Compare commits

...

562 Commits
v1.90 ... v5.2

Author SHA1 Message Date
895b30f7e5 version 5.2 2020-12-01 22:49:08 +01:00
b985604e22 slight tweak to word bitshift for large shift values 2020-12-01 22:48:02 +01:00
f7953e4ef3 fix float comparison error that creeped in with no longer using the stack for that 2020-12-01 22:19:03 +01:00
63483d1f0e warnings, errors and todos 2020-12-01 03:24:06 +01:00
8b981f03bf optimized reg_lesseq_w (word <= word) to avoid using extra zp word, by swapping operands 2020-12-01 02:09:48 +01:00
d0d0910bf2 corrected greatereq_w (word >= word) 2020-12-01 01:57:12 +01:00
57ac820767 readme 2020-11-30 22:42:51 +01:00
b8bda867b6 optimized reg_lesseq_w (word <= word) 2020-11-30 02:26:00 +01:00
05d3a2450c optimized reg_less_w (word < word) 2020-11-30 01:53:44 +01:00
d40788adfa optimized in-place array element modification to use simpler assignment asm code 2020-11-28 00:44:38 +01:00
83fbf86b1c no longer generate double assignment to the indexer var for in-place modifying array variable 2020-11-27 23:46:01 +01:00
e876008427 tiny tweak of typecasting str to uword 2020-11-26 19:21:07 +01:00
2b43353eb4 readme 2020-11-26 02:04:01 +01:00
a74403c347 float typecasts optimization 2020-11-26 01:52:48 +01:00
2f4c6c8697 float typecasts optimization 2020-11-26 01:39:27 +01:00
238d8197f5 byte/word typecasts optimized even further to just use cpu registers (and fixed sign extending AY) 2020-11-26 01:33:45 +01:00
53a600d87b fix typecasting of signed byte to signed word in a variable 2020-11-25 22:33:41 +01:00
2a0ffaf45d started to optimize typecasts to use translateExpression() less 2020-11-25 00:17:42 +01:00
936b046ed9 optimize word [operator] byte, without translateExpression() 2020-11-24 23:41:10 +01:00
378dcfe351 fix computation error of word - byte 2020-11-24 22:23:16 +01:00
0a330b9288 warmings 2020-11-24 22:21:54 +01:00
a88b40d6c1 fix stack corruption with bitshifts 2020-11-24 21:58:14 +01:00
09f25ffbd9 optimized in-place memory var modification, not using translateExpression() 2020-11-24 21:41:44 +01:00
ab1232d742 optimized in-place float var modification, not using translateExpression() 2020-11-24 01:09:24 +01:00
a7f56fe0fc remaining float comparisons with expression now without translateExpression() 2020-11-24 00:35:30 +01:00
58a9452c36 fixed the YSCROLL graphics mode on the C64 (mistake in 5.1) 2020-11-23 23:05:51 +01:00
6d8c4f403f updated Kotlin version to 1.4.20, updated targeted JDK version to 11 (LTS) 2020-11-23 22:28:24 +01:00
88b80fed90 returning float values now via fac1 instead of stack 2020-11-23 22:14:45 +01:00
acdbd0c391 todos for next version 2020-11-22 19:18:57 +01:00
d9a8cfed8c updated the compiled examples disk 2020-11-22 18:45:40 +01:00
122796fbba version 5.1 2020-11-22 18:36:04 +01:00
510ca042c9 stack tested for most example programs 2020-11-22 18:35:43 +01:00
125f6205f2 optimizing assigning an array value to a var 2020-11-22 17:44:55 +01:00
8136f3df5c float-const comparison optimizations 2020-11-22 16:54:02 +01:00
38d06a7e94 optimized float var comparison without translateExpression() 2020-11-22 15:05:45 +01:00
49db10539a optimized float var equality comparison without translateExpression() 2020-11-22 14:33:03 +01:00
8efe4c6267 Fixed compiler watch to work with multiple compilation modules 2020-11-22 13:11:33 +01:00
04d8bb8fbf Fixed compiler watch flag crashing when not used on a subdirectory. Fixes #20 2020-11-22 12:07:14 +01:00
08aa13c90c rnd() functions marked as having (internal) side effect 2020-11-22 02:09:32 +01:00
d1febc0208 all in-place byte assignments now without translateExpression() 2020-11-22 01:38:53 +01:00
5980e58ac6 word comparison jumps now without translateExpression() 2020-11-22 01:15:05 +01:00
e1dc283d4b byte comparison jumps now without translateExpression() 2020-11-21 23:31:26 +01:00
8be234973c rollback failed optimization of memory expressions (code size got too large) 2020-11-21 19:09:02 +01:00
7def8ff2cd beginning to optimize comparisons more 2020-11-21 18:44:17 +01:00
340b1c2e42 added balls demo/benchmark 2020-11-21 18:03:57 +01:00
7e0f7ba438 todos 2020-11-20 23:46:14 +01:00
fefd9b52a8 fix for loop with signed byte loopvar over non-const 2020-11-20 22:54:24 +01:00
afd155ac4f optimize for loops over non const range, without translateExpression() 2020-11-20 22:44:16 +01:00
ee724eb4f1 float variable casts without translateExpression() 2020-11-19 22:58:38 +01:00
2f1f20ea11 rename 2020-11-19 00:28:49 +01:00
063bcf17d8 various inplace modification for word vars now without translateExpression() 2020-11-19 00:08:10 +01:00
72509eef44 inplace modification for memory now without translateExpression() 2020-11-18 23:23:06 +01:00
2da28864e9 inplace not and invert for memory now without translateExpression() 2020-11-18 23:13:07 +01:00
4278f64682 fixed invalid value push for memreads with expression 2020-11-18 22:45:04 +01:00
59ae3c3fcd << and >> for byte values slightly optimized, no longer use translateExpression(). preparing for more operator optimizations. 2020-11-18 01:27:02 +01:00
7fa21fbdff @(...) in an expression is now more efficient, without translateExpression() 2020-11-18 00:58:04 +01:00
e95af7498e comparing function call result to 0 now more efficient, without translateExpression() 2020-11-18 00:05:48 +01:00
79c75adac1 repeat and when without translateExpression() 2020-11-17 23:52:13 +01:00
d212f69d89 ++/-- and @Pc without translateExpression() 2020-11-17 23:40:42 +01:00
edf5e69d39 optimized swap() 2020-11-15 18:04:54 +01:00
574eb0d174 refactoring asmassignment code blocks into utility functions 2020-11-15 17:44:47 +01:00
8bd4914e2f fix stack error for float casts 2020-11-15 17:34:27 +01:00
5ebaaff64b refactoring asmassignment code blocks into utility functions 2020-11-15 15:07:55 +01:00
5c9e0c9f51 emit extra nop for breakpoints so vice label list works again (requires 64tass 1.55.2257 or newer!) 2020-11-15 14:31:06 +01:00
8132edbb08 updated some compiled example 2020-11-10 22:51:01 +01:00
d29ce78c86 todos and version 2020-11-10 22:44:48 +01:00
94bc9d7a69 string compare in expression no longer via stack args 2020-11-10 21:48:28 +01:00
e8faec0932 re-introduced more aggressive binexpr splitting optimization 2020-11-10 21:17:33 +01:00
69ca4fe304 cleanup 2020-11-10 21:02:12 +01:00
cd99fe46fd finished call convention change for builtin functions now no longer via stack 2020-11-10 00:43:45 +01:00
4825b4dc68 fix passing address of pass-by-reference assignment to a UWORD 2020-11-10 00:35:24 +01:00
8d0607ef58 fix missing float casts 2020-11-09 23:57:50 +01:00
225295a7d8 fix float casts 2020-11-09 01:18:22 +01:00
4cd74daf53 float eval result var added, but some examples are broken 2020-11-08 18:54:02 +01:00
6eb9118197 example 2020-11-07 01:08:56 +01:00
d0bd2f522c rol and ror 2020-11-07 00:56:54 +01:00
661c757236 fix string compare in expressions 2020-11-06 22:59:56 +01:00
aaa20093ef cleaning up and correcting cc for builtin functions 2020-11-06 00:56:26 +01:00
1eecdd6fa3 fix error when taking address of struct var 2020-11-05 02:39:04 +01:00
800b5b2a43 cleaning up and correcting cc for builtin functions 2020-11-05 02:29:33 +01:00
9d17421c66 implemented the arithmetic functions with new cc. fixed sgn(). 2020-11-04 02:27:29 +01:00
0edd50e956 implemented cc for abs() 2020-11-03 23:01:23 +01:00
288d4f08b3 implemented cc for integer sin and cos variants 2020-11-03 22:42:59 +01:00
526e4b8bdc fix faulty binexpr splitting 2020-11-03 21:31:08 +01:00
e0c5ccc16b begun with converting builtin functions to new call convention 2020-11-02 23:00:20 +01:00
ebc2c614d7 use non-stack call conv for builtin functions 2020-11-02 19:59:27 +01:00
29f5a85158 callconv 2020-11-01 19:25:23 +01:00
8af2380a47 pair 2020-11-01 18:00:20 +01:00
431f2a2088 optimized memset and memcopy on CX16, memcopy can deal with any size now 2020-11-01 08:00:32 +01:00
e05ea887f6 implement proper returning of float values via FAC1 2020-11-01 06:27:17 +01:00
95c0425151 improved sqrt16 2020-11-01 05:45:49 +01:00
47cbc7b1f9 added a custom-charset example for the c64 2020-10-31 02:26:59 +01:00
e7b75d591c assigning float results from functions (from FAC1) 2020-10-31 01:22:19 +01:00
99f7d469f4 assigning string result from subroutine 2020-10-30 22:22:06 +01:00
8a6ef17fbf option 2020-10-30 21:51:15 +01:00
5f337a0bd9 fix typecheck of multiple returnvalues 2020-10-30 21:45:37 +01:00
87862f772a better handling of inferred type errors 2020-10-30 21:24:49 +01:00
3ab641aa21 removed @stack in subroutine args and returnvalues, can only use variables or registers now 2020-10-30 15:02:42 +01:00
3efa8da8e0 made versions of various builtin funcs returning value in registers 2020-10-30 14:35:20 +01:00
3e28ed4fe4 mader versions of abs() and sgn() returning value in register 2020-10-28 22:56:13 +01:00
44949460ed change for subroutine return values via registers instead of stack 2020-10-28 00:29:34 +01:00
83cc19ad6f preparing for subroutine return values via registers instead of stack 2020-10-23 20:56:10 +02:00
66bb98c479 fixed bugs in code assigning values from eval stack 2020-10-23 03:45:09 +02:00
ff3f985658 refactoring 2020-10-22 23:41:16 +02:00
2ba6c9ccbe textelite 1.1 finalize load/save, add it to examplesd disk 2020-10-20 21:49:06 +02:00
3eaf111e7d added 'slowwarn' cli option 2020-10-20 21:38:37 +02:00
30da26b9a9 tackling problem of invalid reuse of auto indexer var 2020-10-20 21:23:43 +02:00
e35ad0cc8f code cleanups 2020-10-20 17:54:16 +02:00
1a36302cf1 rest of optimizations following simplification of array indexer 2020-10-19 23:57:00 +02:00
82a28bb555 extra attempt to simplify add and subtract with negative numbers 2020-10-19 23:01:32 +02:00
c1ce0be451 slightly optimize expression code for most common cases +/- 1 , */div 2 2020-10-19 22:50:38 +02:00
c0a5f8fef0 removed double mul code 2020-10-19 21:32:44 +02:00
702cf304d0 implemented missing swap() operations 2020-10-19 21:26:11 +02:00
4dee8b6048 remove superfluous value eval 2020-10-19 02:38:26 +02:00
ec665e0cc1 fixed incorrect removal of certain assignments that are NOT double 2020-10-19 02:16:23 +02:00
aec3b82476 fixed bitshifting by more than the number of bits in the value 2020-10-19 02:05:01 +02:00
e83796b5b9 fixed bit shifting by 0. optimized bitshifting code. 2020-10-18 17:12:52 +02:00
8eb69d6eda vardecl with initializer expression are now optimized again (unless floats) 2020-10-18 16:15:05 +02:00
74b5124a42 removed restriction on array indexer expression again from docs and code... :) 2020-10-18 14:05:26 +02:00
b9706a180b fix array indexer bug 2020-10-18 13:49:53 +02:00
8aeb8a9bb7 reintroduce expressions for array indexing 2020-10-18 13:33:11 +02:00
8f2e166a22 annotated some high prio todos 2020-10-17 22:57:54 +02:00
fdd91170dc allow simple binary expressions as array indexing too, but not more 2020-10-17 22:43:35 +02:00
c40ddb061b example adjustments 2020-10-17 21:00:59 +02:00
353d6cfc55 doc about array index restriction 2020-10-17 20:35:36 +02:00
f37564c49c fixed 2020-10-17 19:59:48 +02:00
157484d94b adapted p8 code to restricted array indexing 2020-10-17 19:57:55 +02:00
7626c9fff7 only allow array indexing via a number, or a variable (eliminate complex expression calcs for array indexing, force explicit use of an index variable) 2020-10-17 19:57:55 +02:00
1f55f9fc49 removed 2 problematic ZP locations for the C64 2020-10-17 19:57:10 +02:00
2554bc7ef8 ordered the functions in the docs 2020-10-17 02:14:19 +02:00
7cb4100419 string can be compared directly (uses strcmp() automatically in asm) 2020-10-17 02:01:00 +02:00
2d3b7eb878 started making string compares use strcmp() automatically 2020-10-17 01:11:01 +02:00
4d01a78731 introduced strcmp() builtin function 2020-10-16 19:00:06 +02:00
a03e36828a fixed lines in assembly source optimizer 2020-10-16 01:48:03 +02:00
260fb65b06 making strcmp 2020-10-16 00:11:46 +02:00
9fb8526136 added conv.bin and hex string to number 2020-10-15 23:47:10 +02:00
26fc5ff5e2 preparing conv.bin and hex string to number 2020-10-15 23:10:28 +02:00
5060f0bb19 fixed assigning a memory byte from an array 2020-10-15 22:15:00 +02:00
beaf6d449b added short overview of the library modules 2020-10-15 21:30:03 +02:00
4d68b508a2 proper error if variable name is the same as its subroutine or block (that would create naming problems in the assembly code) 2020-10-15 20:48:18 +02:00
cd825e386d fix invalid address-of error when taking address of struct variable 2020-10-15 20:14:17 +02:00
095c8b2309 corrected name and added cx16logo library module for fun 2020-10-15 00:58:41 +02:00
8b6eb74c58 refactor 2020-10-14 23:43:38 +02:00
aba437e5a2 diskio load and save use kernel routines for load and save, and don't bother with SEQ files 2020-10-14 22:33:49 +02:00
efe3ed499b starting with load/save in textelite 2020-10-14 02:51:00 +02:00
5595564a1f todo strcmp 2020-10-14 01:22:43 +02:00
439761cb67 fixed C64 ZP addresses to allow disk I/O, introduced diskio library module 2020-10-14 01:17:18 +02:00
bee6c65293 fixed several bugs in the repeat assembly for loop sizes like 0 and 256 2020-10-13 21:48:15 +02:00
10145b946b invalid repeat loop code is generated... 2020-10-13 16:27:40 +02:00
ebf4b50059 reused existing CallGraph to check for recursion, which is now fixed. It's a warning too now. 2020-10-12 23:04:00 +02:00
07cce3b3fc version 4.5 2020-10-11 21:59:38 +02:00
f2c19afd95 version 4.5 2020-10-11 21:47:41 +02:00
d159e70e1c textelite travel commands 2020-10-11 21:38:25 +02:00
ac693a2541 textelite buy and sell commands 2020-10-11 19:29:18 +02:00
1e988116ce fixed precedence of comparison and bitwise operators 2020-10-11 19:02:53 +02:00
ec9e722927 added conv.str2byte and conv.str2ubyte 2020-10-11 18:36:20 +02:00
4cd5e8c378 textelite 2020-10-11 18:19:09 +02:00
b759d5e06a fixed X register corruption on Cx16 verions of float.GIVUAYFAY and GIVAYFAY 2020-10-11 17:46:19 +02:00
1469033c1e todo 2020-10-11 16:53:00 +02:00
c15fd75df7 asmassignment can now use arbitrary source symbols; optimized byte-word sign extesion with this to not use stack anymore 2020-10-11 15:44:08 +02:00
73524e01a6 really fix byte-word sign extension for function args as expression 2020-10-11 03:07:45 +02:00
9e54e11113 fixed string + string/ string * number 2020-10-11 02:34:04 +02:00
01ac5f29db fix byte-word sign extension for function args as expression 2020-10-11 01:38:34 +02:00
67a2241e32 textelite market start 2020-10-11 00:38:38 +02:00
72b6dc3de7 avoid crash when optimizer has multiple replacements of the same node 2020-10-11 00:37:35 +02:00
6f5b645995 textelite market start 2020-10-10 23:24:15 +02:00
458ad1de57 fix strlen on uword (pointer) instead of str 2020-10-10 23:24:05 +02:00
216f48b7c1 txtelite 2020-10-10 22:45:03 +02:00
b2d1757e5a asmgen: byte to word sign extensions 2020-10-10 15:39:48 +02:00
6e53eb9d5c asmgen: only generate storage byte for register saves in subroutine when it's actually needed 2020-10-10 15:02:56 +02:00
e5ee5be9c5 textelite 2020-10-10 04:42:17 +02:00
bd237b2b95 it's now possible in more places to assign arrays and put array literals without the need to define explicit variable. 2020-10-10 04:30:28 +02:00
d31cf766eb added missing doc picture 2020-10-10 02:51:02 +02:00
56d530ff04 txtelite with input loop 2020-10-10 01:46:19 +02:00
0bbb2240f2 txtelite with input loop 2020-10-10 01:35:46 +02:00
1c8e4dba73 added \' escape character 2020-10-10 01:28:57 +02:00
4a9956c4a4 txtelite species and planet naming fix 2020-10-10 01:15:26 +02:00
59c0e6ae32 added some more missing assignment codegens (word * byte etc) 2020-10-09 23:48:33 +02:00
94c30fc21e textelite 2020-10-09 22:47:42 +02:00
8bb3b3be20 fix repeat loop for variables when var == 0 2020-10-09 22:30:21 +02:00
85e3c2c5a2 textelite 2020-10-09 22:25:12 +02:00
4be381c597 fixed compiler optimizer crash because of conflicting expression replacements 2020-10-09 21:51:54 +02:00
6ff5470cf1 txtelite 2020-10-09 21:01:06 +02:00
151dcfdef9 code style 2020-10-08 21:47:07 +02:00
c282b4cb9f code style 2020-10-07 23:24:30 +02:00
c426f4626c added some more missing aug assign operator code 2020-10-07 22:53:18 +02:00
0e3c92626e fixed handling of main module when importing another. fixed diskdir closedown. 2020-10-07 21:55:00 +02:00
5099525e24 added missing register pair assignments. fixed compiler crashes 2020-10-07 03:43:02 +02:00
e22b4cbb67 fixed invalid errormessage about memory mapped strings 2020-10-07 01:35:39 +02:00
2b48828179 examples issues 2020-10-07 01:21:41 +02:00
3e181362dd optimized code for processing return values from asmsubs without intermediate estack. 2020-10-07 00:51:57 +02:00
71fd98e39e allow asmsub routines with multiple return values to be called (special case for return values in status register) 2020-10-07 00:33:42 +02:00
71cd8b6d51 cx16 cross-compile teaser screenshot 2020-10-05 19:59:51 +02:00
ad75fcbf7e txtelite 2020-10-05 19:49:13 +02:00
f8b04a6357 added status return flags to some kernel i/o operations 2020-10-05 19:48:21 +02:00
d8fcbb78d3 txtelite goatsoup 2020-10-04 21:53:16 +02:00
8408bf3789 another compiler crash fixed when dealing with functioncall returning a str 2020-10-04 21:53:08 +02:00
3e1185658e txtelite goatsoup 2020-10-04 21:35:37 +02:00
d778cdcd61 another compiler crash fixed when dealing with functioncall returning a str 2020-10-04 21:11:42 +02:00
90b303fc03 fix error message for invalid number of arguments 2020-10-04 19:28:22 +02:00
eb86b1270d txtelite 2020-10-04 19:23:36 +02:00
a1f0cc878b correct error message for faulty string variable declarations 2020-10-04 19:13:19 +02:00
f2e2720b15 compiler crash fixed when dealing with functioncall returning a str 2020-10-04 18:47:47 +02:00
ec8cfe1591 make string-assignment actually work (using strcpy) 2020-10-04 18:18:58 +02:00
22eac159e5 txtelite 2020-10-04 17:47:57 +02:00
956b0c3fa7 added \xHH escape character to strings, allow strings of length zero. 2020-10-04 13:05:43 +02:00
a6427e0949 added \$HH escape character to strings 2020-10-03 15:11:09 +02:00
22031f39b0 update compiled examples 2020-10-02 23:39:20 +02:00
c4673d3a67 v4.4 2020-10-02 23:32:45 +02:00
e83e021541 doc 2020-10-02 23:31:49 +02:00
c1f2ecd413 struct assignment from array value now checks number of elements 2020-10-02 22:48:39 +02:00
46fbe01df9 added codengeration for assigment of array of values to a struct variable (all members at once) 2020-10-02 22:37:52 +02:00
8647a8290e fix code generation for using struct vars in arrays and such 2020-10-02 22:21:18 +02:00
bac51f4b31 fix subtraction error for bytes 2020-10-02 21:30:32 +02:00
582aab180a oops 2020-10-02 02:39:19 +02:00
5fb714fcb2 expression splitter integrated into expression simplifier 2020-10-02 01:54:37 +02:00
3994de77d0 fix expression splitter handling related to code ballooning 2020-10-02 01:49:55 +02:00
24c8d1f1f4 expression splitter for vardecls with binexpr init expression 2020-10-02 00:34:12 +02:00
110f877dcc binexpr expression splitter for assignments 2020-10-02 00:04:21 +02:00
9cd3a9f8e8 fix isSameAs for ArrayIndexed expressions, and by extension, assignment.isAugmentable() 2020-10-01 23:26:43 +02:00
1464050bf5 expression splitter moved to separate optimizer 2020-10-01 02:58:12 +02:00
95e9e1b550 avoid adding unneeded variable initalization assignments. Improved removal of useless double assignments. 2020-10-01 00:39:49 +02:00
bda1c1c1eb reduce slow estack usage by splitting up simple binary expressions 2020-09-30 19:57:16 +02:00
d020a7974a reduce slow estack usage by splitting up simple binary expressions 2020-09-30 17:51:35 +02:00
a51fad3aab parentheses around binary exprs in source output 2020-09-30 16:38:54 +02:00
3cd32778bb don't split expressions referencing the target variable wrongly 2020-09-30 01:11:33 +02:00
8d67056f84 fixed estack corruption caused by c64 print_f 2020-09-29 21:12:16 +02:00
e986973b5e wrong floats 2020-09-29 04:05:45 +02:00
448c934cba optimized neg(x) and abs(x) 2020-09-29 03:58:17 +02:00
96ef7ba55d fixed ast to source for structs 2020-09-29 00:28:11 +02:00
4372de1e7e allow creating arrays of pointers to other arrays. Usefullness is very limited though... 2020-09-29 00:03:47 +02:00
af0fb88adf allow creating string arrays. Fixed array index scaling for word arrays. 2020-09-28 02:23:36 +02:00
066233eee8 todos 2020-09-27 22:05:44 +02:00
b6f85d10b0 reintroduced system reset at program exit if zeropage is clobbered 2020-09-27 22:00:36 +02:00
6f75413c09 some more optimizations in expressions with memreads 2020-09-27 21:43:40 +02:00
d45fe4ce74 fixed invalid eval stack ptr issue 2020-09-27 20:55:34 +02:00
e828c013e6 fix word+/-byte errors if byte was unsigned 2020-09-27 20:23:42 +02:00
988459f744 don't generate a byte storage for every single time a register needs saving 2020-09-27 16:26:02 +02:00
7c701bdf3f corrections 2020-09-27 14:14:45 +02:00
446fc35d5c avoid excessive comparisons for certain comparison expressions against zero 2020-09-27 03:55:59 +02:00
bec9cc7047 asm store/load same optimizer back.... 2020-09-27 02:45:59 +02:00
961380acb6 optimized float ==0 or 1 comparisons 2020-09-27 01:56:08 +02:00
84c0685a60 fix faulty comparison optimization 2020-09-27 01:40:12 +02:00
629222f103 larger 2020-09-26 19:59:57 +02:00
8c448e5bc2 finished optimized comparison asm generation 2020-09-26 19:55:04 +02:00
b5fa6c2d0a library modules imported from embedded resource now contain proper file path (useful for error messages) 2020-09-26 19:30:17 +02:00
680b2df08a just call the asmsub 2020-09-26 19:14:06 +02:00
09bd47f98b > 2020-09-26 19:02:29 +02:00
7f69f9ce4f <= 2020-09-26 18:04:43 +02:00
4179b4e543 all unsigned comparisons 2020-09-26 17:45:35 +02:00
66364554c4 new comparisons testprog 2020-09-26 16:11:47 +02:00
43f2448789 added (u)byte and (u)word '>' 2020-09-26 13:15:03 +02:00
130cee1e70 tweak '<' code 2020-09-26 12:47:40 +02:00
b976360248 fix fallthrough problem with 'when'. Fix too greedy asm optimization that caused conditional jumps to fail sometimes because the condition value wasn't loaded. 2020-09-26 00:22:55 +02:00
225bfc4164 fix 16+8 bit add and sub sign extensions 2020-09-25 22:51:59 +02:00
d7ceda4d82 removed the automatic system reset at program exit, this did't work with the new init code 2020-09-25 22:12:14 +02:00
14d091e60a crashes :( 2020-09-24 23:50:20 +02:00
2809668ef4 new asm code for (u)word and (u)byte < 2020-09-24 23:08:36 +02:00
bafb86e00b new asm code for (n)equals 2020-09-24 22:28:24 +02:00
f5db31b8ff do..until condition can now refer to variables defined in the loop's inner scope. 2020-09-24 19:26:07 +02:00
e1d0dbed0c do..until condition can now refer to variables defined in the loop's inner scope. 2020-09-23 23:24:32 +02:00
1d1fe364d0 added %option no_sysinit to avoid having the system re-initialization code executed at the start of the program 2020-09-23 23:01:47 +02:00
2b9316c4ff reworked program init logic so that it is included as the first thing inside main.start itself, to allow better stand alone asm 2020-09-23 22:29:21 +02:00
c50cbbb526 typo 2020-09-23 18:50:32 +02:00
b93d9ecd7e memtop cx16 2020-09-23 02:34:49 +02:00
96243db88b refresh compiled examples 2020-09-23 00:29:40 +02:00
4daf75a8cc better checks for invalid %output and %launcher values. Added diskdir examples. 2020-09-23 00:22:36 +02:00
8c63d7cf5b diskdir 2020-09-22 23:22:20 +02:00
6f78a32e64 diskdir 2020-09-22 23:12:43 +02:00
af6731c9c8 preparing version 4.3 2020-09-22 21:50:56 +02:00
25cf0d2b94 don't suggest a mult replacement routine to be used, faster ones are likely to require large tables 2020-09-22 21:19:01 +02:00
