuntimeValue(DataType.FLOAT, 100.0) < RuntimeValue(DataType.FLOAT, 100.0))
assertFalse(RuntimeValue(DataType.UBYTE, 100) <= RuntimeValue(DataType.UBYTE, 99))
assertFalse(RuntimeValue(DataType.UWORD, 254) <= RuntimeValue(DataType.UWORD, 253))
assertFalse(RuntimeValue(DataType.FLOAT, 100.0) <= RuntimeValue(DataType.FLOAT, 99.9))
}
@Test
fun testNoDtConversion() {
assertFailsWith<ArithmeticException> {
RuntimeValue(DataType.UWORD, 100).add(RuntimeValue(DataType.UBYTE, 120))
}
assertFailsWith<ArithmeticException> {
RuntimeValue(DataType.UBYTE, 100).add(RuntimeValue(DataType.UWORD, 120))
}
assertFailsWith<ArithmeticException> {
RuntimeValue(DataType.FLOAT, 100.22).add(RuntimeValue(DataType.UWORD, 120))
}
assertFailsWith<ArithmeticException> {
RuntimeValue(DataType.UWORD, 1002).add(RuntimeValue(DataType.FLOAT, 120.22))
}
assertFailsWith<ArithmeticException> {
RuntimeValue(DataType.FLOAT, 100.22).add(RuntimeValue(DataType.UBYTE, 120))
}
assertFailsWith<ArithmeticException> {
RuntimeValue(DataType.UBYTE, 12).add(RuntimeValue(DataType.FLOAT, 120.22))
}
}
@Test
fun testNoAutoFloatConversion() {
assertFailsWith<ArithmeticException> {
RuntimeValue(DataType.UBYTE, 233).add(RuntimeValue(DataType.FLOAT, 1.234))
}
assertFailsWith<ArithmeticException> {
RuntimeValue(DataType.UWORD, 233).add(RuntimeValue(DataType.FLOAT, 1.234))
}
assertFailsWith<ArithmeticException> {
RuntimeValue(DataType.UBYTE, 233).mul(RuntimeValue(DataType.FLOAT, 1.234))
}
assertFailsWith<ArithmeticException> {
RuntimeValue(DataType.UWORD, 233).mul(RuntimeValue(DataType.FLOAT, 1.234))
}
assertFailsWith<ArithmeticException> {
RuntimeValue(DataType.UBYTE, 233).div(RuntimeValue(DataType.FLOAT, 1.234))
}
assertFailsWith<ArithmeticException> {
RuntimeValue(DataType.UWORD, 233).div(RuntimeValue(DataType.FLOAT, 1.234))
}
val result = RuntimeValue(DataType.FLOAT, 233.333).add(RuntimeValue(DataType.FLOAT, 1.234))
}
@Test
fun arithmetictestUbyte() {
assertEquals(255, RuntimeValue(DataType.UBYTE, 200).add(RuntimeValue(DataType.UBYTE, 55)).integerValue())
assertEquals(0, RuntimeValue(DataType.UBYTE, 200).add(RuntimeValue(DataType.UBYTE, 56)).integerValue())
assertEquals(1, RuntimeValue(DataType.UBYTE, 200).add(RuntimeValue(DataType.UBYTE, 57)).integerValue())
assertEquals(1, RuntimeValue(DataType.UBYTE, 2).sub(RuntimeValue(DataType.UBYTE, 1)).integerValue())
assertEquals(0, RuntimeValue(DataType.UBYTE, 2).sub(RuntimeValue(DataType.UBYTE, 2)).integerValue())
assertEquals(255, RuntimeValue(DataType.UBYTE, 2).sub(RuntimeValue(DataType.UBYTE, 3)).integerValue())
assertEquals(255, RuntimeValue(DataType.UBYTE, 254).inc().integerValue())
assertEquals(0, RuntimeValue(DataType.UBYTE, 255).inc().integerValue())
assertEquals(0, RuntimeValue(DataType.UBYTE, 1).dec().integerValue())
assertEquals(255, RuntimeValue(DataType.UBYTE, 0).dec().integerValue())
assertEquals(255, RuntimeValue(DataType.UBYTE, 0).inv().integerValue())
assertEquals(0b00110011, RuntimeValue(DataType.UBYTE, 0b11001100).inv().integerValue())
// assertEquals(0, RuntimeValue(DataType.UBYTE, 0).neg().integerValue())
// assertEquals(0, RuntimeValue(DataType.UBYTE, 0).neg().integerValue())
assertEquals(1, RuntimeValue(DataType.UBYTE, 0).not().integerValue())
assertEquals(0, RuntimeValue(DataType.UBYTE, 1).not().integerValue())
assertEquals(0, RuntimeValue(DataType.UBYTE, 111).not().integerValue())
assertEquals(0, RuntimeValue(DataType.UBYTE, 255).not().integerValue())
assertEquals(200, RuntimeValue(DataType.UBYTE, 20).mul(RuntimeValue(DataType.UBYTE, 10)).integerValue())
assertEquals(144, RuntimeValue(DataType.UBYTE, 20).mul(RuntimeValue(DataType.UBYTE, 20)).integerValue())
assertEquals(25, RuntimeValue(DataType.UBYTE, 5).pow(RuntimeValue(DataType.UBYTE, 2)).integerValue())
assertEquals(125, RuntimeValue(DataType.UBYTE, 5).pow(RuntimeValue(DataType.UBYTE, 3)).integerValue())
assertEquals(113, RuntimeValue(DataType.UBYTE, 5).pow(RuntimeValue(DataType.UBYTE, 4)).integerValue())
assertEquals(100, RuntimeValue(DataType.UBYTE, 50).shl().integerValue())
assertEquals(200, RuntimeValue(DataType.UBYTE, 100).shl().integerValue())
assertEquals(144, RuntimeValue(DataType.UBYTE, 200).shl().integerValue())
}
@Test
fun arithmetictestUWord() {
assertEquals(65535, RuntimeValue(DataType.UWORD, 60000).add(RuntimeValue(DataType.UWORD, 5535)).integerValue())
assertEquals(0, RuntimeValue(DataType.UWORD, 60000).add(RuntimeValue(DataType.UWORD, 5536)).integerValue())
assertEquals(1, RuntimeValue(DataType.UWORD, 60000).add(RuntimeValue(DataType.UWORD, 5537)).integerValue())
assertEquals(1, RuntimeValue(DataType.UWORD, 2).sub(RuntimeValue(DataType.UWORD, 1)).integerValue())
assertEquals(0, RuntimeValue(DataType.UWORD, 2).sub(RuntimeValue(DataType.UWORD, 2)).integerValue())
assertEquals(65535, RuntimeValue(DataType.UWORD, 2).sub(RuntimeValue(DataType.UWORD, 3)).integerValue())
assertEquals(65535, RuntimeValue(DataType.UWORD, 65534).inc().integerValue())
assertEquals(0, RuntimeValue(DataType.UWORD, 65535).inc().integerValue())
assertEquals(0, RuntimeValue(DataType.UWORD, 1).dec().integerValue())
assertEquals(65535, RuntimeValue(DataType.UWORD, 0).dec().integerValue())
assertEquals(65535, RuntimeValue(DataType.UWORD, 0).inv().integerValue())
assertEquals(0b0011001101010101, RuntimeValue(DataType.UWORD, 0b1100110010101010).inv().integerValue())
// assertEquals(0, RuntimeValue(DataType.UWORD, 0).neg().integerValue())
// assertEquals(0, RuntimeValue(DataType.UWORD, 0).neg().integerValue())
assertEquals(1, RuntimeValue(DataType.UWORD, 0).not().integerValue())
assertEquals(0, RuntimeValue(DataType.UWORD, 1).not().integerValue())
assertEquals(0, RuntimeValue(DataType.UWORD, 11111).not().integerValue())
assertEquals(0, RuntimeValue(DataType.UWORD, 65535).not().integerValue())
assertEquals(2000, RuntimeValue(DataType.UWORD, 200).mul(RuntimeValue(DataType.UWORD, 10)).integerValue())
assertEquals(40000, RuntimeValue(DataType.UWORD, 200).mul(RuntimeValue(DataType.UWORD, 200)).integerValue())
assertEquals(14464, RuntimeValue(DataType.UWORD, 200).mul(RuntimeValue(DataType.UWORD, 400)).integerValue())
assertEquals(15625, RuntimeValue(DataType.UWORD, 5).pow(RuntimeValue(DataType.UWORD, 6)).integerValue())
assertEquals(12589, RuntimeValue(DataType.UWORD, 5).pow(RuntimeValue(DataType.UWORD, 7)).integerValue())
assertEquals(10000, RuntimeValue(DataType.UWORD, 5000).shl().integerValue())
assertEquals(60000, RuntimeValue(DataType.UWORD, 30000).shl().integerValue())
assertEquals(14464, RuntimeValue(DataType.UWORD, 40000).shl().integerValue())
}
@Test
fun arithmetictestByte() {
assertEquals(127, RuntimeValue(DataType.BYTE, 100).add(RuntimeValue(DataType.BYTE, 27)).integerValue())
assertEquals(-128, RuntimeValue(DataType.BYTE, 100).add(RuntimeValue(DataType.BYTE, 28)).integerValue())