9389791d91 created own circle and disc subroutines for cx16 because its rom routine is not yet implemented and just does a BRK 2020-09-22 02:52:09 +02:00
aa8191d0a1 introduced graphics module wrapper for cx16 to make even more programs compatible 2020-09-22 02:21:16 +02:00
0d5c78e875 introduced graphics module wrapper for cx16 to make even more programs compatible 2020-09-22 02:12:01 +02:00
e8679ae03b fixed print_f on cx16. Some more examples are now multi-platform. 2020-09-22 01:45:51 +02:00
d1d224b7fc fixed print_f on cx16. Some more examples are now multi-platform. 2020-09-22 01:34:05 +02:00
df995f7bc9 fixed float zp problem on C64, added more zp locations to block list 2020-09-22 01:05:07 +02:00
af39502450 doc 2020-09-22 00:47:02 +02:00
ffa38955d6 improved scroll_down and scroll_up to use VERA dual data ports instead of a copybuffer 2020-09-22 00:34:43 +02:00
8d82fb6d8f added cx16 txt.scroll_right 2020-09-22 00:00:22 +02:00
306770331a added cx16 txt.scroll_left 2020-09-21 23:39:25 +02:00
d3f433c8cf specify VERA data port to use 2020-09-21 23:04:01 +02:00
cf49cbd1f8 more consistent about the system reset routine 2020-09-21 22:35:07 +02:00
8a99e75299 added cx16 txt.scroll_down 2020-09-21 22:06:48 +02:00
2dbf849c82 added cx16 txt.scroll_up 2020-09-21 21:39:36 +02:00
ba3dce0b4c optimized cx16 txt screen functions to use VERA autoincrement 2020-09-21 19:30:21 +02:00
ca9588380a added cx16 txt.clear_screencolors 2020-09-21 18:42:28 +02:00
ae2619602d lib renames in docs 2020-09-21 18:21:24 +02:00
de06353194 auto select correct library to import based on target, instead of having c64- and cx16- prefix variants
some programs are now 100% source compatible between C64 and Cx16 targets!
import libraries have been rena;med
2020-09-21 00:50:09 +02:00
3ff3f5e1cc compiler errors in standard format so that you can click on them in IDE to jump to the line 2020-09-20 22:24:35 +02:00
4b747859b3 types of constant values now actually follow their declared const var type 2020-09-20 01:14:53 +02:00
2201765366 mult fixes 2020-09-20 00:17:33 +02:00
dfa1d5e398 removed the ".w" word suffix (it confused the parser). 2020-09-19 23:27:40 +02:00
ce9a90f626 updates to make c16txtio more complete 2020-09-19 23:00:47 +02:00
2deb18beb2 tweaks to c64 txtio. Fixed expression evaluation of bitwise invert. 2020-09-19 22:37:24 +02:00
0f7454059c tweaks to c64 txtio 2020-09-19 22:10:33 +02:00
f9ba09ac4d todo 2020-09-19 17:39:46 +02:00
4e74873eae better swap() code 2020-09-19 17:32:29 +02:00
f0cd03d14f removed invalid duplicate name check about subroutine parameters 2020-09-19 16:04:04 +02:00
f2b069c562 correction, we don't allow address-of as a value for memory mapped vars, improved the error message instead 2020-09-19 15:54:42 +02:00
bc89306dc1 better detection of duplicate variable definitions 2020-09-19 15:46:51 +02:00
bf4da1655b doc 2020-09-18 23:57:40 +02:00
d819aa270f test 2020-09-18 23:38:50 +02:00
e6d945f835 doc 2020-09-18 23:35:02 +02:00
4fe408f1fd doc 2020-09-18 23:34:32 +02:00
c376e42092 implemented hidden line removal 2020-09-18 23:15:08 +02:00
63a653cdf0 preparing for hidden line removal 2020-09-18 22:51:44 +02:00
5d900800f2 vardecl value inits must not be shuffled around but stay at their original line at all times 2020-09-18 22:24:26 +02:00
def06dbc0b allow address-of to be used as a value for a memory pointer variable 2020-09-18 22:10:20 +02:00
9b66a597bb array literal const check added 2020-09-18 21:30:59 +02:00
f1ee3b4e60 version 4.2 2020-09-16 23:04:18 +02:00
6395e39d63 avoid generating superfluous '0' variable initializations, and fix erroneous vardecl order shifting 2020-09-16 22:15:06 +02:00
2a6d9d7e31 more optimal codegen for some typecasts 2020-09-15 03:26:57 +02:00
32a7cd31da more optimal codegen for if statements 2020-09-15 00:31:44 +02:00
dd4a56cb5f cx16 safe clobbers for now 2020-09-15 00:14:36 +02:00
d110d1cb5f c64 system reset now banks kernel rom back in 2020-09-15 00:10:20 +02:00
48858019b7 added the last of the optimized mul_word asm routines 2020-09-14 23:54:01 +02:00
aff6b1fca5 added some more optimized mul_word asm routines 2020-09-14 23:03:18 +02:00
d260182ef3 added some more optimized mul_byte asm routines 2020-09-14 22:06:40 +02:00
e39a38b0d9 things 2020-09-13 21:04:51 +02:00
82d7179c92 printf now uses proper zp addressing 2020-09-13 21:01:19 +02:00
f42746ba06 reg_x removal: c64textio and c64lib. last one. 2020-09-13 20:52:29 +02:00
1f69deaccd reg_x removal: c64floats 2020-09-13 20:44:55 +02:00
ea8b7ab193 reg_x removal: math.asm and some others 2020-09-13 20:38:50 +02:00
9938959026 reg_x removal: prog8lib 2020-09-13 20:25:30 +02:00
d5e5485d2e fixed estack X corruption in float augmented assignments 2020-09-13 19:44:03 +02:00
97b9c8f320 don't clobber A when trying to save X at functioncall 2020-09-12 19:04:44 +02:00
35aebbc209 optimize unneeded type casts for register args 2020-09-12 02:48:16 +02:00
81f7419f70 fix X register clobbering in asmfunc call, fixed graphics.plot() 2020-09-12 01:23:56 +02:00
2f951bd54d tweaking cobra mk3 2020-09-11 19:46:11 +02:00
18f5963b09 cobra mk3 2020-09-10 01:31:21 +02:00
836509c1d1 mult todos. 2020-09-10 00:53:35 +02:00
949d536e42 mult todo's. Fixed wrong compilation target when compiling multiple files at once. 2020-09-10 00:26:35 +02:00
f69b17e165 mult todo's 2020-09-10 00:07:06 +02:00
49a0584c54 added a %target directive 2020-09-09 22:53:34 +02:00
e21aa2c8f0 better naming of the optimized math mult routines 2020-09-09 22:16:37 +02:00
40071b1431 fix compiler crash with adding too many typecasts to args. useless lsb() and msb() are optimized away. 2020-09-09 21:37:56 +02:00
02e29e6990 added some preliminary clobber specs to some cx16 graphics calls, This fixes the 3d cube gfx 2020-09-07 04:06:46 +02:00
e19de0901e Fix cx16 system reset. Added cx16 VIA registers. Fix cx16 VERA register widths. 2020-09-07 03:09:09 +02:00
137d506e42 improve register arg passing again 2020-09-07 02:29:03 +02:00
90c4a26d52 we don't implement asmsub params via @stack yet 2020-09-07 01:24:10 +02:00
f378a8997b improved ability to use register X in asm subroutine fuction arguments 2020-09-07 00:25:51 +02:00
1377bed988 fix assembly for cx16 when zp is not basicsafe 2020-09-06 17:58:05 +02:00
8f9f947c42 fix some issues with float const 0.0 and 1.0 2020-09-05 02:07:41 +02:00
37f6c2858f warning about attempt to put floats in zp 2020-09-05 01:45:58 +02:00
13d7f239ab floating point 1.0 no longer referenced from ROM because cx16 doesn't have it. Added some more cx16 examples. 2020-09-05 00:17:58 +02:00
a6f3c84e28 fix cx16 word sign extend in bitshift 2020-09-04 22:38:03 +02:00
fe4e0e9835 cleanups 2020-08-31 23:00:53 +02:00
809917f13b version 4.1 2020-08-31 21:44:38 +02:00
2b35498370 added CX16 txt.setcc and swirl examples that use it 2020-08-31 21:01:18 +02:00
f45eabdd9e added CX16 VERA registers, made txt.fill_screen work on CX16 2020-08-31 18:23:52 +02:00
438f3ee8d2 make GIVUAYFAY work (unsigned word to float) 2020-08-31 17:16:51 +02:00
4bea31f051 fl_zero fix 2020-08-31 01:04:04 +02:00
5eae7a2b93 tweak mandelbrots and c64 graphics plot() doesnt work with XY parameter 2020-08-31 00:36:40 +02:00
364ef3e55c tweak cx16 mandelbrots 2020-08-31 00:03:05 +02:00
e61818f194 tweak cx16 mandelbrots 2020-08-30 19:31:20 +02:00
0f9ce319d4 readme 2020-08-30 18:36:02 +02:00
5d90871789 got floating points working in commanderx16, added txt.color() to set text color 2020-08-30 00:15:18 +02:00
88a9e09918 got floating points working in commanderx16 2020-08-29 23:55:26 +02:00
c50ecf6055 fix for loop asm creation with word loopvar 2020-08-29 02:05:24 +02:00
a18de75da9 fix compiler loop and missing type checks on for loop range values 2020-08-29 01:48:41 +02:00
e112dfd910 implemented signed byte and word division 2020-08-29 00:00:53 +02:00
9154d8bd37 optimizing X register saving for 65c02 using phx/plx instead of zp location 2020-08-28 22:11:33 +02:00
0b55372b3b cleanup cx16 things and added call signatures. c64graphics moved into built-in libraries. 2020-08-28 21:42:53 +02:00
3ad7fb010f clearer about emulator 2020-08-27 21:09:59 +02:00
3f64d1bb5a oops. 2020-08-27 21:04:08 +02:00
a6f564ad88 version 4.0 2020-08-27 20:54:08 +02:00
d97da3bb7b implemented almost all math operations 2020-08-27 20:47:22 +02:00
a77d3c92ad implemented remaining float operations 2020-08-27 19:47:50 +02:00
6d17e5307c fixed typecasting of const arguments once again 2020-08-27 19:06:27 +02:00
c2205e473a fix example 2020-08-27 18:21:12 +02:00
4ffb194847 readme and version 2020-08-27 18:18:29 +02:00
744cd6ec42 updated examples 2020-08-27 18:11:49 +02:00
f08fc18ab5 renamed c64scr. to txt. 2020-08-27 18:10:22 +02:00
462af76770 cx16 link 2020-08-26 20:54:36 +02:00
9cec554f7c moved the type conversion routines to their own library file to avoid duplication 2020-08-26 20:52:38 +02:00
08b25e610d commander x16 improvements 2020-08-26 19:34:12 +02:00
e896d5a1a6 ver 2020-08-26 02:03:18 +02:00
b939562062 added preliminary CommanderX16 machine target support. Fixed nullpointer when importing a missing file. 2020-08-26 01:56:26 +02:00
256781bba5 added missing in-place bitwise operator code 2020-08-25 22:26:05 +02:00
19705196d6 separate varnames and other symbol names 2020-08-25 22:08:52 +02:00
3ce692bb10 even better machinetarget independence 2020-08-25 19:56:53 +02:00
78bdbde3ae refer to ZP scratch constants from asm code via the global P8ZP constants as well 2020-08-25 19:44:08 +02:00
8d8c066447 made the ZP and compilation target more generic 2020-08-25 19:32:31 +02:00
5da9379c37 making zeropage more configurable for future different machine targets 2020-08-25 18:10:06 +02:00
032d20ff37 added the missing stack assignments 2020-08-25 17:43:35 +02:00
d19b17cbfe optimize strlen() 2020-08-25 17:31:47 +02:00
4a4f8ff5db subroutine parameters can be allocated on the zp now as well 2020-08-25 16:47:21 +02:00
60a9209a14 plasma 2020-08-25 01:48:23 +02:00
0f9e167df3 proper name 2020-08-25 00:59:02 +02:00
2e2b8c498e slightly optimize loop 2020-08-25 00:35:51 +02:00
144199730f refactored and optimized load/store byte from pointervar 2020-08-25 00:18:33 +02:00
4bb4eab3b2 cleanup 2020-08-24 23:18:46 +02:00
cf9151f669 use AsmAssignment preferrably over creating new ast node for codegen 2020-08-24 22:45:43 +02:00
aef4598cec comments 2020-08-24 02:56:22 +02:00
3ada0fdf84 function call register args code consolidation, fix asm for loading word value from variable into register 2020-08-24 01:42:44 +02:00
a5d97b326e bugfix byte array assignment 2020-08-24 00:48:19 +02:00
2640015fb1 move 2020-08-24 00:26:26 +02:00
6cd42ddafe cleanup 2020-08-23 23:28:25 +02:00
1f17c22132 more array access optimizations 2020-08-23 22:36:49 +02:00
5c62f612cc cleanup 2020-08-23 20:34:27 +02:00
b9ca1c2e2c more uniform code for array indexing (all using scaled offset now) 2020-08-23 20:25:00 +02:00
93b2ff2e52 fix postincrdecr on array value 2020-08-23 18:52:19 +02:00
3991d23a69 refactoring 2020-08-23 18:20:57 +02:00
1be139759c better names 2020-08-23 16:08:31 +02:00
d0674ad688 better names, reorder 2020-08-23 14:36:24 +02:00
ffb47458ff better names 2020-08-23 13:56:21 +02:00
84ec1be8a4 assign type relax 2020-08-23 13:31:14 +02:00
f4dafec645 assign type assert 2020-08-23 12:52:27 +02:00
97ce72521d for arrays, use the element's datatype more instead of the array decl type 2020-08-23 12:03:52 +02:00
d2f0e74879 use sourcetype 2020-08-23 11:31:33 +02:00
d9e3895c45 start with yet another codegen restructure, this time to make the assignment of values even more explicit for the codegen 2020-08-23 02:05:01 +02:00
5075901830 work 2020-08-22 23:39:27 +02:00
f1193bb5a0 Better error message 2020-08-22 23:13:53 +02:00
d3dc279105 updated the compiled examples 2020-08-22 22:57:30 +02:00
acc942f690 added some more asm code optimizations by splitting certain assignments 2020-08-22 22:53:21 +02:00
e947067dcf fixed source code output issue 2020-08-22 22:23:00 +02:00
bd9ebf4603 flipped the order of the parameters of mkword() so it's now mkword(msb, lsb) for easier readability 2020-08-22 21:13:38 +02:00
f41192a52a added cube3d-gfx example 2020-08-22 19:00:03 +02:00
ff54d6abd7 reorder const for all associative operators 2020-08-22 17:44:32 +02:00
f40bcc219f better errormsg 2020-08-22 17:29:35 +02:00
679965410a todo 2020-08-22 17:13:23 +02:00
c6e13ae2a3 better error message 2020-08-22 17:12:09 +02:00
20cdcc673b identifiers can no longer start with an underscore. (this interfered with 64tass syntax) 2020-08-22 17:03:40 +02:00
89f46222d9 fix compiler crash when calling a non-subroutine 2020-08-22 17:01:47 +02:00
b27cbfac5e removed lsl() and lsr() functions just use <<=1 and >>=1 2020-08-22 16:44:48 +02:00
31c946aeeb bugfix 2020-08-22 16:39:17 +02:00
bfc8a26381 implemented bit shifting for non-const amounts 2020-08-22 16:13:52 +02:00
9d98746501 version 3.2 2020-08-21 18:02:49 +02:00
63b03ba70c fix typecasting 2020-08-21 18:02:01 +02:00
70bab76b36 added plasma example 2020-08-21 17:58:43 +02:00
15d24d4308 adding plasma example 2020-08-21 17:27:18 +02:00
9ec62eb045 fixed lsb(), fixed const value type mismatch, fixed and() const evaluation. 2020-08-21 16:26:40 +02:00
12f841e30d just prints 2020-08-21 09:25:32 +02:00
335599ed22 restored certain memoryread asm gen 2020-08-21 07:44:50 +02:00
0b717f9e76 clear messages about slow expression code generation points 2020-08-21 05:45:39 +02:00
e941f6ecca fix asm bug 2020-08-21 04:23:08 +02:00
ef7744dbda asm fix 2020-08-21 04:02:10 +02:00
c83a61c460 some float asm code added for in-place 2020-08-21 03:06:37 +02:00
335684caf7 don't remove asmsub definitions... 2020-08-21 03:01:07 +02:00
8d6220ce51 added most essential of the new in-place assignment code 2020-08-21 02:17:40 +02:00
39ea5c5f99 fix parse error for <<= and >>= 2020-08-20 23:24:01 +02:00
b03597ac13 fixed bug in operand equality comparison, could lead to compiler endless loop 2020-08-20 22:21:26 +02:00
58f323c087 implemented missing memory postincrdecr codegen 2020-08-20 21:48:15 +02:00
513a68584c implemented more optimized prefix expression codegen 2020-08-20 21:42:38 +02:00
88d5c68b32 don't inc/dec a memory mapped register 2020-08-20 21:16:48 +02:00
14f9382cf9 typecheck prefix expressions better 2020-08-20 20:46:28 +02:00
cffb582568 added start of optimized in-place assignment code (for prefix expressions) 2020-08-20 18:43:10 +02:00
e1812ce16c fix typecast removal error. 2020-08-20 18:07:48 +02:00
7a3163f59a bugfix in direct memory assignment 2020-08-20 17:02:22 +02:00
6f3b2749b0 refactoring assignments codegen 2020-08-20 16:47:43 +02:00
c144d4e501 improved warnings about unreachable code 2020-08-20 14:28:17 +02:00
edfd9d55ba added sizeof() function 2020-08-20 13:50:28 +02:00
774897260e avoid silent type casts that remove precision (such as float -> word) 2020-08-20 12:49:48 +02:00
65ba91411d improved function arg type checking and error message 2020-08-20 12:38:22 +02:00
9cbb8e1a64 version 3.1 2020-08-18 16:26:23 +02:00
53e9ad5088 better asm code for repeat loops 2020-08-18 16:02:40 +02:00
cf6ea63fa6 forloop asm done 2020-08-18 15:29:39 +02:00
1de0ebb7bc more forloop asm 2020-08-18 15:16:56 +02:00
77c1376d6d proper error message for arrays that are declared too big 2020-08-18 14:47:52 +02:00
353f1954a5 for loop codegen 2020-08-18 14:03:31 +02:00
8bf3406cf8 gradle version 2020-08-18 00:53:14 +02:00
936bf9a05c gradle version 2020-08-18 00:47:23 +02:00
4487499663 more forloop codegen 2020-08-17 23:42:43 +02:00
3976cc26a2 more forloop codegen 2020-08-17 23:19:23 +02:00
e6ff87ecd0 upgraded to Kotlin 1.4, fixed several compilation warnings 2020-08-17 19:36:07 +02:00
c0887b5f08 removed 'continue' statement to be able to generate more optimized loop assembly code. started with for loop optimizations 2020-08-17 19:22:29 +02:00
f14dda4eca fix certain corruption of A register argument on asm sub call 2020-08-16 19:15:44 +02:00
bd7f75c130 loop todos 2020-07-30 02:54:37 +02:00
fbe3ce008b slight expression rewrite in case of certain in-place assignments, to try to get the in-place variable operand to the leftmost position 2020-07-30 01:30:21 +02:00
7ac6c8f2d1 todo related to in-place assignment 2020-07-27 00:32:59 +02:00
fdfbb7bdf0 improved call arguments type check 2020-07-27 00:28:48 +02:00
1c16bbb742 tweaks for string handling as arguments 2020-07-27 00:12:27 +02:00
9735527062 cleanup double code 2020-07-26 23:46:06 +02:00
402827497e fix float array assignment 2020-07-26 23:32:20 +02:00
f81aa0d867 Merge branch 'remove_aug_assign' 2020-07-26 19:23:34 +02:00
d32a970101 partly optimize assignments so that simple increments and decrements can be done via separate statements (postincrdecr) 2020-07-26 19:22:12 +02:00
cd651aa416 use repeat 2020-07-26 13:50:14 +02:00
8a3189123a to reduce complexity, augmented assignment has been removed again from internal Ast and codegen for now. 2020-07-26 13:48:31 +02:00
b37231d0f5 version 3.0 2020-07-26 01:33:02 +02:00
3c55719bf1 finalize repeat asmgen 2020-07-26 01:32:27 +02:00
af8279a9b9 empty for loops are removed 2020-07-25 22:54:50 +02:00
c38508c262 introduced repeat loop. repeat-until changed to do-util.
forever loop is gone (use repeat without iteration count).
struct literal is now same as array literal [...] to avoid parsing ambiguity with scope blocks.
2020-07-25 16:56:34 +02:00
b0e8738ab8 remove unused c64 resources 2020-07-25 14:47:31 +02:00
cae480768e version is work in progress 2020-07-25 14:45:06 +02:00
a70276c190 use indexOfFirst. Also avoid initializing a for loop variable twice in a row. 2020-07-25 14:44:24 +02:00
0c461ffe2e removed Register expression (directly accessing cpu register) 2020-07-25 14:14:24 +02:00
237511f2d6 v2.4 2020-07-04 18:56:47 +02:00
cdcb652033 optimized arg passing if all args are registers 2020-07-04 18:56:30 +02:00
71e678b382 fixed possible register subroutine arg clobbering 2020-07-04 17:05:36 +02:00
3050156325 reverted subroutine inlining, it was a mistake 2020-07-04 01:02:36 +02:00
4bfdbad2e4 added mandel gfx to examples 2020-07-03 23:56:36 +02:00
06137ecdc4 v2.3 2020-07-03 23:51:27 +02:00
d89f5b0df8 todo about fixing argclobbering 2020-07-03 23:49:17 +02:00
b6e2b36692 refactor 2020-07-03 23:37:38 +02:00
a6d789cfbc fixed function argument type cast bug 2020-07-03 17:24:43 +02:00
c07907e7bd fixed missing shifts codegen 2020-07-02 21:28:48 +02:00
7d8496c874 fixed missing shifts codegen 2020-07-02 19:18:47 +02:00
164ac56db1 compiler error todos 2020-07-01 22:31:38 +02:00
fdddb8ca64 slight optimization 2020-07-01 22:23:46 +02:00
a9d4b8b0fa fixed ast modifications on node arrays, in particular function call parameter lists 2020-07-01 22:03:54 +02:00
ec7b9f54c2 subroutine inlining is an optimizer step 2020-07-01 12:41:10 +02:00
307558a7e7 removed some double code related to call tree 2020-06-30 20:42:55 +02:00
febf423eab tehtriz compilation issues 2020-06-30 20:42:13 +02:00
a999c23014 simple subroutine inlining added 2020-06-27 17:03:03 +02:00
69f1ade595 gfx mandelbrot example added 2020-06-18 01:35:24 +02:00
b166576e54 comments 2020-06-17 23:27:54 +02:00
ee2ba5f398 some more optimizations for swap() function call asm code generation 2020-06-17 22:40:57 +02:00
cb9825484d some more optimized in-array assignments codegeneration 2020-06-17 21:41:38 +02:00
76cda82e23 v2.2 2020-06-16 01:43:44 +02:00
37b61d9e6b v2.2 2020-06-16 01:39:11 +02:00
52f0222a6d Got rid of old Ast transformer Api, some compiler error fixes 2020-06-16 01:25:49 +02:00
75ccac2f2c refactoring last of old Ast modification Api 2020-06-16 00:36:02 +02:00
5c771a91f7 refactoring last of old Ast modification Api 2020-06-14 16:56:48 +02:00
a242ad10e6 fix double printing of sub param vardecl 2020-06-14 13:46:46 +02:00
b5086b6a8f refactoring last of old Ast modification Api 2020-06-14 03:17:42 +02:00
3e47dad12a clearer no modifications 2020-06-14 02:54:29 +02:00
235610f40c refactored StatementOptimizer 2020-06-14 02:41:23 +02:00
6b59559c65 memory address assignment codegen 2020-06-14 02:12:40 +02:00
23e954f716 refactoring StatementOptimizer 2020-06-14 02:00:32 +02:00
983c899cad refactor AstIdentifierChecker 2020-06-13 00:14:19 +02:00
c2f9385965 refactor AstIdentifierChecker 2020-06-12 21:34:27 +02:00
ceb2c9e4f8 added string value assignment, leftstr, rightstr, substr functions 2020-06-06 00:05:39 +02:00
68a7f9c665 version 2.1 2020-06-04 23:03:18 +02:00
ffd8d9c7c1 more assignment expression optimizations 2020-06-04 22:57:32 +02:00
c66fc8630c fixed missing repeated constant folding in expression optimization 2020-06-04 20:22:37 +02:00
9ca1c66f2b added some optimizations for >= 0 and <0 comparisons for integers 2020-06-04 01:43:37 +02:00
33647a29d0 be smarter about certain implicit type casts 2020-06-03 23:55:41 +02:00
02b12cc762 optimized swap() for byte and word vars, optimized graphics line routine 2020-06-03 23:27:50 +02:00
3280993e2a stricter type checking in assignments (less implicit typecasts) 2020-06-02 22:36:57 +02:00
3723c22054 fix string param type 2020-06-02 02:09:52 +02:00
0a2c4ea0c4 improved ast printing 2020-06-02 01:51:27 +02:00
58a83c0439 improved code gen for passing string and array types. 2020-06-02 01:44:42 +02:00
d665489054 implemented asm for addressof-assignment 2020-06-02 00:31:56 +02:00
9200992024 slightly improved asm gen error messages 2020-06-02 00:31:20 +02:00
6408cc46a8 cmdrx16 github ref 2020-05-15 00:32:45 +02:00
961bcdb7ae some more todo's noted down 2020-05-15 00:24:25 +02:00
edee70cf31 use new api for ast mods in unused code remover 2020-05-15 00:16:53 +02:00
1978a9815a version 2.0 2020-05-14 23:59:18 +02:00
f5e6db9d66 big compiler speedup due to optimized scope lookups 2020-05-14 23:59:02 +02:00
a94bc40ab0 performance todo's 2020-05-08 20:41:10 +02:00
534b5ced8f updated the compiled examples 2020-04-10 23:36:29 +02:00
5ebd9b54e4 added some more optimized array assignments 2020-04-10 23:30:19 +02:00
cc4e272526 the new assignment code (once complete) really is a big enough change to bump the version to 2.0 2020-04-09 00:24:37 +02:00
295e199bfa optimized asm output for unneeded typecasts, fixed parent node linking issues with replaceChildNode, Assignment aug_op field is now mutable to avoid having to recreate many Assignment nodes 2020-04-09 00:12:50 +02:00
df3371b0f0 slight gfx optimizations 2020-04-08 22:53:23 +02:00
e4fe1d2b8d attempts to optimize in-place assignments 2020-04-08 03:11:38 +02:00
b8b9244ffa merged AddressOfInserter into StatementReorderer 2020-04-06 15:23:54 +02:00
3be3989e1c version 2020-04-06 14:31:23 +02:00
ed54cf680a fixed ast parent link bug in AstWalker, rewrote StatementReorderer using new API, when labels are sorted. 2020-04-06 14:31:02 +02:00
95e76058d3 version 2020-04-03 23:55:29 +02:00
a6bee6a860 some slight tweaks to asm for setting float value in array 2020-04-03 22:44:10 +02:00
d22780ee44 implemented asm for lsl array values 2020-04-03 21:45:52 +02:00
f8b0b9575d implemented asm for rol array values 2020-04-03 21:31:39 +02:00
4274fd168e implemented asm for rol2 array values 2020-04-03 21:24:55 +02:00
be7f5957f3 implemented asm for ror2 array values 2020-04-03 21:04:42 +02:00
f2e5d987a9 implemented asm for ror array values 2020-04-03 00:03:42 +02:00
f01173d8db fixed compilation of clear/set_carry() and clear/set_irqd() functions 2020-04-03 00:00:58 +02:00
15e8e0bf6d implemented asm for lsr array values 2020-04-02 23:38:45 +02:00
2c59cbdece fixed a crash in astchecking of array init values 2020-04-02 18:40:04 +02:00
b73da4ed02 some more obvious optimizations for X+X and X-X 2020-03-31 23:54:01 +02:00
267adb4612 doc 2020-03-29 03:06:51 +02:00
210 changed files with 27952 additions and 14352 deletions

2
.idea/misc.xml generated
View File

@ -16,7 +16,7 @@
</list>
</option>
</component>
<component name="ProjectRootManager" version="2" languageLevel="JDK_1_8" default="false" project-jdk-name="Kotlin SDK" project-jdk-type="KotlinSDK">
<component name="ProjectRootManager" version="2" languageLevel="JDK_11" default="false" project-jdk-name="Kotlin SDK" project-jdk-type="KotlinSDK">
<output url="file://$PROJECT_DIR$/out" />
</component>
</project>

View File

@ -4,8 +4,8 @@ sudo: false
# dist: xenial
before_install:
- chmod +x gradlew
- chmod +x ./gradlew
script:
- gradle test
- ./gradlew test

111
README.md
View File

@ -2,61 +2,72 @@
[![Build Status](https://travis-ci.org/irmen/prog8.svg?branch=master)](https://travis-ci.org/irmen/prog8)
[![Documentation](https://readthedocs.org/projects/prog8/badge/?version=latest)](https://prog8.readthedocs.io/)
Prog8 - Structured Programming Language for 8-bit 6502/6510 microprocessors
===========================================================================
Prog8 - Structured Programming Language for 8-bit 6502/65c02 microprocessors
============================================================================
*Written by Irmen de Jong (irmen@razorvine.net)*
*Software license: GNU GPL 3.0, see file LICENSE*
This is a structured programming language for the 8-bit 6502/6510 microprocessor from the late 1970's and 1980's
This is a structured programming language for the 8-bit 6502/6510/65c02 microprocessor from the late 1970's and 1980's
as used in many home computers from that era. It is a medium to low level programming language,
which aims to provide many conveniences over raw assembly code (even when using a macro assembler):
which aims to provide many conveniences over raw assembly code (even when using a macro assembler).
- reduction of source code length
Documentation
-------------
Full documentation (syntax reference, how to use the language and the compiler, etc.) can be found at:
https://prog8.readthedocs.io/
What does Prog8 provide?
------------------------
- big reduction of source code length over raw assembly
- modularity, symbol scoping, subroutines
- various data types other than just bytes (16-bit words, floats, strings)
- automatic variable allocations, automatic string and array variables and string sharing
- subroutines with a input- and output parameter signature
- constant folding in expressions
- subroutines with an input- and output parameter signature
- no stack frame allocations because parameters and local variables are automatically allocated statically
- constant folding in expressions and other high-level program optimizations
- conditional branches
- 'when' statement to provide a concise jump table alternative to if/elseif chains
- structs to group together sets of variables and manipulate them at once
- floating point operations (requires the C64 Basic ROM routines for this)
- abstracting away low level aspects such as ZeroPage handling, program startup, explicit memory addresses
- various code optimizations (code structure, logical and numerical expressions, unused code removal...)
- inline assembly allows you to have full control when every cycle or byte matters
- 'when' statement to provide a concise jump table alternative to if/elseif chains
- many built-in functions such as ``sin``, ``cos``, ``rnd``, ``abs``, ``min``, ``max``, ``sqrt``, ``msb``, ``rol``, ``ror``, ``swap``, ``memset``, ``memcopy``, ``sort`` and ``reverse``
- structs to group together sets of variables and manipulate them at once
- convenience abstractions for low level aspects such as ZeroPage handling, program startup, explicit memory addresses
- fast execution speed due to compilation to native assembly code
- inline assembly allows you to have full control when every cycle or byte matters
Rapid edit-compile-run-debug cycle:
*Rapid edit-compile-run-debug cycle:*
- use modern PC to work on
- quick compilation times (seconds)
- option to automatically run the program in the Vice emulator
- use a modern PC to do the work on, use nice editors and enjoy quick compilation times
- can automatically run the program in the Vice emulator after succesful compilation
- breakpoints, that let the Vice emulator drop into the monitor if execution hits them
- source code labels automatically loaded in Vice emulator so it can show them in disassembly
It is mainly targeted at the Commodore-64 machine at this time.
Contributions to add support for other 8-bit (or other?!) machines are welcome.
*Two supported compiler targets* (contributions to improve these or to add support for other machines are welcome!):
Documentation/manual
--------------------
https://prog8.readthedocs.io/
- "c64": Commodore-64 (6510 CPU = almost a 6502), the main target.
- "cx16": [CommanderX16](https://www.commanderx16.com) (65c02 CPU) .
- If you only use standard kernel and prog8 library routines, it is possible to compile the *exact same program* for both machines (just change the compiler target flag)!
Required tools
--------------
Additional required tools
-------------------------
[64tass](https://sourceforge.net/projects/tass64/) - cross assembler. Install this on your shell path.
A recent .exe version of this tool for Windows can be obtained from my [clone](https://github.com/irmen/64tass/releases) of this project.
For other platforms it is very easy to compile it yourself (make ; make install).
A **Java runtime (jre or jdk), version 8 or newer** is required to run a prepackaged version of the compiler.
A **Java runtime (jre or jdk), version 11 or newer** is required to run a prepackaged version of the compiler.
If you want to build it from source, you'll need a Java SDK + Kotlin 1.3.x SDK (or for instance,
IntelliJ IDEA with the Kotlin plugin).
It's handy to have a C-64 emulator or a real C-64 to run the programs on. The compiler assumes the presence
of the [Vice emulator](http://vice-emu.sourceforge.net/)
It's handy to have an emulator (or a real machine perhaps!) to run the programs on. The compiler assumes the presence
of the [Vice emulator](http://vice-emu.sourceforge.net/) for the C64 target,
and the [x16emu emulator](https://github.com/commanderx16/x16-emulator) for the CommanderX16 target.
Example code
@ -64,44 +75,45 @@ Example code
This code calculates prime numbers using the Sieve of Eratosthenes algorithm::
%import c64utils
%import textio
%zeropage basicsafe
main {
ubyte[256] sieve
ubyte candidate_prime = 2
ubyte candidate_prime = 2 ; is increased in the loop
sub start() {
memset(sieve, 256, false)
c64scr.print("prime numbers up to 255:\n\n")
; clear the sieve, to reset starting situation on subsequent runs
memset(sieve, 256, false)
; calculate primes
txt.print("prime numbers up to 255:\n\n")
ubyte amount=0
while true {
repeat {
ubyte prime = find_next_prime()
if prime==0
break
c64scr.print_ub(prime)
c64scr.print(", ")
txt.print_ub(prime)
txt.print(", ")
amount++
}
c64.CHROUT('\n')
c64scr.print("number of primes (expected 54): ")
c64scr.print_ub(amount)
c64.CHROUT('\n')
txt.chrout('\n')
txt.print("number of primes (expected 54): ")
txt.print_ub(amount)
txt.chrout('\n')
}
sub find_next_prime() -> ubyte {
while sieve[candidate_prime] {
candidate_prime++
if candidate_prime==0
return 0
return 0 ; we wrapped; no more primes available in the sieve
}
; found next one, mark the multiples and return it.
sieve[candidate_prime] = true
uword multiple = candidate_prime
while multiple < len(sieve) {
sieve[lsb(multiple)] = true
multiple += candidate_prime
@ -111,11 +123,11 @@ This code calculates prime numbers using the Sieve of Eratosthenes algorithm::
}
when compiled an ran on a C-64 you'll get:
![c64 screen](docs/source/_static/primes_example.png)
One of the included examples (wizzine.p8) animates a bunch of sprite balloons and looks like this:
![wizzine screen](docs/source/_static/wizzine.png)
@ -127,3 +139,8 @@ Another example (cube3d-sprites.p8) draws the vertices of a rotating 3d cube:
If you want to play a video game, a fully working Tetris clone is included in the examples:
![tehtriz_screen](docs/source/_static/tehtriz.png)
The CommanderX16 compiler target is quite capable already too, here's a well known space ship
animated in 3D with hidden line removal, in the CommanderX16 emulator:
![cobra3d](docs/source/_static/cobra3d.png)

View File

@ -1,11 +1,11 @@
buildscript {
dependencies {
classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.3.70"
classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:1.4.20"
}
}
plugins {
// id "org.jetbrains.kotlin.jvm" version "1.3.70"
// id "org.jetbrains.kotlin.jvm" version "1.4.20"
id 'application'
id 'org.jetbrains.dokka' version "0.9.18"
id 'com.github.johnrengelman.shadow' version '5.2.0'
@ -15,8 +15,8 @@ plugins {
apply plugin: "kotlin"
apply plugin: "java"
targetCompatibility = 1.8
sourceCompatibility = 1.8
targetCompatibility = 11
sourceCompatibility = 11
repositories {
mavenLocal()
@ -45,7 +45,7 @@ dependencies {
compileKotlin {
kotlinOptions {
jvmTarget = "1.8"
jvmTarget = "11"
// verbose = true
// freeCompilerArgs += "-XXLanguage:+NewInference"
}
@ -53,7 +53,7 @@ compileKotlin {
compileTestKotlin {
kotlinOptions {
jvmTarget = "1.8"
jvmTarget = "11"
}
}
@ -110,3 +110,7 @@ dokka {
outputFormat = 'html'
outputDirectory = "$buildDir/kdoc"
}
task wrapper(type: Wrapper) {
gradleVersion = '6.1.1'
}

View File

@ -8,7 +8,7 @@
<sourceFolder url="file://$MODULE_DIR$/test" isTestSource="true" />
<excludeFolder url="file://$MODULE_DIR$/build" />
</content>
<orderEntry type="jdk" jdkName="openjdk-11" jdkType="JavaSDK" />
<orderEntry type="jdk" jdkName="11" jdkType="JavaSDK" />
<orderEntry type="sourceFolder" forTests="false" />
<orderEntry type="library" name="KotlinJavaRuntime" level="project" />
<orderEntry type="module" module-name="parser" />