assertEquals(-127, RuntimeValue(DataType.BYTE, 100).add(RuntimeValue(DataType.BYTE, 29)).integerValue())
assertEquals(1, RuntimeValue(DataType.BYTE, 2).sub(RuntimeValue(DataType.BYTE, 1)).integerValue())
assertEquals(0, RuntimeValue(DataType.BYTE, 2).sub(RuntimeValue(DataType.BYTE, 2)).integerValue())
assertEquals(-1, RuntimeValue(DataType.BYTE, 2).sub(RuntimeValue(DataType.BYTE, 3)).integerValue())
assertEquals(-128, RuntimeValue(DataType.BYTE, -100).sub(RuntimeValue(DataType.BYTE, 28)).integerValue())
assertEquals(127, RuntimeValue(DataType.BYTE, -100).sub(RuntimeValue(DataType.BYTE, 29)).integerValue())
assertEquals(127, RuntimeValue(DataType.BYTE, 126).inc().integerValue())
assertEquals(-128, RuntimeValue(DataType.BYTE, 127).inc().integerValue())
assertEquals(0, RuntimeValue(DataType.BYTE, 1).dec().integerValue())
assertEquals(-1, RuntimeValue(DataType.BYTE, 0).dec().integerValue())
assertEquals(-128, RuntimeValue(DataType.BYTE, -127).dec().integerValue())
assertEquals(127, RuntimeValue(DataType.BYTE, -128).dec().integerValue())
assertEquals(-1, RuntimeValue(DataType.BYTE, 0).inv().integerValue())
assertEquals(-103, RuntimeValue(DataType.BYTE, 0b01100110).inv().integerValue())
assertEquals(0, RuntimeValue(DataType.BYTE, 0).neg().integerValue())
assertEquals(-2, RuntimeValue(DataType.BYTE, 2).neg().integerValue())
assertEquals(1, RuntimeValue(DataType.BYTE, 0).not().integerValue())
assertEquals(0, RuntimeValue(DataType.BYTE, 1).not().integerValue())
assertEquals(0, RuntimeValue(DataType.BYTE, 111).not().integerValue())
assertEquals(0, RuntimeValue(DataType.BYTE, -33).not().integerValue())
assertEquals(100, RuntimeValue(DataType.BYTE, 10).mul(RuntimeValue(DataType.BYTE, 10)).integerValue())
assertEquals(-56, RuntimeValue(DataType.BYTE, 20).mul(RuntimeValue(DataType.BYTE, 10)).integerValue())
assertEquals(25, RuntimeValue(DataType.BYTE, 5).pow(RuntimeValue(DataType.BYTE, 2)).integerValue())
assertEquals(125, RuntimeValue(DataType.BYTE, 5).pow(RuntimeValue(DataType.BYTE, 3)).integerValue())
assertEquals(113, RuntimeValue(DataType.BYTE, 5).pow(RuntimeValue(DataType.BYTE, 4)).integerValue())
assertEquals(100, RuntimeValue(DataType.BYTE, 50).shl().integerValue())
assertEquals(-56, RuntimeValue(DataType.BYTE, 100).shl().integerValue())
assertEquals(-2, RuntimeValue(DataType.BYTE, -1).shl().integerValue())
}
@Test
fun arithmetictestWorrd() {
assertEquals(32767, RuntimeValue(DataType.WORD, 32700).add(RuntimeValue(DataType.WORD, 67)).integerValue())
assertEquals(-32768, RuntimeValue(DataType.WORD, 32700).add(RuntimeValue(DataType.WORD, 68)).integerValue())
assertEquals(-32767, RuntimeValue(DataType.WORD, 32700).add(RuntimeValue(DataType.WORD, 69)).integerValue())
assertEquals(1, RuntimeValue(DataType.WORD, 2).sub(RuntimeValue(DataType.WORD, 1)).integerValue())
assertEquals(0, RuntimeValue(DataType.WORD, 2).sub(RuntimeValue(DataType.WORD, 2)).integerValue())
assertEquals(-1, RuntimeValue(DataType.WORD, 2).sub(RuntimeValue(DataType.WORD, 3)).integerValue())
assertEquals(-32768, RuntimeValue(DataType.WORD, -32700).sub(RuntimeValue(DataType.WORD, 68)).integerValue())
assertEquals(32767, RuntimeValue(DataType.WORD, -32700).sub(RuntimeValue(DataType.WORD, 69)).integerValue())
assertEquals(32767, RuntimeValue(DataType.WORD, 32766).inc().integerValue())
assertEquals(-32768, RuntimeValue(DataType.WORD, 32767).inc().integerValue())
assertEquals(0, RuntimeValue(DataType.WORD, 1).dec().integerValue())
assertEquals(-1, RuntimeValue(DataType.WORD, 0).dec().integerValue())
assertEquals(-32768, RuntimeValue(DataType.WORD, -32767).dec().integerValue())
assertEquals(32767, RuntimeValue(DataType.WORD, -32768).dec().integerValue())
assertEquals(-1, RuntimeValue(DataType.WORD, 0).inv().integerValue())
assertEquals(-103, RuntimeValue(DataType.WORD, 0b01100110).inv().integerValue())
assertEquals(0, RuntimeValue(DataType.WORD, 0).neg().integerValue())
assertEquals(-2, RuntimeValue(DataType.WORD, 2).neg().integerValue())
assertEquals(1, RuntimeValue(DataType.WORD, 0).not().integerValue())
assertEquals(0, RuntimeValue(DataType.WORD, 1).not().integerValue())
assertEquals(0, RuntimeValue(DataType.WORD, 111).not().integerValue())
assertEquals(0, RuntimeValue(DataType.WORD, -33).not().integerValue())
assertEquals(10000, RuntimeValue(DataType.WORD, 100).mul(RuntimeValue(DataType.WORD, 100)).integerValue())
assertEquals(-25536, RuntimeValue(DataType.WORD, 200).mul(RuntimeValue(DataType.WORD, 200)).integerValue())
assertEquals(15625, RuntimeValue(DataType.WORD, 5).pow(RuntimeValue(DataType.WORD, 6)).integerValue())
assertEquals(-6487, RuntimeValue(DataType.WORD, 9).pow(RuntimeValue(DataType.WORD, 5)).integerValue())
assertEquals(18000, RuntimeValue(DataType.WORD, 9000).shl().integerValue())
assertEquals(-25536, RuntimeValue(DataType.WORD, 20000).shl().integerValue())
assertEquals(-2, RuntimeValue(DataType.WORD, -1).shl().integerValue())
}
}

File diff suppressed because it is too large Load Diff

View File

@ -5,10 +5,17 @@ import org.hamcrest.Matchers.closeTo
import org.hamcrest.Matchers.equalTo
import org.junit.jupiter.api.Test
import org.junit.jupiter.api.TestInstance
import prog8.ast.*
import prog8.ast.base.DataType
import prog8.ast.base.Position
import prog8.ast.expressions.NumericLiteralValue
import prog8.ast.expressions.ReferenceLiteralValue
import prog8.compiler.*
import prog8.compiler.intermediate.Value
import prog8.compiler.target.c64.*
import prog8.compiler.target.c64.MachineDefinition.C64Zeropage
import prog8.compiler.target.c64.MachineDefinition.FLOAT_MAX_NEGATIVE
import prog8.compiler.target.c64.MachineDefinition.FLOAT_MAX_POSITIVE
import prog8.compiler.target.c64.MachineDefinition.Mflpt5
import prog8.compiler.target.c64.Petscii
import prog8.vm.RuntimeValue
import java.io.CharConversionException
import kotlin.test.*
@ -138,8 +145,12 @@ class TestZeropage {
assertFailsWith<CompilerException> {
zp.allocate("", DataType.FLOAT, null)
}
val zp2 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FLOATSAFE, emptyList(), true))
zp2.allocate("", DataType.FLOAT, null)
val zp2 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.DONTUSE, emptyList(), true))
assertFailsWith<CompilerException> {
zp2.allocate("", DataType.FLOAT, null)
}
val zp3 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FLOATSAFE, emptyList(), true))
zp3.allocate("", DataType.FLOAT, null)
}
@Test
@ -158,14 +169,16 @@ class TestZeropage {
}
}
// TODO test dontuse option
@Test
fun testFreeSpaces() {
val zp1 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), true))
assertEquals(20, zp1.available())
assertEquals(16, zp1.available())
val zp2 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FLOATSAFE, emptyList(), false))
assertEquals(95, zp2.available())
assertEquals(91, zp2.available())