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.0 KiB

View File

@ -0,0 +1,676 @@
; --- low level floating point assembly routines for the C64
FL_ONE_const .byte 129 ; 1.0
FL_ZERO_const .byte 0,0,0,0,0 ; 0.0
floats_store_reg .byte 0 ; temp storage
ub2float .proc
; -- convert ubyte in SCRATCH_ZPB1 to float at address A/Y
; clobbers A, Y
stx P8ZP_SCRATCH_REG
sta P8ZP_SCRATCH_W2
sty P8ZP_SCRATCH_W2+1
ldy P8ZP_SCRATCH_B1
lda #0
jsr GIVAYF
_fac_to_mem ldx P8ZP_SCRATCH_W2
ldy P8ZP_SCRATCH_W2+1
jsr MOVMF
ldx P8ZP_SCRATCH_REG
rts
.pend
b2float .proc
; -- convert byte in SCRATCH_ZPB1 to float at address A/Y
; clobbers A, Y
stx P8ZP_SCRATCH_REG
sta P8ZP_SCRATCH_W2
sty P8ZP_SCRATCH_W2+1
lda P8ZP_SCRATCH_B1
jsr FREADSA
jmp ub2float._fac_to_mem
.pend
uw2float .proc
; -- convert uword in SCRATCH_ZPWORD1 to float at address A/Y
stx P8ZP_SCRATCH_REG
sta P8ZP_SCRATCH_W2
sty P8ZP_SCRATCH_W2+1
lda P8ZP_SCRATCH_W1
ldy P8ZP_SCRATCH_W1+1
jsr GIVUAYFAY
jmp ub2float._fac_to_mem
.pend
w2float .proc
; -- convert word in SCRATCH_ZPWORD1 to float at address A/Y
stx P8ZP_SCRATCH_REG
sta P8ZP_SCRATCH_W2
sty P8ZP_SCRATCH_W2+1
ldy P8ZP_SCRATCH_W1
lda P8ZP_SCRATCH_W1+1
jsr GIVAYF
jmp ub2float._fac_to_mem
.pend
cast_from_uw .proc
; -- uword in A/Y into float var at (P8ZP_SCRATCH_W2)
stx P8ZP_SCRATCH_REG
jsr GIVUAYFAY
jmp ub2float._fac_to_mem
.pend
cast_from_w .proc
; -- word in A/Y into float var at (P8ZP_SCRATCH_W2)
stx P8ZP_SCRATCH_REG
jsr GIVAYFAY
jmp ub2float._fac_to_mem
.pend
cast_from_ub .proc
; -- ubyte in Y into float var at (P8ZP_SCRATCH_W2)
stx P8ZP_SCRATCH_REG
jsr FREADUY
jmp ub2float._fac_to_mem
.pend
cast_from_b .proc
; -- byte in A into float var at (P8ZP_SCRATCH_W2)
stx P8ZP_SCRATCH_REG
jsr FREADSA
jmp ub2float._fac_to_mem
.pend
cast_as_uw_into_ya .proc ; also used for float 2 ub
; -- cast float at A/Y to uword into Y/A
jsr MOVFM
jmp cast_FAC1_as_uw_into_ya
.pend
cast_as_w_into_ay .proc ; also used for float 2 b
; -- cast float at A/Y to word into A/Y
jsr MOVFM
jmp cast_FAC1_as_w_into_ay
.pend
cast_FAC1_as_uw_into_ya .proc ; also used for float 2 ub
; -- cast fac1 to uword into Y/A
stx P8ZP_SCRATCH_REG
jsr GETADR ; into Y/A
ldx P8ZP_SCRATCH_REG
rts
.pend
cast_FAC1_as_w_into_ay .proc ; also used for float 2 b
; -- cast fac1 to word into A/Y
stx P8ZP_SCRATCH_REG
jsr AYINT
ldy $64
lda $65
ldx P8ZP_SCRATCH_REG
rts
.pend
stack_b2float .proc
; -- b2float operating on the stack
inx
lda P8ESTACK_LO,x
stx P8ZP_SCRATCH_REG
jsr FREADSA
jmp push_fac1._internal
.pend
stack_w2float .proc
; -- w2float operating on the stack
inx
ldy P8ESTACK_LO,x
lda P8ESTACK_HI,x
stx P8ZP_SCRATCH_REG
jsr GIVAYF
jmp push_fac1._internal
.pend
stack_ub2float .proc
; -- ub2float operating on the stack
inx
lda P8ESTACK_LO,x
stx P8ZP_SCRATCH_REG
tay
lda #0
jsr GIVAYF
jmp push_fac1._internal
.pend
stack_uw2float .proc
; -- uw2float operating on the stack
inx
lda P8ESTACK_LO,x
ldy P8ESTACK_HI,x
stx P8ZP_SCRATCH_REG
jsr GIVUAYFAY
jmp push_fac1._internal
.pend
stack_float2w .proc ; also used for float2b
jsr pop_float_fac1
stx P8ZP_SCRATCH_REG
jsr AYINT
ldx P8ZP_SCRATCH_REG
lda $64
sta P8ESTACK_HI,x
lda $65
sta P8ESTACK_LO,x
dex
rts
.pend
stack_float2uw .proc ; also used for float2ub
jsr pop_float_fac1
stx P8ZP_SCRATCH_REG
jsr GETADR
ldx P8ZP_SCRATCH_REG
sta P8ESTACK_HI,x
tya
sta P8ESTACK_LO,x
dex
rts
.pend
push_float .proc
; ---- push mflpt5 in A/Y onto stack
; (taking 3 stack positions = 6 bytes of which 1 is padding)
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
ldy #0
lda (P8ZP_SCRATCH_W1),y
sta P8ESTACK_LO,x
iny
lda (P8ZP_SCRATCH_W1),y
sta P8ESTACK_HI,x
dex
iny
lda (P8ZP_SCRATCH_W1),y
sta P8ESTACK_LO,x
iny
lda (P8ZP_SCRATCH_W1),y
sta P8ESTACK_HI,x
dex
iny
lda (P8ZP_SCRATCH_W1),y
sta P8ESTACK_LO,x
dex
rts
.pend
pop_float .proc
; ---- pops mflpt5 from stack to memory A/Y
; (frees 3 stack positions = 6 bytes of which 1 is padding)
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
ldy #4
inx
lda P8ESTACK_LO,x
sta (P8ZP_SCRATCH_W1),y
dey
inx
lda P8ESTACK_HI,x
sta (P8ZP_SCRATCH_W1),y
dey
lda P8ESTACK_LO,x
sta (P8ZP_SCRATCH_W1),y
dey
inx
lda P8ESTACK_HI,x
sta (P8ZP_SCRATCH_W1),y
dey
lda P8ESTACK_LO,x
sta (P8ZP_SCRATCH_W1),y
rts
.pend
pop_float_fac1 .proc
; -- pops float from stack into FAC1
lda #<fmath_float1
ldy #>fmath_float1
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jmp MOVFM
.pend
copy_float .proc
; -- copies the 5 bytes of the mflt value pointed to by SCRATCH_ZPWORD1,
; into the 5 bytes pointed to by A/Y. Clobbers A,Y.
sta _target+1
sty _target+2
ldy #4
_loop lda (P8ZP_SCRATCH_W1),y
_target sta $ffff,y ; modified
dey
bpl _loop
rts
.pend
inc_var_f .proc
; -- add 1 to float pointed to by A/Y
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
stx P8ZP_SCRATCH_REG
jsr MOVFM
lda #<FL_ONE_const
ldy #>FL_ONE_const
jsr FADD
ldx P8ZP_SCRATCH_W1
ldy P8ZP_SCRATCH_W1+1
jsr MOVMF
ldx P8ZP_SCRATCH_REG
rts
.pend
dec_var_f .proc
; -- subtract 1 from float pointed to by A/Y
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
stx P8ZP_SCRATCH_REG
lda #<FL_ONE_const
ldy #>FL_ONE_const
jsr MOVFM
lda P8ZP_SCRATCH_W1
ldy P8ZP_SCRATCH_W1+1
jsr FSUB
ldx P8ZP_SCRATCH_W1
ldy P8ZP_SCRATCH_W1+1
jsr MOVMF
ldx P8ZP_SCRATCH_REG
rts
.pend
pop_2_floats_f2_in_fac1 .proc
; -- pop 2 floats from stack, load the second one in FAC1 as well
lda #<fmath_float2
ldy #>fmath_float2
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jsr pop_float
lda #<fmath_float2
ldy #>fmath_float2
jmp MOVFM
.pend
fmath_float1 .byte 0,0,0,0,0 ; storage for a mflpt5 value
fmath_float2 .byte 0,0,0,0,0 ; storage for a mflpt5 value
push_fac1 .proc
; -- push the float in FAC1 onto the stack
stx P8ZP_SCRATCH_REG
_internal ldx #<fmath_float1
ldy #>fmath_float1
jsr MOVMF
lda #<fmath_float1
ldy #>fmath_float1
ldx P8ZP_SCRATCH_REG
jmp push_float
.pend
pow_f .proc
; -- push f1 ** f2 on stack
lda #<fmath_float2
ldy #>fmath_float2
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jsr pop_float
stx P8ZP_SCRATCH_REG
lda #<fmath_float1
ldy #>fmath_float1
jsr CONUPK ; fac2 = float1
lda #<fmath_float2
ldy #>fmath_float2
jsr FPWR
jmp push_fac1._internal
.pend
div_f .proc
; -- push f1/f2 on stack
jsr pop_2_floats_f2_in_fac1
stx P8ZP_SCRATCH_REG
lda #<fmath_float1
ldy #>fmath_float1
jsr FDIV
jmp push_fac1._internal
.pend
add_f .proc
; -- push f1+f2 on stack
jsr pop_2_floats_f2_in_fac1
stx P8ZP_SCRATCH_REG
lda #<fmath_float1
ldy #>fmath_float1
jsr FADD
jmp push_fac1._internal
.pend
sub_f .proc
; -- push f1-f2 on stack
jsr pop_2_floats_f2_in_fac1
stx P8ZP_SCRATCH_REG
lda #<fmath_float1
ldy #>fmath_float1
jsr FSUB
jmp push_fac1._internal
.pend
mul_f .proc
; -- push f1*f2 on stack
jsr pop_2_floats_f2_in_fac1
stx P8ZP_SCRATCH_REG
lda #<fmath_float1
ldy #>fmath_float1
jsr FMULT
jmp push_fac1._internal
.pend
neg_f .proc
; -- toggle the sign bit on the stack
lda P8ESTACK_HI+3,x
eor #$80
sta P8ESTACK_HI+3,x
rts
.pend
var_fac1_less_f .proc
; -- is the float in FAC1 < the variable AY?
stx P8ZP_SCRATCH_REG
jsr FCOMP
ldx P8ZP_SCRATCH_REG
cmp #255
beq +
lda #0
rts
+ lda #1
rts
.pend
var_fac1_lesseq_f .proc
; -- is the float in FAC1 <= the variable AY?
stx P8ZP_SCRATCH_REG
jsr FCOMP
ldx P8ZP_SCRATCH_REG
cmp #0
beq +
cmp #255
beq +
lda #0
rts
+ lda #1
rts
.pend
var_fac1_greater_f .proc
; -- is the float in FAC1 > the variable AY?
stx P8ZP_SCRATCH_REG
jsr FCOMP
ldx P8ZP_SCRATCH_REG
cmp #1
beq +
lda #0
+ rts
.pend
var_fac1_greatereq_f .proc
; -- is the float in FAC1 >= the variable AY?
stx P8ZP_SCRATCH_REG
jsr FCOMP
ldx P8ZP_SCRATCH_REG
cmp #0
beq +
cmp #1
beq +
lda #0
rts
+ lda #1
rts
.pend
var_fac1_notequal_f .proc
; -- are the floats numbers in FAC1 and the variable AY *not* identical?
stx P8ZP_SCRATCH_REG
jsr FCOMP
ldx P8ZP_SCRATCH_REG
and #1
rts
.pend
vars_equal_f .proc
; -- are the mflpt5 numbers in P8ZP_SCRATCH_W1 and AY identical?
sta P8ZP_SCRATCH_W2
sty P8ZP_SCRATCH_W2+1
ldy #0
lda (P8ZP_SCRATCH_W1),y
cmp (P8ZP_SCRATCH_W2),y
bne _false
iny
lda (P8ZP_SCRATCH_W1),y
cmp (P8ZP_SCRATCH_W2),y
bne _false
iny
lda (P8ZP_SCRATCH_W1),y
cmp (P8ZP_SCRATCH_W2),y
bne _false
iny
lda (P8ZP_SCRATCH_W1),y
cmp (P8ZP_SCRATCH_W2),y
bne _false
iny
lda (P8ZP_SCRATCH_W1),y
cmp (P8ZP_SCRATCH_W2),y
bne _false
lda #1
rts
_false lda #0
rts
.pend
equal_f .proc
; -- are the two mflpt5 numbers on the stack identical?
inx
inx
inx
inx
lda P8ESTACK_LO-3,x
cmp P8ESTACK_LO,x
bne _equals_false
lda P8ESTACK_LO-2,x
cmp P8ESTACK_LO+1,x
bne _equals_false
lda P8ESTACK_LO-1,x
cmp P8ESTACK_LO+2,x
bne _equals_false
lda P8ESTACK_HI-2,x
cmp P8ESTACK_HI+1,x
bne _equals_false
lda P8ESTACK_HI-1,x
cmp P8ESTACK_HI+2,x
bne _equals_false
_equals_true lda #1
_equals_store inx
sta P8ESTACK_LO+1,x
rts
_equals_false lda #0
beq _equals_store
.pend
notequal_f .proc
; -- are the two mflpt5 numbers on the stack different?
jsr equal_f
eor #1 ; invert the result
sta P8ESTACK_LO+1,x
rts
.pend
vars_less_f .proc
; -- is float in AY < float in P8ZP_SCRATCH_W2 ?
jsr MOVFM
lda P8ZP_SCRATCH_W2
ldy P8ZP_SCRATCH_W2+1
stx P8ZP_SCRATCH_REG
jsr FCOMP
ldx P8ZP_SCRATCH_REG
cmp #255
bne +
lda #1
rts
+ lda #0
rts
.pend
vars_lesseq_f .proc
; -- is float in AY <= float in P8ZP_SCRATCH_W2 ?
jsr MOVFM
lda P8ZP_SCRATCH_W2
ldy P8ZP_SCRATCH_W2+1
stx P8ZP_SCRATCH_REG
jsr FCOMP
ldx P8ZP_SCRATCH_REG
cmp #255
bne +
- lda #1
rts
+ cmp #0
beq -
lda #0
rts
.pend
less_f .proc
; -- is f1 < f2?
jsr compare_floats
cmp #255
beq compare_floats._return_true
bne compare_floats._return_false
.pend
lesseq_f .proc
; -- is f1 <= f2?
jsr compare_floats
cmp #255
beq compare_floats._return_true
cmp #0
beq compare_floats._return_true
bne compare_floats._return_false
.pend
greater_f .proc
; -- is f1 > f2?
jsr compare_floats
cmp #1
beq compare_floats._return_true
bne compare_floats._return_false
.pend
greatereq_f .proc
; -- is f1 >= f2?
jsr compare_floats
cmp #1
beq compare_floats._return_true
cmp #0
beq compare_floats._return_true
bne compare_floats._return_false
.pend
compare_floats .proc
lda #<fmath_float2
ldy #>fmath_float2
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jsr MOVFM ; fac1 = flt1
lda #<fmath_float2
ldy #>fmath_float2
stx P8ZP_SCRATCH_REG
jsr FCOMP ; A = flt1 compared with flt2 (0=equal, 1=flt1>flt2, 255=flt1<flt2)
ldx P8ZP_SCRATCH_REG
rts
_return_false lda #0
_return_result sta P8ESTACK_LO,x
dex
rts
_return_true lda #1
bne _return_result
.pend
set_array_float_from_fac1 .proc
; -- set the float in FAC1 in the array (index in A, array in P8ZP_SCRATCH_W1)
sta P8ZP_SCRATCH_B1
asl a
asl a
clc
adc P8ZP_SCRATCH_B1
ldy P8ZP_SCRATCH_W1+1
clc
adc P8ZP_SCRATCH_W1
bcc +
iny
+ stx floats_store_reg
tax
jsr MOVMF
ldx floats_store_reg
rts
.pend
set_0_array_float .proc
; -- set a float in an array to zero (index in A, array in P8ZP_SCRATCH_W1)
sta P8ZP_SCRATCH_B1
asl a
asl a
clc
adc P8ZP_SCRATCH_B1
tay
lda #0
sta (P8ZP_SCRATCH_W1),y
iny
sta (P8ZP_SCRATCH_W1),y
iny
sta (P8ZP_SCRATCH_W1),y
iny
sta (P8ZP_SCRATCH_W1),y
iny
sta (P8ZP_SCRATCH_W1),y
rts
.pend
set_array_float .proc
; -- set a float in an array to a value (index in A, float in P8ZP_SCRATCH_W1, array in P8ZP_SCRATCH_W2)
sta P8ZP_SCRATCH_B1
asl a
asl a
clc
adc P8ZP_SCRATCH_B1
adc P8ZP_SCRATCH_W2
ldy P8ZP_SCRATCH_W2+1
bcc +
iny
+ jmp copy_float
; -- copies the 5 bytes of the mflt value pointed to by SCRATCH_ZPWORD1,
; into the 5 bytes pointed to by A/Y. Clobbers A,Y.
.pend

View File

@ -4,14 +4,14 @@
;
; indent format: TABS, size=8
%target c64
%option enable_floats
c64flt {
floats {
; ---- this block contains C-64 floating point related functions ----
const float PI = 3.141592653589793
const float TWOPI = 6.283185307179586
const float PI = 3.141592653589793
const float TWOPI = 6.283185307179586
; ---- C64 basic and kernal ROM float constants and functions ----
@ -35,13 +35,11 @@ c64flt {
&float FL_TWOPI = $e2e5 ; 2 * PI
&float FL_FR4 = $e2ea ; .25
; oddly enough, 0.0 isn't available in the kernel.
float FL_ZERO = 0.0 ; oddly enough 0.0 isn't available in the kernel
; note: fac1/2 might get clobbered even if not mentioned in the function's name.
; note: for subtraction and division, the left operand is in fac2, the right operand in fac1.
; checked functions below:
romsub $bba2 = MOVFM(uword mflpt @ AY) clobbers(A,Y) ; load mflpt value from memory in A/Y into fac1
romsub $bba6 = FREADMEM() clobbers(A,Y) ; load mflpt value from memory in $22/$23 into fac1
romsub $ba8c = CONUPK(uword mflpt @ AY) clobbers(A,Y) ; load mflpt value from memory in A/Y into fac2
@ -52,22 +50,22 @@ romsub $bc0f = MOVEF() clobbers(A,X) ; copy fac1 to fac2
romsub $bbd4 = MOVMF(uword mflpt @ XY) clobbers(A,Y) ; store fac1 to memory X/Y as 5-byte mflpt
; fac1-> signed word in Y/A (might throw ILLEGAL QUANTITY)
; (tip: use c64flt.FTOSWRDAY to get A/Y output; lo/hi switched to normal little endian order)
; (tip: use floats.FTOSWRDAY to get A/Y output; lo/hi switched to normal little endian order)
romsub $b1aa = FTOSWORDYA() clobbers(X) -> ubyte @ Y, ubyte @ A ; note: calls AYINT.
; fac1 -> unsigned word in Y/A (might throw ILLEGAL QUANTITY) (result also in $14/15)
; (tip: use c64flt.GETADRAY to get A/Y output; lo/hi switched to normal little endian order)
; (tip: use floats.GETADRAY to get A/Y output; lo/hi switched to normal little endian order)
romsub $b7f7 = GETADR() clobbers(X) -> ubyte @ Y, ubyte @ A
romsub $bc9b = QINT() clobbers(A,X,Y) ; fac1 -> 4-byte signed integer in 98-101 ($62-$65), with the MSB FIRST.
romsub $b1bf = AYINT() clobbers(A,X,Y) ; fac1-> signed word in 100-101 ($64-$65) MSB FIRST. (might throw ILLEGAL QUANTITY)
; GIVAYF: signed word in Y/A (note different lsb/msb order) -> float in fac1
; (tip: use c64flt.GIVAYFAY to use A/Y input; lo/hi switched to normal order)
; there is also c64flt.GIVUAYFAY - unsigned word in A/Y (lo/hi) to fac1
; there is also c64flt.FREADS32 that reads from 98-101 ($62-$65) MSB FIRST
; there is also c64flt.FREADUS32 that reads from 98-101 ($62-$65) MSB FIRST
; there is also c64flt.FREADS24AXY that reads signed int24 into fac1 from A/X/Y (lo/mid/hi bytes)
; (tip: use floats.GIVAYFAY to use A/Y input; lo/hi switched to normal order)
; there is also floats.GIVUAYFAY - unsigned word in A/Y (lo/hi) to fac1
; there is also floats.FREADS32 that reads from 98-101 ($62-$65) MSB FIRST
; there is also floats.FREADUS32 that reads from 98-101 ($62-$65) MSB FIRST
; there is also floats.FREADS24AXY that reads signed int24 into fac1 from A/X/Y (lo/mid/hi bytes)
romsub $b391 = GIVAYF(ubyte lo @ Y, ubyte hi @ A) clobbers(A,X,Y)
romsub $b3a2 = FREADUY(ubyte value @ Y) clobbers(A,X,Y) ; 8 bit unsigned Y -> float in fac1
@ -91,6 +89,7 @@ romsub $bb12 = FDIVT() clobbers(A,X,Y) ; fac1 = fac2/fac1
romsub $bb0f = FDIV(uword mflpt @ AY) clobbers(A,X,Y) ; fac1 = mflpt in A/Y / fac1 (remainder in fac2)
romsub $bf7b = FPWRT() clobbers(A,X,Y) ; fac1 = fac2 ** fac1
romsub $bf78 = FPWR(uword mflpt @ AY) clobbers(A,X,Y) ; fac1 = fac2 ** mflpt from A/Y
romsub $bd7e = FINLOG(byte value @A) clobbers (A, X, Y) ; fac1 += signed byte in A
romsub $aed4 = NOTOP() clobbers(A,X,Y) ; fac1 = NOT(fac1)
romsub $bccc = INT() clobbers(A,X,Y) ; INT() truncates, use FADDH first to round instead of trunc
@ -163,9 +162,9 @@ asmsub GIVUAYFAY (uword value @ AY) clobbers(A,X,Y) {
asmsub GIVAYFAY (uword value @ AY) clobbers(A,X,Y) {
; ---- signed 16 bit word in A/Y (lo/hi) to float in fac1
%asm {{
sta c64.SCRATCH_ZPREG
sta P8ZP_SCRATCH_REG
tya
ldy c64.SCRATCH_ZPREG
ldy P8ZP_SCRATCH_REG
jmp GIVAYF ; this uses the inverse order, Y/A
}}
}
@ -174,9 +173,9 @@ asmsub FTOSWRDAY () clobbers(X) -> uword @ AY {
; ---- fac1 to signed word in A/Y
%asm {{
jsr FTOSWORDYA ; note the inverse Y/A order
sta c64.SCRATCH_ZPREG
sta P8ZP_SCRATCH_REG
tya
ldy c64.SCRATCH_ZPREG
ldy P8ZP_SCRATCH_REG
rts
}}
}
@ -185,41 +184,35 @@ asmsub GETADRAY () clobbers(X) -> uword @ AY {
; ---- fac1 to unsigned word in A/Y
%asm {{
jsr GETADR ; this uses the inverse order, Y/A
sta c64.SCRATCH_ZPB1
sta P8ZP_SCRATCH_B1
tya
ldy c64.SCRATCH_ZPB1
ldy P8ZP_SCRATCH_B1
rts
}}
}
sub print_f (float value) {
; ---- prints the floating point value (without a newline) using basic rom routines.
; ---- prints the floating point value (without a newline).
%asm {{
stx c64.SCRATCH_ZPREGX
stx floats_store_reg
lda #<value
ldy #>value
jsr MOVFM ; load float into fac1
jsr FOUT ; fac1 to string in A/Y
jsr c64.STROUT ; print string in A/Y
ldx c64.SCRATCH_ZPREGX
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
ldy #0
- lda (P8ZP_SCRATCH_W1),y
beq +
jsr c64.CHROUT
iny
bne -
+ ldx floats_store_reg
rts
}}
}
sub print_fln (float value) {
; ---- prints the floating point value (with a newline at the end) using basic rom routines
%asm {{
stx c64.SCRATCH_ZPREGX
lda #<value
ldy #>value
jsr MOVFM ; load float into fac1
jsr FPRINTLN ; print fac1 with newline
ldx c64.SCRATCH_ZPREGX
rts
}}
%asminclude "library:c64/floats.asm", ""
%asminclude "library:c64/floats_funcs.asm", ""
}
%asminclude "library:c64floats.asm", ""
} ; ------ end of block c64flt

View File

@ -0,0 +1,437 @@
; --- floating point builtin functions
abs_f_stack .proc
; -- push abs(AY) on stack
jsr floats.MOVFM
jsr floats.ABS
jmp push_fac1
.pend
abs_f_fac1 .proc
; -- FAC1 = abs(AY)
jsr floats.MOVFM
jmp floats.ABS
.pend
func_atan_stack .proc
jsr func_atan_fac1
jmp push_fac1
.pend
func_atan_fac1 .proc
jsr MOVFM
stx P8ZP_SCRATCH_REG
jsr ATN
ldx P8ZP_SCRATCH_REG
rts
.pend
func_ceil_stack .proc
jsr func_ceil_fac1
jmp push_fac1
.pend
func_ceil_fac1 .proc
; -- ceil: tr = int(f); if tr==f -> return else return tr+1
jsr MOVFM
stx P8ZP_SCRATCH_REG
ldx #<fmath_float1
ldy #>fmath_float1
jsr MOVMF
jsr INT
lda #<fmath_float1
ldy #>fmath_float1
jsr FCOMP
cmp #0
beq +
lda #<FL_ONE_const
ldy #>FL_ONE_const
jsr FADD
+ ldx P8ZP_SCRATCH_REG
rts
.pend
func_floor_stack .proc
jsr func_floor_fac1
jmp push_fac1
.pend
func_floor_fac1 .proc
jsr MOVFM
stx P8ZP_SCRATCH_REG
jsr INT
ldx P8ZP_SCRATCH_REG
rts
.pend
func_round_stack .proc
jsr func_round_fac1
jmp push_fac1
.pend
func_round_fac1 .proc
jsr MOVFM
stx P8ZP_SCRATCH_REG
jsr FADDH
jsr INT
ldx P8ZP_SCRATCH_REG
rts
.pend
func_sin_stack .proc
jsr func_sin_fac1
jmp push_fac1
.pend
func_sin_fac1 .proc
jsr MOVFM
stx P8ZP_SCRATCH_REG
jsr SIN
ldx P8ZP_SCRATCH_REG
rts
.pend
func_cos_stack .proc
jsr func_cos_fac1
jmp push_fac1
.pend
func_cos_fac1 .proc
jsr MOVFM
stx P8ZP_SCRATCH_REG
jsr COS
ldx P8ZP_SCRATCH_REG
rts
.pend
func_tan_stack .proc
jsr func_tan_fac1
jmp push_fac1
.pend
func_tan_fac1 .proc
jsr MOVFM
stx P8ZP_SCRATCH_REG
jsr TAN
ldx P8ZP_SCRATCH_REG
rts
.pend
func_rad_stack .proc
jsr func_rad_fac1
jmp push_fac1
.pend
func_rad_fac1 .proc
; -- convert degrees to radians (d * pi / 180)
jsr MOVFM
stx P8ZP_SCRATCH_REG
lda #<_pi_div_180
ldy #>_pi_div_180
jsr FMULT
ldx P8ZP_SCRATCH_REG
rts
_pi_div_180 .byte 123, 14, 250, 53, 18 ; pi / 180
.pend
func_deg_stack .proc
jsr func_deg_fac1
jmp push_fac1
.pend
func_deg_fac1 .proc
; -- convert radians to degrees (d * (1/ pi * 180))
jsr MOVFM
stx P8ZP_SCRATCH_REG
lda #<_one_over_pi_div_180
ldy #>_one_over_pi_div_180
jsr FMULT
ldx P8ZP_SCRATCH_REG
rts
_one_over_pi_div_180 .byte 134, 101, 46, 224, 211 ; 1 / (pi * 180)
.pend
func_ln_stack .proc
jsr func_ln_fac1
jmp push_fac1
.pend
func_ln_fac1 .proc
jsr MOVFM
stx P8ZP_SCRATCH_REG
jsr LOG
ldx P8ZP_SCRATCH_REG
rts
.pend
func_log2_stack .proc
jsr func_log2_fac1
jmp push_fac1
.pend
func_log2_fac1 .proc
jsr MOVFM
stx P8ZP_SCRATCH_REG
jsr LOG
jsr MOVEF
lda #<FL_LOG2
ldy #>FL_LOG2
jsr MOVFM
jsr FDIVT
ldx P8ZP_SCRATCH_REG
rts
.pend
func_sign_f_stack .proc
jsr func_sign_f_into_A
sta P8ESTACK_LO,x
dex
rts
.pend
func_sign_f_into_A .proc
jsr MOVFM
jmp SIGN
.pend
func_sqrt_stack .proc
jsr func_sqrt_fac1
jmp push_fac1
.pend
func_sqrt_fac1 .proc
jsr MOVFM
stx P8ZP_SCRATCH_REG
jsr SQR
ldx P8ZP_SCRATCH_REG
rts
.pend
func_rndf_stack .proc
jsr func_rndf_fac1
jmp push_fac1
.pend
func_rndf_fac1 .proc
stx P8ZP_SCRATCH_REG
lda #1
jsr FREADSA
jsr RND ; rng into fac1
ldx P8ZP_SCRATCH_REG
rts
.pend
func_swap_f .proc
; -- swap floats pointed to by SCRATCH_ZPWORD1, SCRATCH_ZPWORD2
ldy #4
- lda (P8ZP_SCRATCH_W1),y
pha
lda (P8ZP_SCRATCH_W2),y
sta (P8ZP_SCRATCH_W1),y
pla
sta (P8ZP_SCRATCH_W2),y
dey
bpl -
rts
.pend
func_reverse_f .proc
; --- reverse an array of floats (array in P8ZP_SCRATCH_W1, num elements in A)
_left_index = P8ZP_SCRATCH_W2
_right_index = P8ZP_SCRATCH_W2+1
_loop_count = P8ZP_SCRATCH_REG
pha
jsr a_times_5
sec
sbc #5
sta _right_index
lda #0
sta _left_index
pla
lsr a
sta _loop_count
_loop ; push the left indexed float on the stack
ldy _left_index
lda (P8ZP_SCRATCH_W1),y
pha
iny
lda (P8ZP_SCRATCH_W1),y
pha
iny
lda (P8ZP_SCRATCH_W1),y
pha
iny
lda (P8ZP_SCRATCH_W1),y
pha
iny
lda (P8ZP_SCRATCH_W1),y
pha
; copy right index float to left index float
ldy _right_index
lda (P8ZP_SCRATCH_W1),y
ldy _left_index
sta (P8ZP_SCRATCH_W1),y
inc _left_index
inc _right_index
ldy _right_index
lda (P8ZP_SCRATCH_W1),y
ldy _left_index
sta (P8ZP_SCRATCH_W1),y
inc _left_index
inc _right_index
ldy _right_index
lda (P8ZP_SCRATCH_W1),y
ldy _left_index
sta (P8ZP_SCRATCH_W1),y
inc _left_index
inc _right_index
ldy _right_index
lda (P8ZP_SCRATCH_W1),y
ldy _left_index
sta (P8ZP_SCRATCH_W1),y
inc _left_index
inc _right_index
ldy _right_index
lda (P8ZP_SCRATCH_W1),y
ldy _left_index
sta (P8ZP_SCRATCH_W1),y
; pop the float off the stack into the right index float
ldy _right_index
pla
sta (P8ZP_SCRATCH_W1),y
dey
pla
sta (P8ZP_SCRATCH_W1),y
dey
pla
sta (P8ZP_SCRATCH_W1),y
dey
pla
sta (P8ZP_SCRATCH_W1),y
dey
pla
sta (P8ZP_SCRATCH_W1),y
inc _left_index
lda _right_index
sec
sbc #9
sta _right_index
dec _loop_count
bne _loop
rts
.pend
a_times_5 .proc
sta P8ZP_SCRATCH_B1
asl a
asl a
clc
adc P8ZP_SCRATCH_B1
rts
.pend
func_any_f_into_A .proc
jsr a_times_5
jmp prog8_lib.func_any_b_into_A
.pend
func_all_f_into_A .proc
jsr a_times_5
jmp prog8_lib.func_all_b_into_A
.pend
func_any_f_stack .proc
jsr a_times_5
jmp prog8_lib.func_any_b_stack
.pend
func_all_f_stack .proc
jsr a_times_5
jmp prog8_lib.func_all_b_stack
.pend
func_max_f_stack .proc
jsr func_max_f_fac1
jmp push_fac1
.pend
func_max_f_fac1 .proc
; -- max(array) -> fac1, array in P8ZP_SCRATCH_W1, num elts in A
_loop_count = P8ZP_SCRATCH_REG
stx floats_store_reg
sta _loop_count
lda #255
sta _minmax_cmp+1 ; modifying
lda #<_largest_neg_float
ldy #>_largest_neg_float
_minmax_entry jsr MOVFM
- lda P8ZP_SCRATCH_W1
ldy P8ZP_SCRATCH_W1+1
jsr FCOMP
_minmax_cmp cmp #255 ; modified
bne +
lda P8ZP_SCRATCH_W1
ldy P8ZP_SCRATCH_W1+1
jsr MOVFM
+ lda P8ZP_SCRATCH_W1
clc
adc #5
sta P8ZP_SCRATCH_W1
bcc +
inc P8ZP_SCRATCH_W1+1
+ dec _loop_count
bne -
ldx floats_store_reg
rts
_largest_neg_float .byte 255,255,255,255,255 ; largest negative float -1.7014118345e+38
.pend
func_min_f_stack .proc
jsr func_min_f_fac1
jmp push_fac1
.pend
func_min_f_fac1 .proc
; -- min(array) -> fac1, array in P8ZP_SCRATCH_W1, num elts in A
sta func_max_f_fac1._loop_count
lda #1
sta func_max_f_fac1._minmax_cmp+1
lda #<_largest_pos_float
ldy #>_largest_pos_float
jmp func_max_f_fac1._minmax_entry
_largest_pos_float .byte 255,127,255,255,255 ; largest positive float
rts
.pend
func_sum_f_stack .proc
jsr func_sum_f_fac1
jmp push_fac1
.pend
func_sum_f_fac1 .proc
; -- sum(array) -> fac1, array in P8ZP_SCRATCH_W1, num elts in A
_loop_count = P8ZP_SCRATCH_REG
stx floats_store_reg
sta _loop_count
lda #<FL_ZERO_const
ldy #>FL_ZERO_const
jsr MOVFM
- lda P8ZP_SCRATCH_W1
ldy P8ZP_SCRATCH_W1+1
jsr FADD
lda P8ZP_SCRATCH_W1
clc
adc #5
sta P8ZP_SCRATCH_W1
bcc +
inc P8ZP_SCRATCH_W1+1
+ dec _loop_count
bne -
ldx floats_store_reg
rts
.pend

View File

@ -0,0 +1,253 @@
%target c64
%import textio
; bitmap pixel graphics module for the C64
; only black/white monchrome 320x200 for now
; assumes bitmap screen memory is $2000-$3fff
graphics {
const uword BITMAP_ADDRESS = $2000
const uword WIDTH = 320
const ubyte HEIGHT = 200
sub enable_bitmap_mode() {
; enable bitmap screen, erase it and set colors to black/white.
c64.SCROLY = %00111011
c64.SCROLX = %00001000
c64.VMCSB = (c64.VMCSB & %11110000) | %00001000 ; $2000-$3fff
clear_screen(1, 0)
}
sub disable_bitmap_mode() {
; enables text mode, erase the text screen, color white
c64.SCROLY = %00011011
c64.SCROLX = %00001000
c64.VMCSB = (c64.VMCSB & %11110000) | %00000100 ; $1000-$2fff
txt.fill_screen(' ', 1)
}
sub clear_screen(ubyte pixelcolor, ubyte bgcolor) {
memset(BITMAP_ADDRESS, 320*200/8, 0)
txt.fill_screen(pixelcolor << 4 | bgcolor, 0)
}
sub line(uword @zp x1, ubyte @zp y1, uword @zp x2, ubyte @zp y2) {
; Bresenham algorithm.
; This code special cases various quadrant loops to allow simple ++ and -- operations.
; TODO rewrite this in optimized assembly
if y1>y2 {
; make sure dy is always positive to avoid 8 instead of just 4 special cases
swap(x1, x2)
swap(y1, y2)
}
word @zp d = 0
ubyte positive_ix = true
word @zp dx = x2-x1 as word
word @zp dy = y2-y1
if dx < 0 {
dx = -dx
positive_ix = false
}
dx *= 2
dy *= 2
internal_plotx = x1
if dx >= dy {
if positive_ix {
repeat {
internal_plot(y1)
if internal_plotx==x2
return
internal_plotx++
d += dy
if d > dx {
y1++
d -= dx
}
}
} else {
repeat {
internal_plot(y1)
if internal_plotx==x2
return
internal_plotx--
d += dy
if d > dx {
y1++
d -= dx
}
}
}
}
else {
if positive_ix {
repeat {
internal_plot(y1)
if y1 == y2
return
y1++
d += dx
if d > dy {
internal_plotx++
d -= dy
}
}
} else {
repeat {
internal_plot(y1)
if y1 == y2
return
y1++
d += dx
if d > dy {
internal_plotx--
d -= dy
}
}
}
}
}
sub circle(uword xcenter, ubyte ycenter, ubyte radius) {
; Midpoint algorithm
ubyte @zp ploty
ubyte @zp xx = radius
ubyte @zp yy = 0
byte @zp decisionOver2 = 1-xx as byte
while xx>=yy {
internal_plotx = xcenter + xx
ploty = ycenter + yy
internal_plot(ploty)
internal_plotx = xcenter - xx
internal_plot(ploty)
internal_plotx = xcenter + xx
ploty = ycenter - yy
internal_plot(ploty)
internal_plotx = xcenter - xx
internal_plot(ploty)
internal_plotx = xcenter + yy
ploty = ycenter + xx
internal_plot(ploty)
internal_plotx = xcenter - yy
internal_plot(ploty)
internal_plotx = xcenter + yy
ploty = ycenter - xx
internal_plot(ploty)
internal_plotx = xcenter - yy
internal_plot(ploty)
yy++
if decisionOver2<=0
decisionOver2 += 2*yy+1
else {
xx--
decisionOver2 += 2*(yy-xx)+1
}
}
}
sub disc(uword xcenter, ubyte ycenter, ubyte radius) {
; Midpoint algorithm, filled
ubyte xx = radius
ubyte yy = 0
byte decisionOver2 = 1-xx as byte
while xx>=yy {
ubyte ycenter_plus_yy = ycenter + yy
ubyte ycenter_min_yy = ycenter - yy
ubyte ycenter_plus_xx = ycenter + xx
ubyte ycenter_min_xx = ycenter - xx
for internal_plotx in xcenter to xcenter+xx {
internal_plot(ycenter_plus_yy)
internal_plot(ycenter_min_yy)
}
for internal_plotx in xcenter-xx to xcenter-1 {
internal_plot(ycenter_plus_yy)
internal_plot(ycenter_min_yy)
}
for internal_plotx in xcenter to xcenter+yy {
internal_plot(ycenter_plus_xx)
internal_plot(ycenter_min_xx)
}
for internal_plotx in xcenter-yy to xcenter {
internal_plot(ycenter_plus_xx)
internal_plot(ycenter_min_xx)
}
yy++
if decisionOver2<=0
decisionOver2 += 2*yy+1
else {
xx--
decisionOver2 += 2*(yy-xx)+1
}
}
}
; here is the non-asm code for the plot routine below:
; sub plot_nonasm(uword px, ubyte py) {
; ubyte[] ormask = [128, 64, 32, 16, 8, 4, 2, 1]
; uword addr = BITMAP_ADDRESS + 320*(py>>3) + (py & 7) + (px & %0000000111111000)
; @(addr) |= ormask[lsb(px) & 7]
; }
asmsub plot(uword plotx @XY, ubyte ploty @A) clobbers (A, X, Y) {
%asm {{
stx internal_plotx
sty internal_plotx+1
jmp internal_plot
}}
}
; for efficiency of internal algorithms here is the internal plot routine
; that takes the plotx coordinate in a separate variable instead of the XY register pair:
uword internal_plotx ; 0..319 ; separate 'parameter' for internal_plot()
asmsub internal_plot(ubyte ploty @A) clobbers (A, X, Y) { ; internal_plotx is 16 bits 0 to 319... doesn't fit in a register
%asm {{
tay
lda internal_plotx+1
sta P8ZP_SCRATCH_W2+1
lsr a ; 0
sta P8ZP_SCRATCH_W2
lda internal_plotx
pha
and #7
tax
lda _y_lookup_lo,y
clc
adc P8ZP_SCRATCH_W2
sta P8ZP_SCRATCH_W2
lda _y_lookup_hi,y
adc P8ZP_SCRATCH_W2+1
sta P8ZP_SCRATCH_W2+1
pla ; internal_plotx
and #%11111000
tay
lda (P8ZP_SCRATCH_W2),y
ora _ormask,x
sta (P8ZP_SCRATCH_W2),y
rts
_ormask .byte 128, 64, 32, 16, 8, 4, 2, 1
; note: this can be even faster if we also have a 256 byte x-lookup table, but hey.
; see http://codebase64.org/doku.php?id=base:various_techniques_to_calculate_adresses_fast_common_screen_formats_for_pixel_graphics
; the y lookup tables encodes this formula: BITMAP_ADDRESS + 320*(py>>3) + (py & 7) (y from 0..199)
; We use the 64tass syntax for range expressions to calculate this table on assembly time.
_plot_y_values := $2000 + 320*(range(200)>>3) + (range(200) & 7)
_y_lookup_lo .byte <_plot_y_values
_y_lookup_hi .byte >_plot_y_values
}}
}
}

View File

@ -5,20 +5,13 @@
;
; indent format: TABS, size=8
%target c64
c64 {
const uword ESTACK_LO = $ce00 ; evaluation stack (lsb)
const uword ESTACK_HI = $cf00 ; evaluation stack (msb)
&ubyte SCRATCH_ZPB1 = $02 ; scratch byte 1 in ZP
&ubyte SCRATCH_ZPREG = $03 ; scratch register in ZP
&ubyte SCRATCH_ZPREGX = $fa ; temp storage for X register (stack pointer)
&uword SCRATCH_ZPWORD1 = $fb ; scratch word in ZP ($fb/$fc)
&uword SCRATCH_ZPWORD2 = $fd ; scratch word in ZP ($fd/$fe)
&ubyte TIME_HI = $a0 ; software jiffy clock, hi byte
&ubyte TIME_MID = $a1 ; .. mid byte
&ubyte TIME_LO = $a2 ; .. lo byte. Updated by IRQ every 1/60 sec
&ubyte STATUS = $90 ; kernel status variable for I/O
&ubyte STKEY = $91 ; various keyboard statuses (updated by IRQ)
&ubyte SFDX = $cb ; current key pressed (matrix value) (updated by IRQ)
@ -183,19 +176,11 @@ c64 {
; ---- end of SID registers ----
; ---- C64 basic routines ----
romsub $E544 = CLEARSCR() clobbers(A,X,Y) ; clear the screen
romsub $E566 = HOMECRSR() clobbers(A,X,Y) ; cursor to top left of screen
; ---- end of C64 basic routines ----
; ---- C64 kernal routines ----
; ---- C64 ROM kernal routines ----
romsub $AB1E = STROUT(uword strptr @ AY) clobbers(A, X, Y) ; print null-terminated string (use c64scr.print instead)
romsub $E544 = CLEARSCR() clobbers(A,X,Y) ; clear the screen
romsub $E566 = HOMECRSR() clobbers(A,X,Y) ; cursor to top left of screen
romsub $EA31 = IRQDFRT() clobbers(A,X,Y) ; default IRQ routine
romsub $EA81 = IRQDFEND() clobbers(A,X,Y) ; default IRQ end/cleanup
romsub $FF81 = CINT() clobbers(A,X,Y) ; (alias: SCINIT) initialize screen editor and video chip
@ -219,25 +204,245 @@ romsub $FFB4 = TALK(ubyte device @ A) clobbers(A) ; command serial
romsub $FFB7 = READST() -> ubyte @ A ; read I/O status word
romsub $FFBA = SETLFS(ubyte logical @ A, ubyte device @ X, ubyte address @ Y) ; set logical file parameters
romsub $FFBD = SETNAM(ubyte namelen @ A, str filename @ XY) ; set filename parameters
romsub $FFC0 = OPEN() clobbers(A,X,Y) ; (via 794 ($31A)) open a logical file
romsub $FFC0 = OPEN() clobbers(X,Y) -> ubyte @Pc, ubyte @A ; (via 794 ($31A)) open a logical file
romsub $FFC3 = CLOSE(ubyte logical @ A) clobbers(A,X,Y) ; (via 796 ($31C)) close a logical file
romsub $FFC6 = CHKIN(ubyte logical @ X) clobbers(A,X) ; (via 798 ($31E)) define an input channel
romsub $FFC6 = CHKIN(ubyte logical @ X) clobbers(A,X) -> ubyte @Pc ; (via 798 ($31E)) define an input channel
romsub $FFC9 = CHKOUT(ubyte logical @ X) clobbers(A,X) ; (via 800 ($320)) define an output channel
romsub $FFCC = CLRCHN() clobbers(A,X) ; (via 802 ($322)) restore default devices
romsub $FFCF = CHRIN() clobbers(Y) -> ubyte @ A ; (via 804 ($324)) input a character (for keyboard, read a whole line from the screen) A=byte read.
romsub $FFCF = CHRIN() clobbers(X, Y) -> ubyte @ A ; (via 804 ($324)) input a character (for keyboard, read a whole line from the screen) A=byte read.
romsub $FFD2 = CHROUT(ubyte char @ A) ; (via 806 ($326)) output a character
romsub $FFD5 = LOAD(ubyte verify @ A, uword address @ XY) -> ubyte @Pc, ubyte @ A, ubyte @ X, ubyte @ Y ; (via 816 ($330)) load from device
romsub $FFD8 = SAVE(ubyte zp_startaddr @ A, uword endaddr @ XY) -> ubyte @ Pc, ubyte @ A ; (via 818 ($332)) save to a device
romsub $FFDB = SETTIM(ubyte low @ A, ubyte middle @ X, ubyte high @ Y) ; set the software clock
romsub $FFDE = RDTIM() -> ubyte @ A, ubyte @ X, ubyte @ Y ; read the software clock
romsub $FFE1 = STOP() clobbers(A,X) -> ubyte @ Pz, ubyte @ Pc ; (via 808 ($328)) check the STOP key
romsub $FFE4 = GETIN() clobbers(X,Y) -> ubyte @ A ; (via 810 ($32A)) get a character
romsub $FFE1 = STOP() clobbers(X) -> ubyte @ Pz, ubyte @ A ; (via 808 ($328)) check the STOP key (and some others in A)
romsub $FFE4 = GETIN() clobbers(X,Y) -> ubyte @Pc, ubyte @ A ; (via 810 ($32A)) get a character
romsub $FFE7 = CLALL() clobbers(A,X) ; (via 812 ($32C)) close all files
romsub $FFEA = UDTIM() clobbers(A,X) ; update the software clock
romsub $FFED = SCREEN() -> ubyte @ X, ubyte @ Y ; read number of screen rows and columns
romsub $FFF0 = PLOT(ubyte col @ Y, ubyte row @ X, ubyte dir @ Pc) -> ubyte @ X, ubyte @ Y ; read/set position of cursor on screen. Use c64scr.plot for a 'safe' wrapper that preserves X.
romsub $FFF0 = PLOT(ubyte col @ Y, ubyte row @ X, ubyte dir @ Pc) -> ubyte @ X, ubyte @ Y ; read/set position of cursor on screen. Use txt.plot for a 'safe' wrapper that preserves X.
romsub $FFF3 = IOBASE() -> uword @ XY ; read base address of I/O devices
; ---- end of C64 kernal routines ----
; ---- end of C64 ROM kernal routines ----
; ---- C64 specific system utility routines: ----
asmsub init_system() {
; Initializes the machine to a sane starting state.
; Called automatically by the loader program logic.
; This means that the BASIC, KERNAL and CHARGEN ROMs are banked in,
; the VIC, SID and CIA chips are reset, screen is cleared, and the default IRQ is set.
; Also a different color scheme is chosen to identify ourselves a little.
; Uppercase charset is activated, and all three registers set to 0, status flags cleared.
%asm {{
sei
cld
lda #%00101111
sta $00
lda #%00100111
sta $01
jsr c64.IOINIT
jsr c64.RESTOR
jsr c64.CINT
lda #6
sta c64.EXTCOL
lda #7
sta c64.COLOR
lda #0
sta c64.BGCOL0
jsr disable_runstop_and_charsetswitch
clc
clv
cli
rts
}}
}
asmsub reset_system() {
; Soft-reset the system back to Basic prompt.
%asm {{
sei
lda #14
sta $01 ; bank the kernal in
jmp (c64.RESET_VEC)
}}
}
asmsub disable_runstop_and_charsetswitch() {
%asm {{
lda #$80
sta 657 ; disable charset switching
lda #239
sta 808 ; disable run/stop key
rts
}}
}
asmsub set_irqvec_excl() clobbers(A) {
%asm {{
sei
lda #<_irq_handler
sta c64.CINV
lda #>_irq_handler
sta c64.CINV+1
cli
rts
_irq_handler jsr set_irqvec._irq_handler_init
jsr irq.irq
jsr set_irqvec._irq_handler_end
lda #$ff
sta c64.VICIRQ ; acknowledge raster irq
lda c64.CIA1ICR ; acknowledge CIA1 interrupt
jmp c64.IRQDFEND ; end irq processing - don't call kernel
}}
}
asmsub set_irqvec() clobbers(A) {
%asm {{
sei
lda #<_irq_handler
sta c64.CINV
lda #>_irq_handler
sta c64.CINV+1
cli
rts
_irq_handler jsr _irq_handler_init
jsr irq.irq
jsr _irq_handler_end
jmp c64.IRQDFRT ; continue with normal kernel irq routine
_irq_handler_init
; save all zp scratch registers and the X register as these might be clobbered by the irq routine
stx IRQ_X_REG
lda P8ZP_SCRATCH_B1
sta IRQ_SCRATCH_ZPB1
lda P8ZP_SCRATCH_REG
sta IRQ_SCRATCH_ZPREG
lda P8ZP_SCRATCH_W1
sta IRQ_SCRATCH_ZPWORD1
lda P8ZP_SCRATCH_W1+1
sta IRQ_SCRATCH_ZPWORD1+1
lda P8ZP_SCRATCH_W2
sta IRQ_SCRATCH_ZPWORD2
lda P8ZP_SCRATCH_W2+1
sta IRQ_SCRATCH_ZPWORD2+1
; stack protector; make sure we don't clobber the top of the evaluation stack
dex
dex
dex
dex
dex
dex
cld
rts
_irq_handler_end
; restore all zp scratch registers and the X register
lda IRQ_SCRATCH_ZPB1
sta P8ZP_SCRATCH_B1
lda IRQ_SCRATCH_ZPREG
sta P8ZP_SCRATCH_REG
lda IRQ_SCRATCH_ZPWORD1
sta P8ZP_SCRATCH_W1
lda IRQ_SCRATCH_ZPWORD1+1
sta P8ZP_SCRATCH_W1+1
lda IRQ_SCRATCH_ZPWORD2
sta P8ZP_SCRATCH_W2
lda IRQ_SCRATCH_ZPWORD2+1
sta P8ZP_SCRATCH_W2+1
ldx IRQ_X_REG
rts
IRQ_X_REG .byte 0
IRQ_SCRATCH_ZPB1 .byte 0
IRQ_SCRATCH_ZPREG .byte 0
IRQ_SCRATCH_ZPWORD1 .word 0
IRQ_SCRATCH_ZPWORD2 .word 0
}}
}
asmsub restore_irqvec() {
%asm {{
sei
lda #<c64.IRQDFRT
sta c64.CINV
lda #>c64.IRQDFRT
sta c64.CINV+1
lda #0
sta c64.IREQMASK ; disable raster irq
lda #%10000001
sta c64.CIA1ICR ; restore CIA1 irq
cli
rts
}}
}
asmsub set_rasterirq(uword rasterpos @ AY) clobbers(A) {
%asm {{
sei
jsr _setup_raster_irq
lda #<_raster_irq_handler
sta c64.CINV
lda #>_raster_irq_handler
sta c64.CINV+1
cli
rts
_raster_irq_handler
jsr set_irqvec._irq_handler_init
jsr irq.irq
jsr set_irqvec._irq_handler_end
lda #$ff
sta c64.VICIRQ ; acknowledge raster irq
jmp c64.IRQDFRT
_setup_raster_irq
pha
lda #%01111111
sta c64.CIA1ICR ; "switch off" interrupts signals from cia-1
sta c64.CIA2ICR ; "switch off" interrupts signals from cia-2
and c64.SCROLY
sta c64.SCROLY ; clear most significant bit of raster position
lda c64.CIA1ICR ; ack previous irq
lda c64.CIA2ICR ; ack previous irq
pla
sta c64.RASTER ; set the raster line number where interrupt should occur
cpy #0
beq +
lda c64.SCROLY
ora #%10000000
sta c64.SCROLY ; set most significant bit of raster position
+ lda #%00000001
sta c64.IREQMASK ;enable raster interrupt signals from vic
rts
}}
}
asmsub set_rasterirq_excl(uword rasterpos @ AY) clobbers(A) {
%asm {{
sei
jsr set_rasterirq._setup_raster_irq
lda #<_raster_irq_handler
sta c64.CINV
lda #>_raster_irq_handler
sta c64.CINV+1
cli
rts
_raster_irq_handler
jsr set_irqvec._irq_handler_init
jsr irq.irq
jsr set_irqvec._irq_handler_end
lda #$ff
sta c64.VICIRQ ; acknowledge raster irq
jmp c64.IRQDFEND ; end irq processing - don't call kernel
}}
}
; ---- end of C64 specific system utility routines ----
}