val zp3 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.KERNALSAFE, emptyList(), false))
assertEquals(129, zp3.available())
assertEquals(125, zp3.available())
val zp4 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, emptyList(), false))
assertEquals(238, zp4.available())
}
@ -195,11 +208,10 @@ class TestZeropage {
@Test
fun testBasicsafeAllocation() {
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), true))
assertEquals(20, zp.available())
assertEquals(16, zp.available())
zp.allocate("", DataType.FLOAT, null)
assertFailsWith<ZeropageDepletedError> {
// in regular zp there aren't 5 sequential bytes free after we take the first sequence
// in regular zp there aren't 5 sequential bytes free
zp.allocate("", DataType.FLOAT, null)
}
@ -249,16 +261,16 @@ class TestZeropage {
@Test
fun testEfficientAllocation() {
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), true))
assertEquals(20, zp.available())
assertEquals(0x04, zp.allocate("", DataType.FLOAT, null))
assertEquals(0x09, zp.allocate("", DataType.UBYTE, null))
assertEquals(0x0d, zp.allocate("", DataType.UWORD, null))
assertEquals(16, zp.available())
assertEquals(0x04, zp.allocate("", DataType.WORD, null))
assertEquals(0x06, zp.allocate("", DataType.UBYTE, null))
assertEquals(0x0a, zp.allocate("", DataType.UBYTE, null))
assertEquals(0x94, zp.allocate("", DataType.UWORD, null))
assertEquals(0xa7, zp.allocate("", DataType.UWORD, null))
assertEquals(0xa9, zp.allocate("", DataType.UWORD, null))
assertEquals(0xb5, zp.allocate("", DataType.UWORD, null))
assertEquals(0xf7, zp.allocate("", DataType.UWORD, null))
assertEquals(0x0a, zp.allocate("", DataType.UBYTE, null))
assertEquals(0x0e, zp.allocate("", DataType.UBYTE, null))
assertEquals(0xf9, zp.allocate("", DataType.UBYTE, null))
assertEquals(0, zp.available())
}
@ -268,6 +280,14 @@ class TestZeropage {
@TestInstance(TestInstance.Lifecycle.PER_CLASS)
class TestPetscii {
@Test
fun testZero() {
assertThat(Petscii.encodePetscii("\u0000", true), equalTo(listOf<Short>(0)))
assertThat(Petscii.encodePetscii("\u0000", false), equalTo(listOf<Short>(0)))
assertThat(Petscii.decodePetscii(listOf(0), true), equalTo("\u0000"))
assertThat(Petscii.decodePetscii(listOf(0), false), equalTo("\u0000"))
}
@Test
fun testLowercase() {
assertThat(Petscii.encodePetscii("hello WORLD 123 @!£", true), equalTo(
@ -326,8 +346,8 @@ class TestPetscii {
@Test
fun testLiteralValueComparisons() {
val ten = LiteralValue(DataType.UWORD, wordvalue=10, position=Position("", 0 ,0 ,0))
val nine = LiteralValue(DataType.UBYTE, bytevalue=9, position=Position("", 0 ,0 ,0))
val ten = NumericLiteralValue(DataType.UWORD, 10, Position("", 0, 0, 0))
val nine = NumericLiteralValue(DataType.UBYTE, 9, Position("", 0, 0, 0))
assertEquals(ten, ten)
assertNotEquals(ten, nine)
assertFalse(ten != ten)
@ -343,23 +363,17 @@ class TestPetscii {
assertTrue(ten <= ten)
assertFalse(ten < ten)
val abc = LiteralValue(DataType.STR, strvalue = "abc", position=Position("", 0 ,0 ,0))
val abd = LiteralValue(DataType.STR, strvalue = "abd", position=Position("", 0 ,0 ,0))
val abc = ReferenceLiteralValue(DataType.STR, str = "abc", position = Position("", 0, 0, 0))
val abd = ReferenceLiteralValue(DataType.STR, str = "abd", position = Position("", 0, 0, 0))
assertEquals(abc, abc)
assertTrue(abc!=abd)
assertFalse(abc!=abc)
assertTrue(abc < abd)
assertTrue(abc <= abd)
assertFalse(abd <= abc)
assertTrue(abd >= abc)
assertTrue(abd > abc)
assertFalse(abc > abd)
}
@Test
fun testStackvmValueComparisons() {
val ten = Value(DataType.FLOAT, 10)
val nine = Value(DataType.UWORD, 9)
val ten = RuntimeValue(DataType.FLOAT, 10)
val nine = RuntimeValue(DataType.UWORD, 9)
assertEquals(ten, ten)
assertNotEquals(ten, nine)
assertFalse(ten != ten)

View File

@ -1,299 +0,0 @@
package prog8tests
import org.junit.jupiter.api.Test
import org.junit.jupiter.api.TestInstance
import prog8.ast.DataType
import prog8.ast.LiteralValue
import prog8.ast.Position
import prog8.compiler.intermediate.Value
import prog8.compiler.intermediate.ValueException
import kotlin.test.*
private fun sameValueAndType(v1: Value, v2: Value): Boolean {
return v1.type==v2.type && v1==v2
}
private fun sameValueAndType(lv1: LiteralValue, lv2: LiteralValue): Boolean {
return lv1.type==lv2.type && lv1==lv2
}
@TestInstance(TestInstance.Lifecycle.PER_CLASS)
class TestStackVmValue {
@Test
fun testIdentity() {
val v = Value(DataType.UWORD, 12345)
assertEquals(v, v)
assertFalse(v != v)
assertTrue(v<=v)
assertTrue(v>=v)
assertFalse(v<v)
assertFalse(v>v)
assertTrue(sameValueAndType(Value(DataType.UBYTE, 100), Value(DataType.UBYTE, 100)))
}
@Test
fun testEqualsAndNotEquals() {
assertEquals(Value(DataType.UBYTE, 100), Value(DataType.UBYTE, 100))
assertEquals(Value(DataType.UBYTE, 100), Value(DataType.UWORD, 100))
assertEquals(Value(DataType.UBYTE, 100), Value(DataType.FLOAT, 100))
assertEquals(Value(DataType.UWORD, 254), Value(DataType.UBYTE, 254))
assertEquals(Value(DataType.UWORD, 12345), Value(DataType.UWORD, 12345))
assertEquals(Value(DataType.UWORD, 12345), Value(DataType.FLOAT, 12345))
assertEquals(Value(DataType.FLOAT, 100.0), Value(DataType.UBYTE, 100))
assertEquals(Value(DataType.FLOAT, 22239.0), Value(DataType.UWORD, 22239))
assertEquals(Value(DataType.FLOAT, 9.99), Value(DataType.FLOAT, 9.99))
assertTrue(sameValueAndType(Value(DataType.UBYTE, 100), Value(DataType.UBYTE, 100)))
assertFalse(sameValueAndType(Value(DataType.UBYTE, 100), Value(DataType.UWORD, 100)))
assertFalse(sameValueAndType(Value(DataType.UBYTE, 100), Value(DataType.FLOAT, 100)))
assertFalse(sameValueAndType(Value(DataType.UWORD, 254), Value(DataType.UBYTE, 254)))
assertTrue(sameValueAndType(Value(DataType.UWORD, 12345), Value(DataType.UWORD, 12345)))
assertFalse(sameValueAndType(Value(DataType.UWORD, 12345), Value(DataType.FLOAT, 12345)))
assertFalse(sameValueAndType(Value(DataType.FLOAT, 100.0), Value(DataType.UBYTE, 100)))
assertFalse(sameValueAndType(Value(DataType.FLOAT, 22239.0), Value(DataType.UWORD, 22239)))
assertTrue(sameValueAndType(Value(DataType.FLOAT, 9.99), Value(DataType.FLOAT, 9.99)))
assertNotEquals(Value(DataType.UBYTE, 100), Value(DataType.UBYTE, 101))
assertNotEquals(Value(DataType.UBYTE, 100), Value(DataType.UWORD, 101))
assertNotEquals(Value(DataType.UBYTE, 100), Value(DataType.FLOAT, 101))
assertNotEquals(Value(DataType.UWORD, 245), Value(DataType.UBYTE, 246))
assertNotEquals(Value(DataType.UWORD, 12345), Value(DataType.UWORD, 12346))
assertNotEquals(Value(DataType.UWORD, 12345), Value(DataType.FLOAT, 12346))
assertNotEquals(Value(DataType.FLOAT, 9.99), Value(DataType.UBYTE, 9))
assertNotEquals(Value(DataType.FLOAT, 9.99), Value(DataType.UWORD, 9))
assertNotEquals(Value(DataType.FLOAT, 9.99), Value(DataType.FLOAT, 9.0))