View File

@ -0,0 +1,587 @@
; Prog8 definitions for the Text I/O and Screen routines for the Commodore-64
;
; Written by Irmen de Jong (irmen@razorvine.net) - license: GNU GPL 3.0
;
; indent format: TABS, size=8
%target c64
%import syslib
%import conv
txt {
const ubyte DEFAULT_WIDTH = 40
const ubyte DEFAULT_HEIGHT = 25
sub clear_screen() {
clear_screenchars(' ')
}
asmsub fill_screen (ubyte char @ A, ubyte color @ Y) clobbers(A) {
; ---- fill the character screen with the given fill character and character color.
; (assumes screen and color matrix are at their default addresses)
%asm {{
pha
tya
jsr clear_screencolors
pla
jsr clear_screenchars
rts
}}
}
asmsub clear_screenchars (ubyte char @ A) clobbers(Y) {
; ---- clear the character screen with the given fill character (leaves colors)
; (assumes screen matrix is at the default address)
%asm {{
ldy #0
_loop sta c64.Screen,y
sta c64.Screen+$0100,y
sta c64.Screen+$0200,y
sta c64.Screen+$02e8,y
iny
bne _loop
rts
}}
}
asmsub clear_screencolors (ubyte color @ A) clobbers(Y) {
; ---- clear the character screen colors with the given color (leaves characters).
; (assumes color matrix is at the default address)
%asm {{
ldy #0
_loop sta c64.Colors,y
sta c64.Colors+$0100,y
sta c64.Colors+$0200,y
sta c64.Colors+$02e8,y
iny
bne _loop
rts
}}
}
sub color (ubyte txtcol) {
c64.COLOR = txtcol
}
sub lowercase() {
c64.VMCSB |= 2
}
sub uppercase() {
c64.VMCSB &= ~2
}
asmsub scroll_left (ubyte alsocolors @ Pc) clobbers(A, Y) {
; ---- scroll the whole screen 1 character to the left
; contents of the rightmost column are unchanged, you should clear/refill this yourself
; Carry flag determines if screen color data must be scrolled too
%asm {{
stx P8ZP_SCRATCH_REG
bcs +
jmp _scroll_screen
+ ; scroll the color memory
ldx #0
ldy #38
-
.for row=0, row<=24, row+=1
lda c64.Colors + 40*row + 1,x
sta c64.Colors + 40*row,x
.next
inx
dey
bpl -
_scroll_screen ; scroll the screen memory
ldx #0
ldy #38
-
.for row=0, row<=24, row+=1
lda c64.Screen + 40*row + 1,x
sta c64.Screen + 40*row,x
.next
inx
dey
bpl -
ldx P8ZP_SCRATCH_REG
rts
}}
}
asmsub scroll_right (ubyte alsocolors @ Pc) clobbers(A) {
; ---- scroll the whole screen 1 character to the right
; contents of the leftmost column are unchanged, you should clear/refill this yourself
; Carry flag determines if screen color data must be scrolled too
%asm {{
stx P8ZP_SCRATCH_REG
bcs +
jmp _scroll_screen
+ ; scroll the color memory
ldx #38
-
.for row=0, row<=24, row+=1
lda c64.Colors + 40*row + 0,x
sta c64.Colors + 40*row + 1,x
.next
dex
bpl -
_scroll_screen ; scroll the screen memory
ldx #38
-
.for row=0, row<=24, row+=1
lda c64.Screen + 40*row + 0,x
sta c64.Screen + 40*row + 1,x
.next
dex
bpl -
ldx P8ZP_SCRATCH_REG
rts
}}
}
asmsub scroll_up (ubyte alsocolors @ Pc) clobbers(A) {
; ---- scroll the whole screen 1 character up
; contents of the bottom row are unchanged, you should refill/clear this yourself
; Carry flag determines if screen color data must be scrolled too
%asm {{
stx P8ZP_SCRATCH_REG
bcs +
jmp _scroll_screen
+ ; scroll the color memory
ldx #39
-
.for row=1, row<=24, row+=1
lda c64.Colors + 40*row,x
sta c64.Colors + 40*(row-1),x
.next
dex
bpl -
_scroll_screen ; scroll the screen memory
ldx #39
-
.for row=1, row<=24, row+=1
lda c64.Screen + 40*row,x
sta c64.Screen + 40*(row-1),x
.next
dex
bpl -
ldx P8ZP_SCRATCH_REG
rts
}}
}
asmsub scroll_down (ubyte alsocolors @ Pc) clobbers(A) {
; ---- scroll the whole screen 1 character down
; contents of the top row are unchanged, you should refill/clear this yourself
; Carry flag determines if screen color data must be scrolled too
%asm {{
stx P8ZP_SCRATCH_REG
bcs +
jmp _scroll_screen
+ ; scroll the color memory
ldx #39
-
.for row=23, row>=0, row-=1
lda c64.Colors + 40*row,x
sta c64.Colors + 40*(row+1),x
.next
dex
bpl -
_scroll_screen ; scroll the screen memory
ldx #39
-
.for row=23, row>=0, row-=1
lda c64.Screen + 40*row,x
sta c64.Screen + 40*(row+1),x
.next
dex
bpl -
ldx P8ZP_SCRATCH_REG
rts
}}
}
romsub $FFD2 = chrout(ubyte char @ A) ; for consistency. You can also use c64.CHROUT directly ofcourse.
asmsub print (str text @ AY) clobbers(A,Y) {
; ---- print null terminated string from A/Y
; note: the compiler contains an optimization that will replace
; a call to this subroutine with a string argument of just one char,
; by just one call to c64.CHROUT of that single char.
%asm {{
sta P8ZP_SCRATCH_B1
sty P8ZP_SCRATCH_REG
ldy #0
- lda (P8ZP_SCRATCH_B1),y
beq +
jsr c64.CHROUT
iny
bne -
+ rts
}}
}
asmsub print_ub0 (ubyte value @ A) clobbers(A,Y) {
; ---- print the ubyte in A in decimal form, with left padding 0s (3 positions total)
%asm {{
stx P8ZP_SCRATCH_REG
jsr conv.ubyte2decimal
pha
tya
jsr c64.CHROUT
pla
jsr c64.CHROUT
txa
jsr c64.CHROUT
ldx P8ZP_SCRATCH_REG
rts
}}
}
asmsub print_ub (ubyte value @ A) clobbers(A,Y) {
; ---- print the ubyte in A in decimal form, without left padding 0s
%asm {{
stx P8ZP_SCRATCH_REG
jsr conv.ubyte2decimal
_print_byte_digits
pha
cpy #'0'
beq +
tya
jsr c64.CHROUT
pla
jsr c64.CHROUT
jmp _ones
+ pla
cmp #'0'
beq _ones
jsr c64.CHROUT
_ones txa
jsr c64.CHROUT
ldx P8ZP_SCRATCH_REG
rts
}}
}
asmsub print_b (byte value @ A) clobbers(A,Y) {
; ---- print the byte in A in decimal form, without left padding 0s
%asm {{
stx P8ZP_SCRATCH_REG
pha
cmp #0
bpl +
lda #'-'
jsr c64.CHROUT
+ pla
jsr conv.byte2decimal
jmp print_ub._print_byte_digits
}}
}
asmsub print_ubhex (ubyte value @ A, ubyte prefix @ Pc) clobbers(A,Y) {
; ---- print the ubyte in A in hex form (if Carry is set, a radix prefix '$' is printed as well)
%asm {{
stx P8ZP_SCRATCH_REG
bcc +
pha
lda #'$'
jsr c64.CHROUT
pla
+ jsr conv.ubyte2hex
jsr c64.CHROUT
tya
jsr c64.CHROUT
ldx P8ZP_SCRATCH_REG
rts
}}
}
asmsub print_ubbin (ubyte value @ A, ubyte prefix @ Pc) clobbers(A,Y) {
; ---- print the ubyte in A in binary form (if Carry is set, a radix prefix '%' is printed as well)
%asm {{
stx P8ZP_SCRATCH_REG
sta P8ZP_SCRATCH_B1
bcc +
lda #'%'
jsr c64.CHROUT
+ ldy #8
- lda #'0'
asl P8ZP_SCRATCH_B1
bcc +
lda #'1'
+ jsr c64.CHROUT
dey
bne -
ldx P8ZP_SCRATCH_REG
rts
}}
}
asmsub print_uwbin (uword value @ AY, ubyte prefix @ Pc) clobbers(A,Y) {
; ---- print the uword in A/Y in binary form (if Carry is set, a radix prefix '%' is printed as well)
%asm {{
pha
tya
jsr print_ubbin
pla
clc
jmp print_ubbin
}}
}
asmsub print_uwhex (uword value @ AY, ubyte prefix @ Pc) clobbers(A,Y) {
; ---- print the uword in A/Y in hexadecimal form (4 digits)
; (if Carry is set, a radix prefix '$' is printed as well)
%asm {{
pha
tya
jsr print_ubhex
pla
clc
jmp print_ubhex
}}
}
asmsub print_uw0 (uword value @ AY) clobbers(A,Y) {
; ---- print the uword in A/Y in decimal form, with left padding 0s (5 positions total)
%asm {{
stx P8ZP_SCRATCH_REG
jsr conv.uword2decimal
ldy #0
- lda conv.uword2decimal.decTenThousands,y
beq +
jsr c64.CHROUT
iny
bne -
+ ldx P8ZP_SCRATCH_REG
rts
}}
}
asmsub print_uw (uword value @ AY) clobbers(A,Y) {
; ---- print the uword in A/Y in decimal form, without left padding 0s
%asm {{
stx P8ZP_SCRATCH_REG
jsr conv.uword2decimal
ldx P8ZP_SCRATCH_REG
ldy #0
- lda conv.uword2decimal.decTenThousands,y
beq _allzero
cmp #'0'
bne _gotdigit
iny
bne -
_gotdigit
jsr c64.CHROUT
iny
lda conv.uword2decimal.decTenThousands,y
bne _gotdigit
rts
_allzero
lda #'0'
jmp c64.CHROUT
}}
}
asmsub print_w (word value @ AY) clobbers(A,Y) {
; ---- print the (signed) word in A/Y in decimal form, without left padding 0's
%asm {{
cpy #0
bpl +
pha
lda #'-'
jsr c64.CHROUT
tya
eor #255
tay
pla
eor #255
clc
adc #1
bcc +
iny
+ jmp print_uw
}}
}
asmsub input_chars (uword buffer @ AY) clobbers(A) -> ubyte @ Y {
; ---- Input a string (max. 80 chars) from the keyboard. Returns length in Y. (string is terminated with a 0 byte as well)
; It assumes the keyboard is selected as I/O channel!
%asm {{
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
ldy #0 ; char counter = 0
- jsr c64.CHRIN
cmp #$0d ; return (ascii 13) pressed?
beq + ; yes, end.
sta (P8ZP_SCRATCH_W1),y ; else store char in buffer
iny
bne -
+ lda #0
sta (P8ZP_SCRATCH_W1),y ; finish string with 0 byte
rts
}}
}
asmsub setchr (ubyte col @X, ubyte row @Y, ubyte character @A) clobbers(A, Y) {
; ---- sets the character in the screen matrix at the given position
%asm {{
pha
tya
asl a
tay
lda _screenrows+1,y
sta _mod+2
txa
clc
adc _screenrows,y
sta _mod+1
bcc +
inc _mod+2
+ pla
_mod sta $ffff ; modified
rts
_screenrows .word $0400 + range(0, 1000, 40)
}}
}
asmsub getchr (ubyte col @A, ubyte row @Y) clobbers(Y) -> ubyte @ A {
; ---- get the character in the screen matrix at the given location
%asm {{
pha
tya
asl a
tay
lda setchr._screenrows+1,y
sta _mod+2
pla
clc
adc setchr._screenrows,y
sta _mod+1
bcc _mod
inc _mod+2
_mod lda $ffff ; modified
rts
}}
}
asmsub setclr (ubyte col @X, ubyte row @Y, ubyte color @A) clobbers(A, Y) {
; ---- set the color in A on the screen matrix at the given position
%asm {{
pha
tya
asl a
tay
lda _colorrows+1,y
sta _mod+2
txa
clc
adc _colorrows,y
sta _mod+1
bcc +
inc _mod+2
+ pla
_mod sta $ffff ; modified
rts
_colorrows .word $d800 + range(0, 1000, 40)
}}
}
asmsub getclr (ubyte col @A, ubyte row @Y) clobbers(Y) -> ubyte @ A {
; ---- get the color in the screen color matrix at the given location
%asm {{
pha
tya
asl a
tay
lda setclr._colorrows+1,y
sta _mod+2
pla
clc
adc setclr._colorrows,y
sta _mod+1
bcc _mod
inc _mod+2
_mod lda $ffff ; modified
rts
}}
}
sub setcc (ubyte column, ubyte row, ubyte char, ubyte charcolor) {
; ---- set char+color at the given position on the screen
%asm {{
lda row
asl a
tay
lda setchr._screenrows+1,y
sta _charmod+2
adc #$d4
sta _colormod+2
lda setchr._screenrows,y
clc
adc column
sta _charmod+1
sta _colormod+1
bcc +
inc _charmod+2
inc _colormod+2
+ lda char
_charmod sta $ffff ; modified
lda charcolor
_colormod sta $ffff ; modified
rts
}}
}
asmsub plot (ubyte col @ Y, ubyte row @ A) clobbers(A) {
; ---- safe wrapper around PLOT kernel routine, to save the X register.
%asm {{
stx P8ZP_SCRATCH_REG
tax
clc
jsr c64.PLOT
ldx P8ZP_SCRATCH_REG
rts
}}
}
asmsub width() clobbers(X,Y) -> ubyte @A {
; -- returns the text screen width (number of columns)
%asm {{
jsr c64.SCREEN
txa
rts
}}
}
asmsub height() clobbers(X, Y) -> ubyte @A {
; -- returns the text screen height (number of rows)
%asm {{
jsr c64.SCREEN
tya
rts
}}
}
}

View File

@ -1,741 +0,0 @@
; --- low level floating point assembly routines for the C64
ub2float .proc
; -- convert ubyte in SCRATCH_ZPB1 to float at address A/Y
; clobbers A, Y
stx c64.SCRATCH_ZPREGX
sta c64.SCRATCH_ZPWORD2
sty c64.SCRATCH_ZPWORD2+1
ldy c64.SCRATCH_ZPB1
jsr FREADUY
_fac_to_mem ldx c64.SCRATCH_ZPWORD2
ldy c64.SCRATCH_ZPWORD2+1
jsr MOVMF
ldx c64.SCRATCH_ZPREGX
rts
.pend
b2float .proc
; -- convert byte in SCRATCH_ZPB1 to float at address A/Y
; clobbers A, Y
stx c64.SCRATCH_ZPREGX
sta c64.SCRATCH_ZPWORD2
sty c64.SCRATCH_ZPWORD2+1
lda c64.SCRATCH_ZPB1
jsr FREADSA
jmp ub2float._fac_to_mem
.pend
uw2float .proc
; -- convert uword in SCRATCH_ZPWORD1 to float at address A/Y
stx c64.SCRATCH_ZPREGX
sta c64.SCRATCH_ZPWORD2
sty c64.SCRATCH_ZPWORD2+1
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr GIVUAYFAY
jmp ub2float._fac_to_mem
.pend
w2float .proc
; -- convert word in SCRATCH_ZPWORD1 to float at address A/Y
stx c64.SCRATCH_ZPREGX
sta c64.SCRATCH_ZPWORD2
sty c64.SCRATCH_ZPWORD2+1
ldy c64.SCRATCH_ZPWORD1
lda c64.SCRATCH_ZPWORD1+1
jsr GIVAYF
jmp ub2float._fac_to_mem
.pend
stack_b2float .proc
; -- b2float operating on the stack
inx
lda c64.ESTACK_LO,x
stx c64.SCRATCH_ZPREGX
jsr FREADSA
jmp push_fac1_as_result
.pend
stack_w2float .proc
; -- w2float operating on the stack
inx
ldy c64.ESTACK_LO,x
lda c64.ESTACK_HI,x
stx c64.SCRATCH_ZPREGX
jsr GIVAYF
jmp push_fac1_as_result
.pend
stack_ub2float .proc
; -- ub2float operating on the stack
inx
lda c64.ESTACK_LO,x
stx c64.SCRATCH_ZPREGX
tay
jsr FREADUY
jmp push_fac1_as_result
.pend
stack_uw2float .proc
; -- uw2float operating on the stack
inx
lda c64.ESTACK_LO,x
ldy c64.ESTACK_HI,x
stx c64.SCRATCH_ZPREGX
jsr GIVUAYFAY
jmp push_fac1_as_result
.pend
stack_float2w .proc ; also used for float2b
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr AYINT
ldx c64.SCRATCH_ZPREGX
lda $64
sta c64.ESTACK_HI,x
lda $65
sta c64.ESTACK_LO,x
dex
rts
.pend
stack_float2uw .proc ; also used for float2ub
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr GETADR
ldx c64.SCRATCH_ZPREGX
sta c64.ESTACK_HI,x
tya
sta c64.ESTACK_LO,x
dex
rts
.pend
push_float .proc
; ---- push mflpt5 in A/Y onto stack
; (taking 3 stack positions = 6 bytes of which 1 is padding)
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
ldy #0
lda (c64.SCRATCH_ZPWORD1),y
sta c64.ESTACK_LO,x
iny
lda (c64.SCRATCH_ZPWORD1),y
sta c64.ESTACK_HI,x
dex
iny
lda (c64.SCRATCH_ZPWORD1),y
sta c64.ESTACK_LO,x
iny
lda (c64.SCRATCH_ZPWORD1),y
sta c64.ESTACK_HI,x
dex
iny
lda (c64.SCRATCH_ZPWORD1),y
sta c64.ESTACK_LO,x
dex
rts
.pend
func_rndf .proc
; -- put a random floating point value on the stack
stx c64.SCRATCH_ZPREG
lda #1
jsr FREADSA
jsr RND ; rng into fac1
ldx #<_rndf_rnum5
ldy #>_rndf_rnum5
jsr MOVMF ; fac1 to mem X/Y
ldx c64.SCRATCH_ZPREG
lda #<_rndf_rnum5
ldy #>_rndf_rnum5
jmp push_float
_rndf_rnum5 .byte 0,0,0,0,0
.pend
push_float_from_indexed_var .proc
; -- push the float from the array at A/Y with index on stack, onto the stack.
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
jsr prog8_lib.pop_index_times_5
jsr prog8_lib.add_a_to_zpword
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jmp push_float
.pend
pop_float .proc
; ---- pops mflpt5 from stack to memory A/Y
; (frees 3 stack positions = 6 bytes of which 1 is padding)
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
ldy #4
inx
lda c64.ESTACK_LO,x
sta (c64.SCRATCH_ZPWORD1),y
dey
inx
lda c64.ESTACK_HI,x
sta (c64.SCRATCH_ZPWORD1),y
dey
lda c64.ESTACK_LO,x
sta (c64.SCRATCH_ZPWORD1),y
dey
inx
lda c64.ESTACK_HI,x
sta (c64.SCRATCH_ZPWORD1),y
dey
lda c64.ESTACK_LO,x
sta (c64.SCRATCH_ZPWORD1),y
rts
.pend
pop_float_fac1 .proc
; -- pops float from stack into FAC1
lda #<fmath_float1
ldy #>fmath_float1
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jmp MOVFM
.pend
pop_float_to_indexed_var .proc
; -- pop the float on the stack, to the memory in the array at A/Y indexed by the byte on stack
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
jsr prog8_lib.pop_index_times_5
jsr prog8_lib.add_a_to_zpword
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jmp pop_float
.pend
copy_float .proc
; -- copies the 5 bytes of the mflt value pointed to by SCRATCH_ZPWORD1,
; into the 5 bytes pointed to by A/Y. Clobbers A,Y.
sta c64.SCRATCH_ZPWORD2
sty c64.SCRATCH_ZPWORD2+1
ldy #0
lda (c64.SCRATCH_ZPWORD1),y
sta (c64.SCRATCH_ZPWORD2),y
iny
lda (c64.SCRATCH_ZPWORD1),y
sta (c64.SCRATCH_ZPWORD2),y
iny
lda (c64.SCRATCH_ZPWORD1),y
sta (c64.SCRATCH_ZPWORD2),y
iny
lda (c64.SCRATCH_ZPWORD1),y
sta (c64.SCRATCH_ZPWORD2),y
iny
lda (c64.SCRATCH_ZPWORD1),y
sta (c64.SCRATCH_ZPWORD2),y
rts
.pend
inc_var_f .proc
; -- add 1 to float pointed to by A/Y
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
stx c64.SCRATCH_ZPREGX
jsr MOVFM
lda #<FL_FONE
ldy #>FL_FONE
jsr FADD
ldx c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr MOVMF
ldx c64.SCRATCH_ZPREGX
rts
.pend
dec_var_f .proc
; -- subtract 1 from float pointed to by A/Y
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
stx c64.SCRATCH_ZPREGX
lda #<FL_FONE
ldy #>FL_FONE
jsr MOVFM
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr FSUB
ldx c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr MOVMF
ldx c64.SCRATCH_ZPREGX
rts
.pend
inc_indexed_var_f .proc
; -- add 1 to float in array pointed to by A/Y, at index X
pha
txa
sta c64.SCRATCH_ZPB1
asl a
asl a
clc
adc c64.SCRATCH_ZPB1
sta c64.SCRATCH_ZPB1
pla
clc
adc c64.SCRATCH_ZPB1
bcc +
iny
+ jmp inc_var_f
.pend
dec_indexed_var_f .proc
; -- subtract 1 to float in array pointed to by A/Y, at index X
pha
txa
sta c64.SCRATCH_ZPB1
asl a
asl a
clc
adc c64.SCRATCH_ZPB1
sta c64.SCRATCH_ZPB1
pla
clc
adc c64.SCRATCH_ZPB1
bcc +
iny
+ jmp dec_var_f
.pend
pop_2_floats_f2_in_fac1 .proc
; -- pop 2 floats from stack, load the second one in FAC1 as well
lda #<fmath_float2
ldy #>fmath_float2
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jsr pop_float
lda #<fmath_float2
ldy #>fmath_float2
jmp MOVFM
.pend
fmath_float1 .byte 0,0,0,0,0 ; storage for a mflpt5 value
fmath_float2 .byte 0,0,0,0,0 ; storage for a mflpt5 value
push_fac1_as_result .proc
; -- push the float in FAC1 onto the stack, and return from calculation
ldx #<fmath_float1
ldy #>fmath_float1
jsr MOVMF
lda #<fmath_float1
ldy #>fmath_float1
ldx c64.SCRATCH_ZPREGX
jmp push_float
.pend
pow_f .proc
; -- push f1 ** f2 on stack
lda #<fmath_float2
ldy #>fmath_float2
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jsr pop_float
stx c64.SCRATCH_ZPREGX
lda #<fmath_float1
ldy #>fmath_float1
jsr CONUPK ; fac2 = float1
lda #<fmath_float2
ldy #>fmath_float2
jsr FPWR
ldx c64.SCRATCH_ZPREGX
jmp push_fac1_as_result
.pend
div_f .proc
; -- push f1/f2 on stack
jsr pop_2_floats_f2_in_fac1
stx c64.SCRATCH_ZPREGX
lda #<fmath_float1
ldy #>fmath_float1
jsr FDIV
jmp push_fac1_as_result
.pend
add_f .proc
; -- push f1+f2 on stack
jsr pop_2_floats_f2_in_fac1
stx c64.SCRATCH_ZPREGX
lda #<fmath_float1
ldy #>fmath_float1
jsr FADD
jmp push_fac1_as_result
.pend
sub_f .proc
; -- push f1-f2 on stack
jsr pop_2_floats_f2_in_fac1
stx c64.SCRATCH_ZPREGX
lda #<fmath_float1
ldy #>fmath_float1
jsr FSUB
jmp push_fac1_as_result
.pend
mul_f .proc
; -- push f1*f2 on stack
jsr pop_2_floats_f2_in_fac1
stx c64.SCRATCH_ZPREGX
lda #<fmath_float1
ldy #>fmath_float1
jsr FMULT
jmp push_fac1_as_result
.pend
neg_f .proc
; -- push -flt back on stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr NEGOP
jmp push_fac1_as_result
.pend
abs_f .proc
; -- push abs(float) on stack (as float)
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr ABS
jmp push_fac1_as_result
.pend
equal_f .proc
; -- are the two mflpt5 numbers on the stack identical?
inx
inx
inx
inx
lda c64.ESTACK_LO-3,x
cmp c64.ESTACK_LO,x
bne _equals_false
lda c64.ESTACK_LO-2,x
cmp c64.ESTACK_LO+1,x
bne _equals_false
lda c64.ESTACK_LO-1,x
cmp c64.ESTACK_LO+2,x
bne _equals_false
lda c64.ESTACK_HI-2,x
cmp c64.ESTACK_HI+1,x
bne _equals_false
lda c64.ESTACK_HI-1,x
cmp c64.ESTACK_HI+2,x
bne _equals_false
_equals_true lda #1
_equals_store inx
sta c64.ESTACK_LO+1,x
rts
_equals_false lda #0
beq _equals_store
.pend
notequal_f .proc
; -- are the two mflpt5 numbers on the stack different?
jsr equal_f
eor #1 ; invert the result
sta c64.ESTACK_LO+1,x
rts
.pend
less_f .proc
; -- is f1 < f2?
jsr compare_floats
cmp #255
beq compare_floats._return_true
bne compare_floats._return_false
.pend
lesseq_f .proc
; -- is f1 <= f2?
jsr compare_floats
cmp #255
beq compare_floats._return_true
cmp #0
beq compare_floats._return_true
bne compare_floats._return_false
.pend
greater_f .proc
; -- is f1 > f2?
jsr compare_floats
cmp #1
beq compare_floats._return_true
bne compare_floats._return_false
.pend
greatereq_f .proc
; -- is f1 >= f2?
jsr compare_floats
cmp #1
beq compare_floats._return_true
cmp #0
beq compare_floats._return_true
bne compare_floats._return_false
.pend
compare_floats .proc
lda #<fmath_float2
ldy #>fmath_float2
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jsr MOVFM ; fac1 = flt1
lda #<fmath_float2
ldy #>fmath_float2
stx c64.SCRATCH_ZPREG
jsr FCOMP ; A = flt1 compared with flt2 (0=equal, 1=flt1>flt2, 255=flt1<flt2)
ldx c64.SCRATCH_ZPREG
rts
_return_false lda #0
_return_result sta c64.ESTACK_LO,x
dex
rts
_return_true lda #1
bne _return_result
.pend
func_sin .proc
; -- push sin(f) back onto stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr SIN
jmp push_fac1_as_result
.pend
func_cos .proc
; -- push cos(f) back onto stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr COS
jmp push_fac1_as_result
.pend
func_tan .proc
; -- push tan(f) back onto stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr TAN
jmp push_fac1_as_result
.pend
func_atan .proc
; -- push atan(f) back onto stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr ATN
jmp push_fac1_as_result
.pend
func_ln .proc
; -- push ln(f) back onto stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr LOG
jmp push_fac1_as_result
.pend
func_log2 .proc
; -- push log base 2, ln(f)/ln(2), back onto stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr LOG
jsr MOVEF
lda #<c64.FL_LOG2
ldy #>c64.FL_LOG2
jsr MOVFM
jsr FDIVT
jmp push_fac1_as_result
.pend
func_sqrt .proc
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr SQR
jmp push_fac1_as_result
.pend
func_rad .proc
; -- convert degrees to radians (d * pi / 180)
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
lda #<_pi_div_180
ldy #>_pi_div_180
jsr FMULT
jmp push_fac1_as_result
_pi_div_180 .byte 123, 14, 250, 53, 18 ; pi / 180
.pend
func_deg .proc
; -- convert radians to degrees (d * (1/ pi * 180))
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
lda #<_one_over_pi_div_180
ldy #>_one_over_pi_div_180
jsr FMULT
jmp push_fac1_as_result
_one_over_pi_div_180 .byte 134, 101, 46, 224, 211 ; 1 / (pi * 180)
.pend
func_round .proc
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr FADDH
jsr INT
jmp push_fac1_as_result
.pend
func_floor .proc
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr INT
jmp push_fac1_as_result
.pend
func_ceil .proc
; -- ceil: tr = int(f); if tr==f -> return else return tr+1
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
ldx #<fmath_float1
ldy #>fmath_float1
jsr MOVMF
jsr INT
lda #<fmath_float1
ldy #>fmath_float1
jsr FCOMP
cmp #0
beq +
lda #<FL_FONE
ldy #>FL_FONE
jsr FADD
+ jmp push_fac1_as_result
.pend
func_any_f .proc
inx
lda c64.ESTACK_LO,x ; array size
sta c64.SCRATCH_ZPB1
asl a
asl a
clc
adc c64.SCRATCH_ZPB1 ; times 5 because of float
jmp prog8_lib.func_any_b._entry
.pend
func_all_f .proc
inx
jsr prog8_lib.peek_address
lda c64.ESTACK_LO,x ; array size
sta c64.SCRATCH_ZPB1
asl a
asl a
clc
adc c64.SCRATCH_ZPB1 ; times 5 because of float
tay
dey
- lda (c64.SCRATCH_ZPWORD1),y
clc
dey
adc (c64.SCRATCH_ZPWORD1),y
dey
adc (c64.SCRATCH_ZPWORD1),y
dey
adc (c64.SCRATCH_ZPWORD1),y
dey
adc (c64.SCRATCH_ZPWORD1),y
dey
cmp #0
beq +
cpy #255
bne -
lda #1
sta c64.ESTACK_LO+1,x
rts
+ sta c64.ESTACK_LO+1,x
rts
.pend
func_max_f .proc
lda #255
sta _minmax_cmp+1
lda #<_largest_neg_float
ldy #>_largest_neg_float
_minmax_entry jsr MOVFM
jsr prog8_lib.pop_array_and_lengthmin1Y
stx c64.SCRATCH_ZPREGX
- sty c64.SCRATCH_ZPREG
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr FCOMP
_minmax_cmp cmp #255 ; modified
bne +
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr MOVFM
+ lda c64.SCRATCH_ZPWORD1
clc
adc #5
sta c64.SCRATCH_ZPWORD1
bcc +
inc c64.SCRATCH_ZPWORD1+1
+ ldy c64.SCRATCH_ZPREG
dey
cpy #255
bne -
jmp push_fac1_as_result
_largest_neg_float .byte 255,255,255,255,255 ; largest negative float -1.7014118345e+38
.pend
func_min_f .proc
lda #1
sta func_max_f._minmax_cmp+1
lda #<_largest_pos_float
ldy #>_largest_pos_float
jmp func_max_f._minmax_entry
_largest_pos_float .byte 255,127,255,255,255 ; largest positive float
rts
.pend
func_sum_f .proc
lda #<FL_ZERO
ldy #>FL_ZERO
jsr MOVFM
jsr prog8_lib.pop_array_and_lengthmin1Y
stx c64.SCRATCH_ZPREGX
- sty c64.SCRATCH_ZPREG
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr FADD
ldy c64.SCRATCH_ZPREG
dey
cpy #255
beq +
lda c64.SCRATCH_ZPWORD1
clc
adc #5
sta c64.SCRATCH_ZPWORD1
bcc -
inc c64.SCRATCH_ZPWORD1+1
bne -
+ jmp push_fac1_as_result
.pend
sign_f .proc
jsr pop_float_fac1
jsr SIGN
sta c64.ESTACK_LO,x
dex
rts
.pend