assertFalse(sameValueAndType(Value(DataType.UBYTE, 100), Value(DataType.UBYTE, 101)))
assertFalse(sameValueAndType(Value(DataType.UBYTE, 100), Value(DataType.UWORD, 101)))
assertFalse(sameValueAndType(Value(DataType.UBYTE, 100), Value(DataType.FLOAT, 101)))
assertFalse(sameValueAndType(Value(DataType.UWORD, 245), Value(DataType.UBYTE, 246)))
assertFalse(sameValueAndType(Value(DataType.UWORD, 12345), Value(DataType.UWORD, 12346)))
assertFalse(sameValueAndType(Value(DataType.UWORD, 12345), Value(DataType.FLOAT, 12346)))
assertFalse(sameValueAndType(Value(DataType.FLOAT, 9.99), Value(DataType.UBYTE, 9)))
assertFalse(sameValueAndType(Value(DataType.FLOAT, 9.99), Value(DataType.UWORD, 9)))
assertFalse(sameValueAndType(Value(DataType.FLOAT, 9.99), Value(DataType.FLOAT, 9.0)))
}
@Test
fun testEqualsAndNotEqualsHeapTypes()
{
assertTrue(sameValueAndType(Value(DataType.STR, 999), Value(DataType.STR, 999)))
assertFalse(sameValueAndType(Value(DataType.STR, 999), Value(DataType.STR, 222)))
assertTrue(sameValueAndType(Value(DataType.ARRAY_UB, 99), Value(DataType.ARRAY_UB, 99)))
assertFalse(sameValueAndType(Value(DataType.ARRAY_UB, 99), Value(DataType.ARRAY_UB, 22)))
assertTrue(sameValueAndType(Value(DataType.ARRAY_UW, 999), Value(DataType.ARRAY_UW, 999)))
assertFalse(sameValueAndType(Value(DataType.ARRAY_UW, 999), Value(DataType.ARRAY_UW, 222)))
assertTrue(sameValueAndType(Value(DataType.ARRAY_F, 999), Value(DataType.ARRAY_F, 999)))
assertFalse(sameValueAndType(Value(DataType.ARRAY_F, 999), Value(DataType.ARRAY_UW, 999)))
assertFalse(sameValueAndType(Value(DataType.ARRAY_F, 999), Value(DataType.ARRAY_F, 222)))
}
@Test
fun testGreaterThan(){
assertTrue(Value(DataType.UBYTE, 100) > Value(DataType.UBYTE, 99))
assertTrue(Value(DataType.UWORD, 254) > Value(DataType.UWORD, 253))
assertTrue(Value(DataType.FLOAT, 100.0) > Value(DataType.FLOAT, 99.9))
assertTrue(Value(DataType.UBYTE, 100) >= Value(DataType.UBYTE, 100))
assertTrue(Value(DataType.UWORD, 254) >= Value(DataType.UWORD, 254))
assertTrue(Value(DataType.FLOAT, 100.0) >= Value(DataType.FLOAT, 100.0))
assertFalse(Value(DataType.UBYTE, 100) > Value(DataType.UBYTE, 100))
assertFalse(Value(DataType.UWORD, 254) > Value(DataType.UWORD, 254))
assertFalse(Value(DataType.FLOAT, 100.0) > Value(DataType.FLOAT, 100.0))
assertFalse(Value(DataType.UBYTE, 100) >= Value(DataType.UBYTE, 101))
assertFalse(Value(DataType.UWORD, 254) >= Value(DataType.UWORD, 255))
assertFalse(Value(DataType.FLOAT, 100.0) >= Value(DataType.FLOAT, 100.1))
}
@Test
fun testLessThan() {
assertTrue(Value(DataType.UBYTE, 100) < Value(DataType.UBYTE, 101))
assertTrue(Value(DataType.UWORD, 254) < Value(DataType.UWORD, 255))
assertTrue(Value(DataType.FLOAT, 100.0) < Value(DataType.FLOAT, 100.1))
assertTrue(Value(DataType.UBYTE, 100) <= Value(DataType.UBYTE, 100))
assertTrue(Value(DataType.UWORD, 254) <= Value(DataType.UWORD, 254))
assertTrue(Value(DataType.FLOAT, 100.0) <= Value(DataType.FLOAT, 100.0))
assertFalse(Value(DataType.UBYTE, 100) < Value(DataType.UBYTE, 100))
assertFalse(Value(DataType.UWORD, 254) < Value(DataType.UWORD, 254))
assertFalse(Value(DataType.FLOAT, 100.0) < Value(DataType.FLOAT, 100.0))
assertFalse(Value(DataType.UBYTE, 100) <= Value(DataType.UBYTE, 99))
assertFalse(Value(DataType.UWORD, 254) <= Value(DataType.UWORD, 253))
assertFalse(Value(DataType.FLOAT, 100.0) <= Value(DataType.FLOAT, 99.9))
}
@Test
fun testNoDtConversion() {
assertFailsWith<ValueException> {
Value(DataType.UWORD, 100).add(Value(DataType.UBYTE, 120))
}
assertFailsWith<ValueException> {
Value(DataType.UBYTE, 100).add(Value(DataType.UWORD, 120))
}
assertFailsWith<ValueException> {
Value(DataType.FLOAT, 100.22).add(Value(DataType.UWORD, 120))
}
assertFailsWith<ValueException> {
Value(DataType.UWORD, 1002).add(Value(DataType.FLOAT, 120.22))
}
assertFailsWith<ValueException> {
Value(DataType.FLOAT, 100.22).add(Value(DataType.UBYTE, 120))
}
assertFailsWith<ValueException> {
Value(DataType.UBYTE, 12).add(Value(DataType.FLOAT, 120.22))
}
}
@Test
fun testNoAutoFloatConversion() {
assertFailsWith<ValueException> {
Value(DataType.UBYTE, 233).add(Value(DataType.FLOAT, 1.234))
}
assertFailsWith<ValueException> {
Value(DataType.UWORD, 233).add(Value(DataType.FLOAT, 1.234))
}
assertFailsWith<ValueException> {
Value(DataType.UBYTE, 233).mul(Value(DataType.FLOAT, 1.234))
}
assertFailsWith<ValueException> {
Value(DataType.UWORD, 233).mul(Value(DataType.FLOAT, 1.234))
}
assertFailsWith<ValueException> {
Value(DataType.UBYTE, 233).div(Value(DataType.FLOAT, 1.234))
}
assertFailsWith<ValueException> {
Value(DataType.UWORD, 233).div(Value(DataType.FLOAT, 1.234))
}
val result = Value(DataType.FLOAT, 233.333).add(Value(DataType.FLOAT, 1.234))
}
}
@TestInstance(TestInstance.Lifecycle.PER_CLASS)
class TestParserLiteralValue {
private val dummyPos = Position("test", 0,0,0)
@Test
fun testIdentity() {
val v = LiteralValue(DataType.UWORD, wordvalue = 12345, position = dummyPos)
assertEquals(v, v)
assertFalse(v != v)
assertTrue(v <= v)
assertTrue(v >= v)
assertFalse(v < v)
assertFalse(v > v)
assertTrue(sameValueAndType(LiteralValue(DataType.UWORD, wordvalue = 12345, position = dummyPos), LiteralValue(DataType.UWORD, wordvalue = 12345, position = dummyPos)))
}
@Test
fun testEqualsAndNotEquals() {
assertEquals(LiteralValue(DataType.UBYTE, 100, position=dummyPos), LiteralValue(DataType.UBYTE, 100, position=dummyPos))
assertEquals(LiteralValue(DataType.UBYTE, 100, position=dummyPos), LiteralValue(DataType.UWORD, wordvalue=100, position=dummyPos))
assertEquals(LiteralValue(DataType.UBYTE, 100, position=dummyPos), LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos))
assertEquals(LiteralValue(DataType.UWORD, wordvalue=254, position=dummyPos), LiteralValue(DataType.UBYTE, 254, position=dummyPos))
assertEquals(LiteralValue(DataType.UWORD, wordvalue=12345, position=dummyPos), LiteralValue(DataType.UWORD, wordvalue=12345, position=dummyPos))
assertEquals(LiteralValue(DataType.UWORD, wordvalue=12345, position=dummyPos), LiteralValue(DataType.FLOAT, floatvalue=12345.0, position=dummyPos))
assertEquals(LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos), LiteralValue(DataType.UBYTE, 100, position=dummyPos))
assertEquals(LiteralValue(DataType.FLOAT, floatvalue=22239.0, position=dummyPos), LiteralValue(DataType.UWORD,wordvalue=22239, position=dummyPos))
assertEquals(LiteralValue(DataType.FLOAT, floatvalue=9.99, position=dummyPos), LiteralValue(DataType.FLOAT, floatvalue=9.99, position=dummyPos))
assertTrue(sameValueAndType(LiteralValue(DataType.UBYTE, 100, position=dummyPos), LiteralValue(DataType.UBYTE, 100, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.UBYTE, 100, position=dummyPos), LiteralValue(DataType.UWORD, wordvalue=100, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.UBYTE, 100, position=dummyPos), LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.UWORD, wordvalue=254, position=dummyPos), LiteralValue(DataType.UBYTE, 254, position=dummyPos)))
assertTrue(sameValueAndType(LiteralValue(DataType.UWORD, wordvalue=12345, position=dummyPos), LiteralValue(DataType.UWORD, wordvalue=12345, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.UWORD, wordvalue=12345, position=dummyPos), LiteralValue(DataType.FLOAT, floatvalue=12345.0, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos), LiteralValue(DataType.UBYTE, 100, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.FLOAT, floatvalue=22239.0, position=dummyPos), LiteralValue(DataType.UWORD,wordvalue=22239, position=dummyPos)))
assertTrue(sameValueAndType(LiteralValue(DataType.FLOAT, floatvalue=9.99, position=dummyPos), LiteralValue(DataType.FLOAT, floatvalue=9.99, position=dummyPos)))
assertNotEquals(LiteralValue(DataType.UBYTE, 100, position=dummyPos), LiteralValue(DataType.UBYTE, 101, position=dummyPos))
assertNotEquals(LiteralValue(DataType.UBYTE, 100, position=dummyPos), LiteralValue(DataType.UWORD, wordvalue=101, position=dummyPos))
assertNotEquals(LiteralValue(DataType.UBYTE, 100, position=dummyPos), LiteralValue(DataType.FLOAT, floatvalue=101.0, position=dummyPos))
assertNotEquals(LiteralValue(DataType.UWORD, wordvalue=245, position=dummyPos), LiteralValue(DataType.UBYTE, 246, position=dummyPos))
assertNotEquals(LiteralValue(DataType.UWORD, wordvalue=12345, position=dummyPos), LiteralValue(DataType.UWORD, wordvalue=12346, position=dummyPos))
assertNotEquals(LiteralValue(DataType.UWORD, wordvalue=12345, position=dummyPos), LiteralValue(DataType.FLOAT, floatvalue=12346.0, position=dummyPos))
assertNotEquals(LiteralValue(DataType.FLOAT, floatvalue=9.99, position=dummyPos), LiteralValue(DataType.UBYTE, 9, position=dummyPos))
assertNotEquals(LiteralValue(DataType.FLOAT, floatvalue=9.99, position=dummyPos), LiteralValue(DataType.UWORD, wordvalue=9, position=dummyPos))
assertNotEquals(LiteralValue(DataType.FLOAT, floatvalue=9.99, position=dummyPos), LiteralValue(DataType.FLOAT, floatvalue=9.0, position=dummyPos))
assertFalse(sameValueAndType(LiteralValue(DataType.UBYTE, 100, position=dummyPos), LiteralValue(DataType.UBYTE, 101, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.UBYTE, 100, position=dummyPos), LiteralValue(DataType.UWORD, wordvalue=101, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.UBYTE, 100, position=dummyPos), LiteralValue(DataType.FLOAT, floatvalue=101.0, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.UWORD, wordvalue=245, position=dummyPos), LiteralValue(DataType.UBYTE, 246, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.UWORD, wordvalue=12345, position=dummyPos), LiteralValue(DataType.UWORD, wordvalue=12346, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.UWORD, wordvalue=12345, position=dummyPos), LiteralValue(DataType.FLOAT, floatvalue=12346.0, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.FLOAT, floatvalue=9.99, position=dummyPos), LiteralValue(DataType.UBYTE, 9, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.FLOAT, floatvalue=9.99, position=dummyPos), LiteralValue(DataType.UWORD, wordvalue=9, position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.FLOAT, floatvalue=9.99, position=dummyPos), LiteralValue(DataType.FLOAT, floatvalue=9.0, position=dummyPos)))
assertTrue(sameValueAndType(LiteralValue(DataType.STR, strvalue = "hello", position=dummyPos), LiteralValue(DataType.STR, strvalue="hello", position=dummyPos)))
assertFalse(sameValueAndType(LiteralValue(DataType.STR, strvalue = "hello", position=dummyPos), LiteralValue(DataType.STR, strvalue="bye", position=dummyPos)))
val lvOne = LiteralValue(DataType.UBYTE, 1, position=dummyPos)
val lvTwo = LiteralValue(DataType.UBYTE, 2, position=dummyPos)
val lvThree = LiteralValue(DataType.UBYTE, 3, position=dummyPos)
val lvOneR = LiteralValue(DataType.UBYTE, 1, position=dummyPos)
val lvTwoR = LiteralValue(DataType.UBYTE, 2, position=dummyPos)
val lvThreeR = LiteralValue(DataType.UBYTE, 3, position=dummyPos)
val lvFour= LiteralValue(DataType.UBYTE, 4, position=dummyPos)
val lv1 = LiteralValue(DataType.ARRAY_UB, arrayvalue = arrayOf(lvOne, lvTwo, lvThree), position=dummyPos)
val lv2 = LiteralValue(DataType.ARRAY_UB, arrayvalue = arrayOf(lvOneR, lvTwoR, lvThreeR), position=dummyPos)
val lv3 = LiteralValue(DataType.ARRAY_UB, arrayvalue = arrayOf(lvOneR, lvTwoR, lvFour), position=dummyPos)
assertEquals(lv1, lv2)
assertNotEquals(lv1, lv3)
}
@Test
fun testGreaterThan(){
assertTrue(LiteralValue(DataType.UBYTE, 100, position=dummyPos) > LiteralValue(DataType.UBYTE, 99, position=dummyPos))
assertTrue(LiteralValue(DataType.UWORD, wordvalue=254, position=dummyPos) > LiteralValue(DataType.UWORD, wordvalue=253, position=dummyPos))
assertTrue(LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos) > LiteralValue(DataType.FLOAT, floatvalue=99.9, position=dummyPos))
assertTrue(LiteralValue(DataType.UBYTE, 100, position=dummyPos) >= LiteralValue(DataType.UBYTE, 100, position=dummyPos))
assertTrue(LiteralValue(DataType.UWORD, wordvalue=254, position=dummyPos) >= LiteralValue(DataType.UWORD,wordvalue= 254, position=dummyPos))
assertTrue(LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos) >= LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos))
assertFalse(LiteralValue(DataType.UBYTE, 100, position=dummyPos) > LiteralValue(DataType.UBYTE, 100, position=dummyPos))
assertFalse(LiteralValue(DataType.UWORD, wordvalue=254, position=dummyPos) > LiteralValue(DataType.UWORD, wordvalue=254, position=dummyPos))
assertFalse(LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos) > LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos))
assertFalse(LiteralValue(DataType.UBYTE, 100, position=dummyPos) >= LiteralValue(DataType.UBYTE, 101, position=dummyPos))
assertFalse(LiteralValue(DataType.UWORD, wordvalue=254, position=dummyPos) >= LiteralValue(DataType.UWORD,wordvalue= 255, position=dummyPos))
assertFalse(LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos) >= LiteralValue(DataType.FLOAT, floatvalue=100.1, position=dummyPos))
}
@Test
fun testLessThan() {
assertTrue(LiteralValue(DataType.UBYTE, 100, position=dummyPos) < LiteralValue(DataType.UBYTE, 101, position=dummyPos))
assertTrue(LiteralValue(DataType.UWORD, wordvalue=254, position=dummyPos) < LiteralValue(DataType.UWORD, wordvalue=255, position=dummyPos))
assertTrue(LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos) < LiteralValue(DataType.FLOAT, floatvalue=100.1, position=dummyPos))
assertTrue(LiteralValue(DataType.UBYTE, 100, position=dummyPos) <= LiteralValue(DataType.UBYTE, 100, position=dummyPos))
assertTrue(LiteralValue(DataType.UWORD, wordvalue=254, position=dummyPos) <= LiteralValue(DataType.UWORD,wordvalue= 254, position=dummyPos))