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,453 @@
; Prog8 definitions for number conversions routines.
;
; Written by Irmen de Jong (irmen@razorvine.net) - license: GNU GPL 3.0
;
; indent format: TABS, size=8
conv {
; ----- number conversions to decimal strings
asmsub ubyte2decimal (ubyte value @ A) -> ubyte @ Y, ubyte @ A, ubyte @ X {
; ---- A to decimal string in Y/A/X (100s in Y, 10s in A, 1s in X)
%asm {{
ldy #uword2decimal.ASCII_0_OFFSET
bne uword2decimal.hex_try200
rts
}}
}
asmsub uword2decimal (uword value @ AY) -> ubyte @Y, ubyte @A, ubyte @X {
; ---- convert 16 bit uword in A/Y to decimal
; output in uword2decimal.decTenThousands, decThousands, decHundreds, decTens, decOnes
; (these are terminated by a zero byte so they can be easily printed)
; also returns Y = 100's, A = 10's, X = 1's
%asm {{
;Convert 16 bit Hex to Decimal (0-65535) Rev 2
;By Omegamatrix Further optimizations by tepples
; routine from http://forums.nesdev.com/viewtopic.php?f=2&t=11341&start=15
;HexToDec99
; start in A
; end with A = 10's, decOnes (also in X)
;HexToDec255
; start in A
; end with Y = 100's, A = 10's, decOnes (also in X)
;HexToDec999
; start with A = high byte, Y = low byte
; end with Y = 100's, A = 10's, decOnes (also in X)
; requires 1 extra temp register on top of decOnes, could combine
; these two if HexToDec65535 was eliminated...
;HexToDec65535
; start with A/Y (low/high) as 16 bit value
; end with decTenThousand, decThousand, Y = 100's, A = 10's, decOnes (also in X)
; (irmen: I store Y and A in decHundreds and decTens too, so all of it can be easily printed)
ASCII_0_OFFSET = $30
temp = P8ZP_SCRATCH_B1 ; byte in zeropage
hexHigh = P8ZP_SCRATCH_W1 ; byte in zeropage
hexLow = P8ZP_SCRATCH_W1+1 ; byte in zeropage
HexToDec65535; SUBROUTINE
sty hexHigh ;3 @9
sta hexLow ;3 @12
tya
tax ;2 @14
lsr a ;2 @16
lsr a ;2 @18 integer divide 1024 (result 0-63)
cpx #$A7 ;2 @20 account for overflow of multiplying 24 from 43,000 ($A7F8) onward,
adc #1 ;2 @22 we can just round it to $A700, and the divide by 1024 is fine...
;at this point we have a number 1-65 that we have to times by 24,
;add to original sum, and Mod 1024 to get a remainder 0-999
sta temp ;3 @25
asl a ;2 @27
adc temp ;3 @30 x3
tay ;2 @32
lsr a ;2 @34
lsr a ;2 @36
lsr a ;2 @38
lsr a ;2 @40
lsr a ;2 @42
tax ;2 @44
tya ;2 @46
asl a ;2 @48
asl a ;2 @50
asl a ;2 @52
clc ;2 @54
adc hexLow ;3 @57
sta hexLow ;3 @60
txa ;2 @62
adc hexHigh ;3 @65
sta hexHigh ;3 @68
ror a ;2 @70
lsr a ;2 @72
tay ;2 @74 integer divide 1,000 (result 0-65)
lsr a ;2 @76 split the 1,000 and 10,000 digit
tax ;2 @78
lda ShiftedBcdTab,x ;4 @82
tax ;2 @84
rol a ;2 @86
and #$0F ;2 @88
ora #ASCII_0_OFFSET
sta decThousands ;3 @91
txa ;2 @93
lsr a ;2 @95
lsr a ;2 @97
lsr a ;2 @99
ora #ASCII_0_OFFSET
sta decTenThousands ;3 @102
lda hexLow ;3 @105
cpy temp ;3 @108
bmi _doSubtract ;2³ @110/111
beq _useZero ;2³ @112/113
adc #23 + 24 ;2 @114
_doSubtract
sbc #23 ;2 @116
sta hexLow ;3 @119
_useZero
lda hexHigh ;3 @122
sbc #0 ;2 @124
Start100s
and #$03 ;2 @126
tax ;2 @128 0,1,2,3
cmp #2 ;2 @130
rol a ;2 @132 0,2,5,7
ora #ASCII_0_OFFSET
tay ;2 @134 Y = Hundreds digit
lda hexLow ;3 @137
adc Mod100Tab,x ;4 @141 adding remainder of 256, 512, and 256+512 (all mod 100)
bcs hex_doSub200 ;2³ @143/144
hex_try200
cmp #200 ;2 @145
bcc hex_try100 ;2³ @147/148
hex_doSub200
iny ;2 @149
iny ;2 @151
sbc #200 ;2 @153
hex_try100
cmp #100 ;2 @155
bcc HexToDec99 ;2³ @157/158
iny ;2 @159
sbc #100 ;2 @161
HexToDec99; SUBROUTINE
lsr a ;2 @163
tax ;2 @165
lda ShiftedBcdTab,x ;4 @169
tax ;2 @171
rol a ;2 @173
and #$0F ;2 @175
ora #ASCII_0_OFFSET
sta decOnes ;3 @178
txa ;2 @180
lsr a ;2 @182
lsr a ;2 @184
lsr a ;2 @186
ora #ASCII_0_OFFSET
; irmen: load X with ones, and store Y and A too, for easy printing afterwards
sty decHundreds
sta decTens
ldx decOnes
rts ;6 @192 Y=hundreds, A = tens digit, X=ones digit
HexToDec999; SUBROUTINE
sty hexLow ;3 @9
jmp Start100s ;3 @12
Mod100Tab
.byte 0,56,12,56+12
ShiftedBcdTab
.byte $00,$01,$02,$03,$04,$08,$09,$0A,$0B,$0C
.byte $10,$11,$12,$13,$14,$18,$19,$1A,$1B,$1C
.byte $20,$21,$22,$23,$24,$28,$29,$2A,$2B,$2C
.byte $30,$31,$32,$33,$34,$38,$39,$3A,$3B,$3C
.byte $40,$41,$42,$43,$44,$48,$49,$4A,$4B,$4C
decTenThousands .byte 0
decThousands .byte 0
decHundreds .byte 0
decTens .byte 0
decOnes .byte 0
.byte 0 ; zero-terminate the decimal output string
}}
}
; ----- utility functions ----
asmsub byte2decimal (byte value @ A) -> ubyte @ Y, ubyte @ A, ubyte @ X {
; ---- A (signed byte) to decimal string in Y/A/X (100s in Y, 10s in A, 1s in X)
; note: if the number is negative, you have to deal with the '-' yourself!
%asm {{
cmp #0
bpl +
eor #255
clc
adc #1
+ jmp ubyte2decimal
}}
}
asmsub ubyte2hex (ubyte value @ A) -> ubyte @ A, ubyte @ Y {
; ---- A to hex petscii string in AY (first hex char in A, second hex char in Y)
%asm {{
stx P8ZP_SCRATCH_REG
pha
and #$0f
tax
ldy _hex_digits,x
pla
lsr a
lsr a
lsr a
lsr a
tax
lda _hex_digits,x
ldx P8ZP_SCRATCH_REG
rts
_hex_digits .text "0123456789abcdef" ; can probably be reused for other stuff as well
}}
}
asmsub uword2hex (uword value @ AY) clobbers(A,Y) {
; ---- convert 16 bit uword in A/Y into 4-character hexadecimal string 'uword2hex.output' (0-terminated)
%asm {{
sta P8ZP_SCRATCH_REG
tya
jsr ubyte2hex
sta output
sty output+1
lda P8ZP_SCRATCH_REG
jsr ubyte2hex
sta output+2
sty output+3
rts
output .text "0000", $00 ; 0-terminated output buffer (to make printing easier)
}}
}
asmsub str2ubyte(str string @ AY) clobbers(Y) -> ubyte @A {
; -- returns the unsigned byte value of the string number argument in AY
; the number may NOT be preceded by a + sign and may NOT contain spaces
; (any non-digit character will terminate the number string that is parsed)
%asm {{
jmp str2uword
}}
}
asmsub str2byte(str string @ AY) clobbers(Y) -> ubyte @A {
; -- returns the signed byte value of the string number argument in AY
; the number may be preceded by a + or - sign but may NOT contain spaces
; (any non-digit character will terminate the number string that is parsed)
%asm {{
jmp str2word
}}
}
asmsub str2uword(str string @ AY) -> uword @ AY {
; -- returns the unsigned word value of the string number argument in AY
; the number may NOT be preceded by a + sign and may NOT contain spaces
; (any non-digit character will terminate the number string that is parsed)
%asm {{
_result = P8ZP_SCRATCH_W2
sta _mod+1
sty _mod+2
ldy #0
sty _result
sty _result+1
_mod lda $ffff,y ; modified
sec
sbc #48
bpl +
_done ; return result
lda _result
ldy _result+1
rts
+ cmp #10
bcs _done
; add digit to result
pha
jsr _result_times_10
pla
clc
adc _result
sta _result
bcc +
inc _result+1
+ iny
bne _mod
; never reached
_result_times_10 ; (W*4 + W)*2
lda _result+1
sta P8ZP_SCRATCH_REG
lda _result
asl a
rol P8ZP_SCRATCH_REG
asl a
rol P8ZP_SCRATCH_REG
clc
adc _result
sta _result
lda P8ZP_SCRATCH_REG
adc _result+1
asl _result
rol a
sta _result+1
rts
}}
}
asmsub str2word(str string @ AY) -> word @ AY {
; -- returns the signed word value of the string number argument in AY
; the number may be preceded by a + or - sign but may NOT contain spaces
; (any non-digit character will terminate the number string that is parsed)
%asm {{
_result = P8ZP_SCRATCH_W2
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
ldy #0
sty _result
sty _result+1
sty _negative
lda (P8ZP_SCRATCH_W1),y
cmp #'+'
bne +
iny
+ cmp #'-'
bne _parse
inc _negative
iny
_parse lda (P8ZP_SCRATCH_W1),y
sec
sbc #48
bpl _digit
_done ; return result
lda _negative
beq +
sec
lda #0
sbc _result
sta _result
lda #0
sbc _result+1
sta _result+1
+ lda _result
ldy _result+1
rts
_digit cmp #10
bcs _done
; add digit to result
pha
jsr str2uword._result_times_10
pla
clc
adc _result
sta _result
bcc +
inc _result+1
+ iny
bne _parse
; never reached
_negative .byte 0
}}
}
asmsub hex2uword(str string @ AY) -> uword @AY {
; -- hexadecimal string with or without '$' to uword.
; string may be in petscii or c64-screencode encoding.
%asm {{
sta P8ZP_SCRATCH_W2
sty P8ZP_SCRATCH_W2+1
ldy #0
sty P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
_loop ldy #0
sty P8ZP_SCRATCH_B1
lda (P8ZP_SCRATCH_W2),y
beq _stop
cmp #'$'
beq _skip
cmp #7
bcc _add_nine
cmp #'9'
beq _calc
bcs _add_nine
_calc asl P8ZP_SCRATCH_W1
rol P8ZP_SCRATCH_W1+1
asl P8ZP_SCRATCH_W1
rol P8ZP_SCRATCH_W1+1
asl P8ZP_SCRATCH_W1
rol P8ZP_SCRATCH_W1+1
asl P8ZP_SCRATCH_W1
rol P8ZP_SCRATCH_W1+1
and #$0f
clc
adc P8ZP_SCRATCH_B1
ora P8ZP_SCRATCH_W1
sta P8ZP_SCRATCH_W1
_skip inc P8ZP_SCRATCH_W2
bne _loop
inc P8ZP_SCRATCH_W2+1
bne _loop
_stop lda P8ZP_SCRATCH_W1
ldy P8ZP_SCRATCH_W1+1
rts
_add_nine ldy #9
sty P8ZP_SCRATCH_B1
bne _calc
}}
}
asmsub bin2uword(str string @ AY) -> uword @AY {
; -- binary string with or without '%' to uword.
%asm {{
sta P8ZP_SCRATCH_W2
sty P8ZP_SCRATCH_W2+1
ldy #0
sty P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
_loop lda (P8ZP_SCRATCH_W2),y
beq _stop
cmp #'%'
beq +
asl P8ZP_SCRATCH_W1
rol P8ZP_SCRATCH_W1+1
and #1
ora P8ZP_SCRATCH_W1
sta P8ZP_SCRATCH_W1
+ inc P8ZP_SCRATCH_W2
bne _loop
inc P8ZP_SCRATCH_W2+1
bne _loop
_stop lda P8ZP_SCRATCH_W1
ldy P8ZP_SCRATCH_W1+1
rts
}}
}
}