assertTrue(LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos) <= LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos))
assertFalse(LiteralValue(DataType.UBYTE, 100, position=dummyPos) < LiteralValue(DataType.UBYTE, 100, position=dummyPos))
assertFalse(LiteralValue(DataType.UWORD, wordvalue=254, position=dummyPos) < LiteralValue(DataType.UWORD, wordvalue=254, position=dummyPos))
assertFalse(LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos) < LiteralValue(DataType.FLOAT, floatvalue=100.0, position=dummyPos))
assertFalse(LiteralValue(DataType.UBYTE, 100, position=dummyPos) <= LiteralValue(DataType.UBYTE, 99, position=dummyPos))
assertFalse(LiteralValue(DataType.UWORD,wordvalue= 254, position=dummyPos) <= LiteralValue(DataType.UWORD,wordvalue= 253, position=dummyPos))
assertFalse(LiteralValue(DataType.FLOAT,floatvalue= 100.0, position=dummyPos) <= LiteralValue(DataType.FLOAT, floatvalue=99.9, position=dummyPos))
}
}

View File

@ -2,29 +2,50 @@
Writing and building a program
==============================
.. _building_compiler:
First, getting a working compiler
---------------------------------
Before you can compile Prog8 programs, you'll have to build the compiler itself.
Before you can compile Prog8 programs, you'll have to download or build the compiler itself.
First make sure you have installed the :ref:`requirements`.
Then you can choose a few ways to create the compiler:
Then you can choose a few ways to get a compiler:
**Using the shell script:**
**Download a precompiled version from github:**
#. run the "build_the_compiler.sh" shell script
#. it will create a "prog8compiler.jar" file which contains everything.
#. run the compiler with "java -jar prog8compiler.jar" to see how you can use it.
#. download a recent "fat-jar" (called something like "prog8compiler-all.jar") from `the releases on Github <https://github.com/irmen/prog8/releases>`_
#. run the compiler with "java -jar prog8compiler-all.jar" to see how you can use it.
**using the Gradle build system:**
**using the Gradle build system to make it yourself:**
#. run the command "./gradlew installDist"
#. it will create the commands and required libraries in the "./compiler/build/install/p8compile/" directory
#. run the compiler with the "./compiler/build/install/p8compile/bin/p8compile" command to see how you can use it.
The Gradle build system is used to build the compiler.
The most interesting gradle commands to run are probably:
**download a precompiled version from github:**
``./gradlew check``
Builds the compiler code and runs all available checks and unit-tests.
``./gradlew installDist``
Builds the compiler and installs it with scripts to run it, in the directory
``./compiler/build/install/p8compile``
``./gradlew installShadowDist``
Creates a 'fat-jar' that contains the compiler and all dependencies, in a single
executable .jar file, and includes few start scripts to run it.
The output can be found in ``.compiler/build/install/compiler-shadow/``
``./gradlew shadowDistZip``
Creates a zipfile with the above in it, for easy distribution.
This file can be found in ``./compiler/build/distributions/``
For normal use, the ``installDist`` target should suffice and ater succesful completion
of that build task, you can start the compiler with:
``./compiler/build/install/p8compile/bin/p8compile <options> <sourcefile>``
(You should probably make an alias...)
.. note::
Development and testing is done on Linux, but the compiler should run on most
operating systems. If you do have trouble building or running
the compiler on another operating system, please let me know!
#. download a recent "prog8compiler.jar" from `the releases on Github <https://github.com/irmen/prog8/releases>`_
#. run the compiler with "java -jar prog8compiler.jar" to see how you can use it.
What is a Prog8 "Program" anyway?
@ -53,14 +74,10 @@ The compiler will link everything together into one output program at the end.
If you start the compiler without arguments, it will print a short usage text.
For normal use the compiler is invoked with the command:
``$ java -jar prog8compiler.jar sourcefile.p8`` if you're using the packaged release version, or
``$ java -jar prog8compiler.jar sourcefile.p8``
``$ ./p8compile.sh sourcefile.p8`` if you're running an unpackaged development version.
If you tell it to save the intermediate code for the prog8 virtual machine, you can
actually run this code with the command:
``$ ./p8vm.sh sourcefile.vm.txt``
Other options are also available, see the introduction page about how
to build and run the compiler.
By default, assembly code is generated and written to ``sourcefile.asm``.
@ -70,6 +87,13 @@ If you use the option to let the compiler auto-start a C-64 emulator, it will do
a successful compilation. This will load your program and the symbol and breakpoint lists
(for the machine code monitor) into the emulator.
Continuous compilation mode
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Almost instant compilation times (<0.1 second) can be achieved when using the continuous compilation mode.
Start the compiler with the ``-watch`` argument to enable this.
It will compile your program and then instead of exiting, it waits for any changes in the module source files.
As soon as a change happens, the program gets compiled again.
Module source code files
------------------------
@ -84,6 +108,13 @@ They are embedded into the packaged release version of the compiler so you don't
where they are, but their names are still reserved.
User defined library files
^^^^^^^^^^^^^^^^^^^^^^^^^^
You can create library files yourself too that can be shared among programs.
You can tell the compiler where it should look for these files, by setting the java command line property ``prog8.libdir``
or by setting the ``PROG8_LIBDIR`` environment variable to the correct directory.
.. _debugging:
Debugging (with Vice)
@ -130,3 +161,24 @@ or::
$ ./p8compile.sh -emu examples/rasterbars.p8
Virtual Machine
---------------
You may have noticed the ``-avm`` and ``-vm`` command line options for the compiler:
-avm
Launches the "AST virtual machine" that directly executes the parsed program.
No compilation steps will be performed.
Allows for very fast testing and debugging before actually compiling programs
to machine code.
It simulates a bare minimum of features from the target platform, so most stuff
that calls ROM routines or writes into hardware registers won't work. But basic
system routines are emulated.
-vm <vm bytecode file>
Launches the "intermediate code VM"
it interprets the intermediate code that the compiler can write when using the ``-writevm``
option. This is the code that will be fed to the assembly code generator,
so you'll skip that last step.

View File

@ -37,15 +37,15 @@ This software is licensed under the GNU GPL 3.0, see https://www.gnu.org/license
:alt: Fully playable tetris clone
Code example
------------
Code examples
-------------
This code calculates prime numbers using the Sieve of Eratosthenes algorithm::
%import c64utils
%zeropage basicsafe
~ main {
main {
ubyte[256] sieve
ubyte candidate_prime = 2
@ -89,13 +89,47 @@ This code calculates prime numbers using the Sieve of Eratosthenes algorithm::
}
when compiled an ran on a C-64 you'll get:
when compiled an ran on a C-64 you get this:
.. image:: _static/primes_example.png
:align: center
:alt: result when run on C-64
The following programs shows a use of the high level ``struct`` type::
%import c64utils
%zeropage basicsafe
main {
struct Color {
ubyte red
ubyte green
ubyte blue
}
sub start() {
Color purple = {255, 0, 255}
Color other
other = purple
other.red /= 2
other.green = 10 + other.green / 2
other.blue = 99
c64scr.print_ub(other.red)
c64.CHROUT(',')
c64scr.print_ub(other.green)
c64.CHROUT(',')
c64scr.print_ub(other.blue)
c64.CHROUT('\n')
}
}
when compiled and ran, it prints ``127,10,99`` on the screen.
Design principles and features
------------------------------
@ -106,7 +140,8 @@ Design principles and features
- 'One statement per line' code style, resulting in clear readable programs.
- Modular programming and scoping via modules, code blocks, and subroutines.
- Provide high level programming constructs but stay close to the metal;
still able to directly use memory addresses, CPU registers and ROM subroutines
still able to directly use memory addresses, CPU registers and ROM subroutines,
and inline assembly to have full control when every cycle or byte matters
- Arbitrary number of subroutine parameters (constrained only by available memory)
- Complex nested expressions are possible
- Values are typed. Types supported include signed and unsigned bytes and words, arrays, strings and floats.
@ -136,34 +171,21 @@ For other platforms it is very easy to compile it yourself (make ; make install)
A **Java runtime (jre or jdk), version 8 or newer** is required to run the packaged compiler.
If you're scared of Oracle's licensing terms, most Linux distributions ship OpenJDK instead
and for Windows it's possible to get that as well: for instance,
`Azul's Zulu <https://www.azul.com/downloads/zulu/>`_ is a certified OpenJDK
implementation available for various platforms.
and for Windows it's possible to get that as well. Check out `AdoptOpenJDK <https://adoptopenjdk.net/>`_ for
downloads.
Finally: a **C-64 emulator** (or a real C-64 ofcourse) to run the programs on. The compiler assumes the presence
of the `Vice emulator <http://vice-emu.sourceforge.net/>`_.
.. hint::
The compiler is almost completely written in Kotlin, but the packaged release version
only requires a Java runtime. All other needed libraries and files are embedded in the
packaged jar file.
.. important::
**Building the compiler itself:** (*Only needed if you have not downloaded a pre-built 'fat-jar'*)
.. note::
Building the compiler itself:
(re)building the compiler itself requires a Kotlin SDK version 1.3.
(re)building the compiler itself requires a recent Kotlin SDK.
The compiler is developed using the `IntelliJ IDEA <https://www.jetbrains.com/idea/>`_
IDE from Jetbrains, with the Kotlin plugin (free community edition of this IDE is available).
But a bare Kotlin SDK installation should work just as well.
A shell script (``build_the_compiler.sh``) is provided to build and package the compiler from the command line.
You can also use the Gradle build system to build the compiler (it will take care of
downloading all required libraries for you) by typing ``gradle installDist`` for instance.
The output of this gradle build will appear in the "./compiler/build/install/p8compile/" directory.
.. note::
Development and testing is done on Linux, but the compiler should run on most
operating systems. If you do have trouble building or running
the compiler on another operating system, please let me know!
Instructions on how to obtain a working compiler are in :ref:`building_compiler`.
.. toctree::

View File

@ -54,7 +54,7 @@ Code
- value assignment
- looping (for, while, repeat, unconditional jumps)
- conditional execution (if - then - else, and conditional jumps)
- conditional execution (if - then - else, when, and conditional jumps)
- subroutine calls
- label definition
@ -93,7 +93,7 @@ Blocks, Scopes, and accessing Symbols
**Blocks** are the top level separate pieces of code and data of your program. They are combined
into a single output program. No code or data can occur outside a block. Here's an example::
~ main $c000 {
main $c000 {
; this is code inside the block...
}
@ -127,12 +127,20 @@ The address must be >= ``$0200`` (because ``$00``--``$ff`` is the ZP and ``$100`
to them by their 'short' name directly. If the symbol is not found in the same scope,
the enclosing scope is searched for it, and so on, until the symbol is found.
Scopes are created using several statements:
Scopes are created using either of these two statements:
- blocks (top-level named scope)
- subroutines (nested named scopes)
- for, while, repeat loops (anonymous scope)
- if statements and branching conditionals (anonymous scope)
- subroutines (nested named scope)
.. note::
In contrast to many other programming languages, a new scope is *not* created inside
for, while and repeat statements, nor for the if statement and branching conditionals.
This is a bit restrictive because you have to think harder about what variables you
want to use inside a subroutine. But it is done precisely for this reason; memory in the
target system is very limited and it would be a waste to allocate a lot of variables.
Right now the prog8 compiler is not advanced enough to be able to 'share' or 'overlap'
variables intelligently by itself. So for now, it's something the programmer has to think about.
Program Start and Entry Point
@ -151,7 +159,7 @@ taking no parameters and having no return value.
As any subroutine, it has to end with a ``return`` statement (or a ``goto`` call)::
~ main {
main {
sub start () {
; program entrypoint code here
return
@ -237,6 +245,7 @@ Arrays
^^^^^^
Array types are also supported. They can be made of bytes, words or floats::
byte[10] array ; array of 10 bytes, initially set to 0
byte[] array = [1, 2, 3, 4] ; initialize the array, size taken from value
byte[99] array = 255 ; initialize array with 99 times 255 [255, 255, 255, 255, ...]
byte[] array = 100 to 199 ; initialize array with [100, 101, ..., 198, 199]
@ -266,6 +275,13 @@ Strings in your source code files will be encoded (translated from ASCII/UTF-8)
PETSCII is the default choice. If you need screencodes (also called 'poke' codes) instead,
you have to use the ``str_s`` variants of the string type identifier.
You can concatenate two string literals using '+' (not very useful though) or repeat
a string literal a given number of times using '*'::
str string1 = "first part" + "second part"
str string2 = "hello!" * 10
.. caution::
It's probably best that you don't change strings after they're created.
This is because if your program exits and is restarted (without loading it again),
@ -273,6 +289,39 @@ you have to use the ``str_s`` variants of the string type identifier.
The same is true for arrays by the way.
Structs
^^^^^^^
A struct is a group of one or more other variables.
This allows you to reuse the definition and manipulate it as a whole.
Individual variables in the struct are accessed as you would expect, just
use a scoped name to refer to them: ``structvariable.membername``.
Structs are a bit limited in Prog8: you can only use numerical variables
as member of a struct, so strings and arrays and other structs can not be part of a struct.
Also, it is not possible to use a struct itself inside an array.
Structs are mainly syntactic sugar for repeated groups of vardecls
and assignments that belong together. However,
*they are layed out in sequence in memory as the members are defined*
which may be usefulif you want to pass pointers around.
To create a variable of a struct type you need to define the struct itself,
and then create a variable with it::
struct Color {
ubyte red
ubyte green
ubyte blue
}
Color rgb = {255,122,0} ; note the curly braces here instead of brackets
Color another ; the init value is optional, like arrays
another = rgb ; assign all of the values of rgb to another
another.blue = 255 ; set a single member
Special types: const and memory-mapped
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@ -321,10 +370,17 @@ Initial values across multiple runs of the program
When declaring values with an initial value, this value will be set into the variable each time
the program reaches the declaration again. This can be in loops, multiple subroutine calls,
or even multiple invocations of the entire program. If you omit an initial value, it will
be set to zero only for the first run of the program. A second run will utilize the last value
be set to zero *but only for the first run of the program*. A second run will utilize the last value
where it left off (but your code will be a bit smaller because no initialization instructions
are generated)
This only works for simple types, *and not for string variables and arrays*.
It is assumed these are left unchanged by the program; they are not re-initialized on
a second run.
If you do modify them in-place, you should take care yourself that they work as
expected when the program is restarted.
(This is an optimization choice to avoid having to store two copies of every string and array)
.. caution::
variables that get allocated in zero-page will *not* have a zero starting value when you omit
the variable's initialization. They'll be whatever the last value in that zero page
@ -334,12 +390,6 @@ are generated)
this behavior may change in a future version so that subsequent runs always
use the same initial values
This only works for simple types, *and not for string variables and arrays*.
It is assumed these are left unchanged by the program.
If you do modify them in-place, you should take care yourself that they work as
expected when the program is restarted.
(This is an optimization choice to avoid having to store two copies of every string and array)
Loops
-----
@ -358,12 +408,17 @@ You can also create loops by using the ``goto`` statement, but this should usual
The value of the loop variable or register after executing the loop *is undefined*. Don't use it immediately
after the loop without first assigning a new value to it!
(this is an optimization issue to avoid having to deal with mostly useless post-loop logic to adjust the loop variable's value)
Loop variables that are declared inline are scoped in the loop body so they're not accessible at all after the loop finishes.
Loop variables that are declared inline are not different to them being
defined in a separate var declaration in the subroutine, it's just a readability convenience.
(this may change in the future if the compiler gets more advanced with additional sub-scopes)
Conditional Execution
---------------------
if statements
^^^^^^^^^^^^^
Conditional execution means that the flow of execution changes based on certiain conditions,
rather than having fixed gotos or subroutine calls::
@ -413,6 +468,27 @@ So ``if_cc goto target`` will directly translate into the single CPU instruction
Maybe in the future this will be a separate nested scope, but for now, that is
only possible when defining a subroutine.
when statement ('jump table')
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Instead of writing a bunch of sequential if-elseif statements, it is more readable to
use a ``when`` statement. (It will also result in greatly improved assembly code generation)
Use a ``when`` statement if you have a set of fixed choices that each should result in a certain
action. It is possible to combine several choices to result in the same action::
when value {
4 -> c64scr.print("four")
5 -> c64scr.print("five")
10,20,30 -> {
c64scr.print("ten or twenty or thirty")
}
else -> c64scr.print("don't know")
}
The when-*value* can be any expression but the choice values have to evaluate to
compile-time constant integers (bytes or words). They also have to be the same
datatype as the when-value, otherwise no efficient comparison can be done.
Assignments
-----------

View File

@ -74,6 +74,7 @@ Directives
As with ``kernalsafe``, it is not possible to cleanly exit the program, other than to reset the machine.
This option makes programs smaller and faster because even more variables can
be stored in the ZP (which allows for more efficient assembly code).
- style ``dontuse`` -- don't use *any* location in the zeropage.
Also read :ref:`zeropage`.
@ -173,7 +174,7 @@ Code blocks
A named block of actual program code. Itefines a *scope* (also known as 'namespace') and
can contain Prog8 *code*, *directives*, *variable declarations* and *subroutines*::
~ <blockname> [<address>] {
<blockname> [<address>] {
<directives>
<variables>
<statements>
@ -185,7 +186,7 @@ The <address> is optional. If specified it must be a valid memory address such a
It's used to tell the compiler to put the block at a certain position in memory.
Also read :ref:`blocks`. Here is an example of a code block, to be loaded at ``$c000``::
~ main $c000 {
main $c000 {
; this is code inside the block...
}
@ -215,7 +216,7 @@ Variable declarations
^^^^^^^^^^^^^^^^^^^^^
Variables should be declared with their exact type and size so the compiler can allocate storage
for them. You must give them an initial value as well. That value can be a simple literal value,
for them. You can give them an initial value as well. That value can be a simple literal value,
or an expression. You can add a ``@zp`` zeropage-tag, to tell the compiler to prioritize it
when selecting variables to be put into zeropage.
The syntax is::
@ -231,10 +232,11 @@ Various examples::
str name = "my name is Irmen"
uword address = &counter
byte[] values = [11, 22, 33, 44, 55]
byte[5] values ; array of 5 bytes, initially set to zero
byte[5] values = 255 ; initialize with five 255 bytes
word @zp zpword = 9999 ; prioritize this when selecting vars for zeropage storage
Color rgb = {1,255,0} ; a struct variable with initial values
Data types
@ -358,6 +360,26 @@ Syntax is familiar with brackets: ``arrayvar[x]`` ::
string[4] ; the fifth character (=byte) in the string
Struct
^^^^^^
A *struct* has to be defined to specify what its member variables are.
There are one or more members::
struct <structname> {
<vardecl>
[ <vardecl> ...]
}
You can only use numerical variables as member of a struct, so strings and arrays
and other structs can not be part of a struct. Vice versa, a struct can not occur in an array.
After defining a struct you can use the name of the struct as a data type to declare variables with.
Struct variables can be assigned a struct literal value (also in their declaration as initial value)::
Color rgb = {255, 100, 0} ; curly braces instead of brackets
Operators
---------
@ -366,7 +388,7 @@ arithmetic: ``+`` ``-`` ``*`` ``/`` ``**`` ``%``
``+``, ``-``, ``*``, ``/`` are the familiar arithmetic operations.
``/`` is division (will result in integer division when using on integer operands, and a floating point division when at least one of the operands is a float)
``**`` is the power operator: ``3 ** 5`` is equal to 3*3*3*3*3 and is 243. (it only works on floating point variables)
``%`` is the remainder operator: ``25 % 7`` is 4. Be careful: without a space, %10 will be parsed as the binary number 2
``%`` is the remainder operator: ``25 % 7`` is 4. Be careful: without a space, %10 will be parsed as the binary number 2.
Remainder is only supported on integer operands (not floats).
bitwise arithmetic: ``&`` ``|`` ``^`` ``~`` ``<<`` ``>>``
@ -444,11 +466,12 @@ Normal subroutines can only return zero or one return values.
However, the special ``asmsub`` routines (implemented in assembly code or referencing
a routine in kernel ROM) can return more than one return values, for instance a status
in the carry bit and a number in A, or a 16-bit value in A/Y registers.
Only for these kind of subroutines it is possible to write a multi value assignment to
store the resulting values::
var1, var2, var3 = asmsubroutine()
It is not possible to process the results of a call to these kind of routines
directly from the language, because only single value assignments are possible.
You can still call the subroutine and not store the results.
But if you want to do something with the values it returns, you'll have to write
a small block of custom inline assembly that does the call and stores the values
appropriately. Don't forget to save/restore the registers if required.
Subroutine definitions
@ -523,7 +546,8 @@ And this is a loop over the values of the array ``fibonacci_numbers`` where the
}
You can inline the loop variable declaration in the for statement, including optional zp-tag::
You can inline the loop variable declaration in the for statement, including optional zp-tag. In this case
the variable is not visible outside of the for loop::
for ubyte @zp fastindex in 10 to 20 {
; do something
@ -608,3 +632,29 @@ where <statements> can be just a single statement for instance just a ``goto``,
The XX corresponds to one of the eigth branching instructions so the possibilities are:
``if_cs``, ``if_cc``, ``if_eq``, ``if_ne``, ``if_pl``, ``if_mi``, ``if_vs`` and ``if_vc``.
It can also be one of the four aliases that are easier to read: ``if_z``, ``if_nz``, ``if_pos`` and ``if_neg``.
when statement ('jump table')
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The structure of a when statement is like this::
when <expression> {
<value(s)> -> <statement(s)>
<value(s)> -> <statement(s)>
...
[ else -> <statement(s)> ]
}
The when-*value* can be any expression but the choice values have to evaluate to
compile-time constant integers (bytes or words).
The else part is optional.
Choices can result in a single statement or a block of multiple statements in which
case you have to use { } to enclose them::
when value {
4 -> c64scr.print("four")
5 -> c64scr.print("five")
10,20,30 -> {
c64scr.print("ten or twenty or thirty")
}
else -> c64scr.print("don't know")
}

Some files were not shown because too many files have changed in this diff Show More