View File

@ -0,0 +1,154 @@
; Prog8 definitions for floating point handling on the CommanderX16
;
; Written by Irmen de Jong (irmen@razorvine.net) - license: GNU GPL 3.0
;
; indent format: TABS, size=8
%target cx16
%option enable_floats
floats {
; ---- this block contains C-64 floating point related functions ----
const float PI = 3.141592653589793
const float TWOPI = 6.283185307179586
; ---- ROM float functions ----
; note: the fac1 and fac2 are working registers and take 6 bytes each,
; floats in memory (and rom) are stored in 5-byte MFLPT packed format.
; note: fac1/2 might get clobbered even if not mentioned in the function's name.
; note: for subtraction and division, the left operand is in fac2, the right operand in fac1.
romsub $fe00 = AYINT() clobbers(A,X,Y) ; fac1-> signed word in 100-101 ($64-$65) MSB FIRST. (might throw ILLEGAL QUANTITY)
; GIVAYF: signed word in Y/A (note different lsb/msb order) -> float in fac1
; there is also floats.GIVUAYFAY - unsigned word in A/Y (lo/hi) to fac1
; (tip: use GIVAYFAY to use A/Y input; lo/hi switched to normal order)
romsub $fe03 = GIVAYF(ubyte lo @ Y, ubyte hi @ A) clobbers(A,X,Y)
; fac1 -> unsigned word in Y/A (might throw ILLEGAL QUANTITY) (result also in $14/15)
; (tip: use GETADRAY to get A/Y output; lo/hi switched to normal little endian order)
romsub $fe06 = GETADR() clobbers(X) -> ubyte @ Y, ubyte @ A
romsub $fe09 = FADDH() clobbers(A,X,Y) ; fac1 += 0.5, for rounding- call this before INT
romsub $fe0c = FSUB(uword mflpt @ AY) clobbers(A,X,Y) ; fac1 = mflpt from A/Y - fac1
romsub $fe0f = FSUBT() clobbers(A,X,Y) ; fac1 = fac2-fac1 mind the order of the operands
romsub $fe12 = FADD(uword mflpt @ AY) clobbers(A,X,Y) ; fac1 += mflpt value from A/Y
romsub $fe15 = FADDT() clobbers(A,X,Y) ; fac1 += fac2
romsub $fe1b = ZEROFC() clobbers(A,X,Y) ; fac1 = 0
romsub $fe1e = NORMAL() clobbers(A,X,Y) ; normalize fac1 (?)
romsub $fe24 = LOG() clobbers(A,X,Y) ; fac1 = LN(fac1) (natural log)
romsub $fe27 = FMULT(uword mflpt @ AY) clobbers(A,X,Y) ; fac1 *= mflpt value from A/Y
romsub $fe2a = FMULTT() clobbers(A,X,Y) ; fac1 *= fac2
romsub $fe33 = CONUPK(uword mflpt @ AY) clobbers(A,Y) ; load mflpt value from memory in A/Y into fac2
romsub $fe36 = MUL10() clobbers(A,X,Y) ; fac1 *= 10
romsub $fe3c = DIV10() clobbers(A,X,Y) ; fac1 /= 10 , CAUTION: result is always positive!
romsub $fe3f = FDIV(uword mflpt @ AY) clobbers(A,X,Y) ; fac1 = mflpt in A/Y / fac1 (remainder in fac2)
romsub $fe42 = FDIVT() clobbers(A,X,Y) ; fac1 = fac2/fac1 (remainder in fac2) mind the order of the operands
romsub $fe48 = MOVFM(uword mflpt @ AY) clobbers(A,Y) ; load mflpt value from memory in A/Y into fac1
romsub $fe4b = MOVMF(uword mflpt @ XY) clobbers(A,Y) ; store fac1 to memory X/Y as 5-byte mflpt
romsub $fe4e = MOVFA() clobbers(A,X) ; copy fac2 to fac1
romsub $fe51 = MOVAF() clobbers(A,X) ; copy fac1 to fac2 (rounded)
romsub $fe54 = MOVEF() clobbers(A,X) ; copy fac1 to fac2
romsub $fe5a = SIGN() -> ubyte @ A ; SIGN(fac1) to A, $ff, $0, $1 for negative, zero, positive
romsub $fe5d = SGN() clobbers(A,X,Y) ; fac1 = SGN(fac1), result of SIGN (-1, 0 or 1)
romsub $fe60 = FREADSA(byte value @ A) clobbers(A,X,Y) ; 8 bit signed A -> float in fac1
romsub $fe6c = ABS() ; fac1 = ABS(fac1)
romsub $fe6f = FCOMP(uword mflpt @ AY) clobbers(X,Y) -> ubyte @ A ; A = compare fac1 to mflpt in A/Y, 0=equal 1=fac1 is greater, 255=fac1 is less than
romsub $fe78 = INT() clobbers(A,X,Y) ; INT() truncates, use FADDH first to round instead of trunc
romsub $fe7e = FINLOG(byte value @A) clobbers (A, X, Y) ; fac1 += signed byte in A
romsub $fe81 = FOUT() clobbers(X) -> uword @ AY ; fac1 -> string, address returned in AY
romsub $fe8a = SQR() clobbers(A,X,Y) ; fac1 = SQRT(fac1)
romsub $fe8d = FPWRT() clobbers(A,X,Y) ; fac1 = fac2 ** fac1
romsub $fe93 = NEGOP() clobbers(A) ; switch the sign of fac1
romsub $fe96 = EXP() clobbers(A,X,Y) ; fac1 = EXP(fac1) (e ** fac1)
romsub $fe9f = RND2(byte value @A) clobbers(A,X,Y) ; fac1 = RND(A) float random number generator
romsub $fea2 = RND() clobbers(A,X,Y) ; fac1 = RND(fac1) float random number generator
romsub $fea5 = COS() clobbers(A,X,Y) ; fac1 = COS(fac1)
romsub $fea8 = SIN() clobbers(A,X,Y) ; fac1 = SIN(fac1)
romsub $feab = TAN() clobbers(A,X,Y) ; fac1 = TAN(fac1)
romsub $feae = ATN() clobbers(A,X,Y) ; fac1 = ATN(fac1)
asmsub GIVUAYFAY (uword value @ AY) clobbers(A,X,Y) {
; ---- unsigned 16 bit word in A/Y (lo/hi) to fac1
%asm {{
phx
sta P8ZP_SCRATCH_W2
sty P8ZP_SCRATCH_B1
tya
ldy P8ZP_SCRATCH_W2
jsr GIVAYF ; load it as signed... correct afterwards
lda P8ZP_SCRATCH_B1
bpl +
lda #<_flt65536
ldy #>_flt65536
jsr FADD
+ plx
rts
_flt65536 .byte 145,0,0,0,0 ; 65536.0
}}
}
asmsub GIVAYFAY (uword value @ AY) clobbers(A,X,Y) {
; ---- signed 16 bit word in A/Y (lo/hi) to float in fac1
%asm {{
sta P8ZP_SCRATCH_W2
tya
ldy P8ZP_SCRATCH_W2
jmp GIVAYF ; this uses the inverse order, Y/A
}}
}
asmsub FTOSWRDAY () clobbers(X) -> uword @ AY {
; ---- fac1 to signed word in A/Y
%asm {{
jsr FTOSWORDYA ; note the inverse Y/A order
sta P8ZP_SCRATCH_REG
tya
ldy P8ZP_SCRATCH_REG
rts
}}
}
asmsub GETADRAY () clobbers(X) -> uword @ AY {
; ---- fac1 to unsigned word in A/Y
%asm {{
jsr GETADR ; this uses the inverse order, Y/A
sta P8ZP_SCRATCH_B1
tya
ldy P8ZP_SCRATCH_B1
rts
}}
}
sub print_f (float value) {
; ---- prints the floating point value (without a newline).
%asm {{
phx
lda #<value
ldy #>value
jsr MOVFM ; load float into fac1
jsr FOUT ; fac1 to string in A/Y
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
ldy #0
- lda (P8ZP_SCRATCH_W1),y
beq +
jsr c64.CHROUT
iny
bne -
+ plx
rts
}}
}
%asminclude "library:c64/floats.asm", ""
%asminclude "library:c64/floats_funcs.asm", ""
}

View File

@ -0,0 +1,164 @@
%target cx16
%import syslib
%import textio
; bitmap pixel graphics module for the CommanderX16
; wraps the graphics functions that are in ROM.
; only black/white monchrome 320x200 for now.
graphics {
const uword WIDTH = 320
const ubyte HEIGHT = 200
sub enable_bitmap_mode() {
; enable bitmap screen, erase it and set colors to black/white.
void cx16.screen_set_mode($80)
cx16.r0 = 0
cx16.GRAPH_init()
clear_screen(1, 0)
}
sub disable_bitmap_mode() {
; enables text mode, erase the text screen, color white
void cx16.screen_set_mode(2)
txt.fill_screen(' ', 1) ; TODO doesn't seem to fully clear the text screen after returning from gfx mode
}
sub clear_screen(ubyte pixelcolor, ubyte bgcolor) {
cx16.GRAPH_set_colors(pixelcolor, pixelcolor, bgcolor)
cx16.GRAPH_clear()
}
sub line(uword @zp x1, ubyte @zp y1, uword @zp x2, ubyte @zp y2) {
cx16.r0 = x1
cx16.r1 = y1
cx16.r2 = x2
cx16.r3 = y2
cx16.GRAPH_draw_line()
}
sub circle(uword xcenter, ubyte ycenter, ubyte radius) {
;cx16.r0 = xcenter - radius/2
;cx16.r1 = ycenter - radius/2
;cx16.r2 = radius*2
;cx16.r3 = radius*2
;cx16.GRAPH_draw_oval(false) ; TODO currently is not implemented on cx16, does a BRK
; Midpoint algorithm
ubyte @zp xx = radius
ubyte @zp yy = 0
byte @zp decisionOver2 = 1-xx as byte
while xx>=yy {
cx16.r0 = xcenter + xx
cx16.r1 = ycenter + yy
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
cx16.r0 = xcenter - xx
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
cx16.r0 = xcenter + xx
cx16.r1 = ycenter - yy
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
cx16.r0 = xcenter - xx
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
cx16.r0 = xcenter + yy
cx16.r1 = ycenter + xx
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
cx16.r0 = xcenter - yy
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
cx16.r0 = xcenter + yy
cx16.r1 = ycenter - xx
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
cx16.r0 = xcenter - yy
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
yy++
if decisionOver2<=0 {
decisionOver2 += 2*yy+1
} else {
xx--
decisionOver2 += 2*(yy-xx)+1
}
}
}
sub disc(uword xcenter, ubyte ycenter, ubyte radius) {
; cx16.r0 = xcenter - radius/2
; cx16.r1 = ycenter - radius/2
; cx16.r2 = radius*2
; cx16.r3 = radius*2
; cx16.GRAPH_draw_oval(true) ; TODO currently is not implemented on cx16, does a BRK
ubyte xx = radius
ubyte yy = 0
byte decisionOver2 = 1-xx as byte
while xx>=yy {
ubyte ycenter_plus_yy = ycenter + yy
ubyte ycenter_min_yy = ycenter - yy
ubyte ycenter_plus_xx = ycenter + xx
ubyte ycenter_min_xx = ycenter - xx
uword @zp plotx
for plotx in xcenter to xcenter+xx {
cx16.r0 = plotx
cx16.r1 = ycenter_plus_yy
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
cx16.r1 = ycenter_min_yy
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
}
for plotx in xcenter-xx to xcenter-1 {
cx16.r0 = plotx
cx16.r1 = ycenter_plus_yy
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
cx16.r1 = ycenter_min_yy
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
}
for plotx in xcenter to xcenter+yy {
cx16.r0 = plotx
cx16.r1 = ycenter_plus_xx
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
cx16.r1 = ycenter_min_xx
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
}
for plotx in xcenter-yy to xcenter {
cx16.r0 = plotx
cx16.r1 = ycenter_plus_xx
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
cx16.r1 = ycenter_min_xx
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
}
yy++
if decisionOver2<=0
decisionOver2 += 2*yy+1
else {
xx--
decisionOver2 += 2*(yy-xx)+1
}
}
}
sub plot(uword plotx, ubyte ploty) {
cx16.r0 = plotx
cx16.r1 = ploty
cx16.FB_cursor_position()
cx16.FB_set_pixel(1)
}
}

View File

@ -0,0 +1,291 @@
; Prog8 definitions for the CommanderX16
; Including memory registers, I/O registers, Basic and Kernal subroutines.
;
; Written by Irmen de Jong (irmen@razorvine.net) - license: GNU GPL 3.0
;
; indent format: TABS, size=8
%target cx16
c64 {
; ---- kernal routines, these are the same as on the Commodore-64 (hence the same block name) ----
; STROUT --> use txt.print
; CLEARSCR -> use txt.clear_screen
; HOMECRSR -> use txt.plot
romsub $FF81 = CINT() clobbers(A,X,Y) ; (alias: SCINIT) initialize screen editor and video chip
romsub $FF84 = IOINIT() clobbers(A, X) ; initialize I/O devices (CIA, SID, IRQ)
romsub $FF87 = RAMTAS() clobbers(A,X,Y) ; initialize RAM, tape buffer, screen
romsub $FF8A = RESTOR() clobbers(A,X,Y) ; restore default I/O vectors
romsub $FF8D = VECTOR(uword userptr @ XY, ubyte dir @ Pc) clobbers(A,Y) ; read/set I/O vector table
romsub $FF90 = SETMSG(ubyte value @ A) ; set Kernal message control flag
romsub $FF93 = SECOND(ubyte address @ A) clobbers(A) ; (alias: LSTNSA) send secondary address after LISTEN
romsub $FF96 = TKSA(ubyte address @ A) clobbers(A) ; (alias: TALKSA) send secondary address after TALK
romsub $FF99 = MEMTOP(uword address @ XY, ubyte dir @ Pc) -> uword @ XY ; read/set top of memory pointer
romsub $FF9C = MEMBOT(uword address @ XY, ubyte dir @ Pc) -> uword @ XY ; read/set bottom of memory pointer
romsub $FF9F = SCNKEY() clobbers(A,X,Y) ; scan the keyboard
romsub $FFA2 = SETTMO(ubyte timeout @ A) ; set time-out flag for IEEE bus
romsub $FFA5 = ACPTR() -> ubyte @ A ; (alias: IECIN) input byte from serial bus
romsub $FFA8 = CIOUT(ubyte databyte @ A) ; (alias: IECOUT) output byte to serial bus
romsub $FFAB = UNTLK() clobbers(A) ; command serial bus device to UNTALK
romsub $FFAE = UNLSN() clobbers(A) ; command serial bus device to UNLISTEN
romsub $FFB1 = LISTEN(ubyte device @ A) clobbers(A) ; command serial bus device to LISTEN
romsub $FFB4 = TALK(ubyte device @ A) clobbers(A) ; command serial bus device to TALK
romsub $FFB7 = READST() -> ubyte @ A ; read I/O status word
romsub $FFBA = SETLFS(ubyte logical @ A, ubyte device @ X, ubyte address @ Y) ; set logical file parameters
romsub $FFBD = SETNAM(ubyte namelen @ A, str filename @ XY) ; set filename parameters
romsub $FFC0 = OPEN() clobbers(X,Y) -> ubyte @Pc, ubyte @A ; (via 794 ($31A)) open a logical file
romsub $FFC3 = CLOSE(ubyte logical @ A) clobbers(A,X,Y) ; (via 796 ($31C)) close a logical file
romsub $FFC6 = CHKIN(ubyte logical @ X) clobbers(A,X) -> ubyte @Pc ; (via 798 ($31E)) define an input channel
romsub $FFC9 = CHKOUT(ubyte logical @ X) clobbers(A,X) ; (via 800 ($320)) define an output channel
romsub $FFCC = CLRCHN() clobbers(A,X) ; (via 802 ($322)) restore default devices
romsub $FFCF = CHRIN() clobbers(X, Y) -> ubyte @ A ; (via 804 ($324)) input a character (for keyboard, read a whole line from the screen) A=byte read.
romsub $FFD2 = CHROUT(ubyte char @ A) ; (via 806 ($326)) output a character
romsub $FFD5 = LOAD(ubyte verify @ A, uword address @ XY) -> ubyte @Pc, ubyte @ A, ubyte @ X, ubyte @ Y ; (via 816 ($330)) load from device
romsub $FFD8 = SAVE(ubyte zp_startaddr @ A, uword endaddr @ XY) -> ubyte @ Pc, ubyte @ A ; (via 818 ($332)) save to a device
romsub $FFDB = SETTIM(ubyte low @ A, ubyte middle @ X, ubyte high @ Y) ; set the software clock
romsub $FFDE = RDTIM() -> ubyte @ A, ubyte @ X, ubyte @ Y ; read the software clock
romsub $FFE1 = STOP() clobbers(X) -> ubyte @ Pz, ubyte @ A ; (via 808 ($328)) check the STOP key (and some others in A)
romsub $FFE4 = GETIN() clobbers(X,Y) -> ubyte @Pc, ubyte @ A ; (via 810 ($32A)) get a character
romsub $FFE7 = CLALL() clobbers(A,X) ; (via 812 ($32C)) close all files
romsub $FFEA = UDTIM() clobbers(A,X) ; update the software clock
romsub $FFED = SCREEN() -> ubyte @ X, ubyte @ Y ; read number of screen rows and columns
romsub $FFF0 = PLOT(ubyte col @ Y, ubyte row @ X, ubyte dir @ Pc) -> ubyte @ X, ubyte @ Y ; read/set position of cursor on screen. Use txt.plot for a 'safe' wrapper that preserves X.
romsub $FFF3 = IOBASE() -> uword @ XY ; read base address of I/O devices
}
cx16 {
; 65c02 hardware vectors:
&uword NMI_VEC = $FFFA ; 6502 nmi vector, determined by the kernal if banked in
&uword RESET_VEC = $FFFC ; 6502 reset vector, determined by the kernal if banked in
&uword IRQ_VEC = $FFFE ; 6502 interrupt vector, determined by the kernal if banked in
; the sixteen virtual 16-bit registers
&uword r0 = $0002
&uword r1 = $0004
&uword r2 = $0006
&uword r3 = $0008
&uword r4 = $000a
&uword r5 = $000c
&uword r6 = $000e
&uword r7 = $0010
&uword r8 = $0012
&uword r9 = $0014
&uword r10 = $0016
&uword r11 = $0018
&uword r12 = $001a
&uword r13 = $001c
&uword r14 = $001e
&uword r15 = $0020
; VERA registers
const uword VERA_BASE = $9F20
&ubyte VERA_ADDR_L = VERA_BASE + $0000
&ubyte VERA_ADDR_M = VERA_BASE + $0001
&ubyte VERA_ADDR_H = VERA_BASE + $0002
&ubyte VERA_DATA0 = VERA_BASE + $0003
&ubyte VERA_DATA1 = VERA_BASE + $0004
&ubyte VERA_CTRL = VERA_BASE + $0005
&ubyte VERA_IEN = VERA_BASE + $0006
&ubyte VERA_ISR = VERA_BASE + $0007
&ubyte VERA_IRQ_LINE_L = VERA_BASE + $0008
&ubyte VERA_DC_VIDEO = VERA_BASE + $0009
&ubyte VERA_DC_HSCALE = VERA_BASE + $000A
&ubyte VERA_DC_VSCALE = VERA_BASE + $000B
&ubyte VERA_DC_BORDER = VERA_BASE + $000C
&ubyte VERA_DC_HSTART = VERA_BASE + $0009
&ubyte VERA_DC_HSTOP = VERA_BASE + $000A
&ubyte VERA_DC_VSTART = VERA_BASE + $000B
&ubyte VERA_DC_VSTOP = VERA_BASE + $000C
&ubyte VERA_L0_CONFIG = VERA_BASE + $000D
&ubyte VERA_L0_MAPBASE = VERA_BASE + $000E
&ubyte VERA_L0_TILEBASE = VERA_BASE + $000F
&ubyte VERA_L0_HSCROLL_L = VERA_BASE + $0010
&ubyte VERA_L0_HSCROLL_H = VERA_BASE + $0011
&ubyte VERA_L0_VSCROLL_L = VERA_BASE + $0012
&ubyte VERA_L0_VSCROLL_H = VERA_BASE + $0013
&ubyte VERA_L1_CONFIG = VERA_BASE + $0014
&ubyte VERA_L1_MAPBASE = VERA_BASE + $0015
&ubyte VERA_L1_TILEBASE = VERA_BASE + $0016
&ubyte VERA_L1_HSCROLL_L = VERA_BASE + $0017
&ubyte VERA_L1_HSCROLL_H = VERA_BASE + $0018
&ubyte VERA_L1_VSCROLL_L = VERA_BASE + $0019
&ubyte VERA_L1_VSCROLL_H = VERA_BASE + $001A
&ubyte VERA_AUDIO_CTRL = VERA_BASE + $001B
&ubyte VERA_AUDIO_RATE = VERA_BASE + $001C
&ubyte VERA_AUDIO_DATA = VERA_BASE + $001D
&ubyte VERA_SPI_DATA = VERA_BASE + $001E
&ubyte VERA_SPI_CTRL = VERA_BASE + $001F
; VERA_PSG_BASE = $1F9C0
; VERA_PALETTE_BASE = $1FA00
; VERA_SPRITES_BASE = $1FC00
; I/O
const uword via1 = $9f60 ;VIA 6522 #1
&ubyte d1prb = via1+0
&ubyte d1pra = via1+1
&ubyte d1ddrb = via1+2
&ubyte d1ddra = via1+3
&ubyte d1t1l = via1+4
&ubyte d1t1h = via1+5
&ubyte d1t1ll = via1+6
&ubyte d1t1lh = via1+7
&ubyte d1t2l = via1+8
&ubyte d1t2h = via1+9
&ubyte d1sr = via1+10
&ubyte d1acr = via1+11
&ubyte d1pcr = via1+12
&ubyte d1ifr = via1+13
&ubyte d1ier = via1+14
&ubyte d1ora = via1+15
const uword via2 = $9f70 ;VIA 6522 #2
&ubyte d2prb =via2+0
&ubyte d2pra =via2+1
&ubyte d2ddrb =via2+2
&ubyte d2ddra =via2+3
&ubyte d2t1l =via2+4
&ubyte d2t1h =via2+5
&ubyte d2t1ll =via2+6
&ubyte d2t1lh =via2+7
&ubyte d2t2l =via2+8
&ubyte d2t2h =via2+9
&ubyte d2sr =via2+10
&ubyte d2acr =via2+11
&ubyte d2pcr =via2+12
&ubyte d2ifr =via2+13
&ubyte d2ier =via2+14
&ubyte d2ora =via2+15
; ---- Commander X-16 additions on top of C64 kernal routines ----
; spelling of the names is taken from the Commander X-16 rom sources
; supported C128 additions
romsub $ff4a = close_all(ubyte device @A) clobbers(A,X,Y)
romsub $ff59 = lkupla(ubyte la @A) clobbers(A,X,Y)
romsub $ff5c = lkupsa(ubyte sa @Y) clobbers(A,X,Y)
romsub $ff5f = screen_set_mode(ubyte mode @A) clobbers(A, X, Y) -> ubyte @Pc
romsub $ff62 = screen_set_charset(ubyte charset @A, uword charsetptr @XY) clobbers(A,X,Y) ; incompatible with C128 dlchr()
; not yet supported: romsub $ff65 = pfkey() clobbers(A,X,Y)
romsub $ff6e = jsrfar()
romsub $ff74 = fetch(ubyte bank @X, ubyte index @Y) clobbers(X) -> ubyte @A
romsub $ff77 = stash(ubyte data @A, ubyte bank @X, ubyte index @Y) clobbers(X)
romsub $ff7a = cmpare(ubyte data @A, ubyte bank @X, ubyte index @Y) clobbers(X)
romsub $ff7d = primm()
; X16 additions
romsub $ff44 = macptr() clobbers(A,X,Y)
romsub $ff47 = enter_basic(ubyte cold_or_warm @Pc) clobbers(A,X,Y)
romsub $ff68 = mouse_config(ubyte shape @A, ubyte scale @X) clobbers (A, X, Y)
romsub $ff6b = mouse_get(ubyte zpdataptr @X) clobbers(A)
romsub $ff71 = mouse_scan() clobbers(A, X, Y)
romsub $ff53 = joystick_scan() clobbers(A, X, Y)
romsub $ff56 = joystick_get(ubyte joynr @A) -> ubyte @A, ubyte @X, ubyte @Y
romsub $ff4d = clock_set_date_time() clobbers(A, X, Y) ; args: r0, r1, r2, r3L
romsub $ff50 = clock_get_date_time() clobbers(A, X, Y) ; outout args: r0, r1, r2, r3L
; TODO specify the correct clobbers for alle these functions below, we now assume all 3 regs are clobbered
; high level graphics & fonts
romsub $ff20 = GRAPH_init() clobbers(A,X,Y) ; uses vectors=r0
romsub $ff23 = GRAPH_clear() clobbers(A,X,Y)
romsub $ff26 = GRAPH_set_window() clobbers(A,X,Y) ; uses x=r0, y=r1, width=r2, height=r3
romsub $ff29 = GRAPH_set_colors(ubyte stroke @A, ubyte fill @X, ubyte background @Y) clobbers (A,X,Y)
romsub $ff2c = GRAPH_draw_line() clobbers(A,X,Y) ; uses x1=r0, y1=r1, x2=r2, y2=r3
romsub $ff2f = GRAPH_draw_rect(ubyte fill @Pc) clobbers(A,X,Y) ; uses x=r0, y=r1, width=r2, height=r3, cornerradius=r4
romsub $ff32 = GRAPH_move_rect() clobbers(A,X,Y) ; uses sx=r0, sy=r1, tx=r2, ty=r3, width=r4, height=r5
romsub $ff35 = GRAPH_draw_oval(ubyte fill @Pc) clobbers(A,X,Y) ; uses x=r0, y=r1, width=r2, height=r3
romsub $ff38 = GRAPH_draw_image() clobbers(A,X,Y) ; uses x=r0, y=r1, ptr=r2, width=r3, height=r4
romsub $ff3b = GRAPH_set_font() clobbers(A,X,Y) ; uses ptr=r0
romsub $ff3e = GRAPH_get_char_size(ubyte baseline @A, ubyte width @X, ubyte height_or_style @Y, ubyte is_control @Pc) clobbers(A,X,Y)
romsub $ff41 = GRAPH_put_char(ubyte char @A) clobbers(A,X,Y) ; uses x=r0, y=r1
; framebuffer
romsub $fef6 = FB_init() clobbers(A,X,Y)
romsub $fef9 = FB_get_info() clobbers(X,Y) -> byte @A ; also outputs width=r0, height=r1
romsub $fefc = FB_set_palette(ubyte index @A, ubyte bytecount @X) clobbers(A,X,Y) ; also uses pointer=r0
romsub $feff = FB_cursor_position() clobbers(A,X,Y) ; uses x=r0, y=r1
romsub $ff02 = FB_cursor_next_line() clobbers(A,X,Y) ; uses x=r0
romsub $ff05 = FB_get_pixel() clobbers(X,Y) -> ubyte @A
romsub $ff08 = FB_get_pixels() clobbers(A,X,Y) ; uses ptr=r0, count=r1
romsub $ff0b = FB_set_pixel(ubyte color @A) clobbers(A,X,Y)
romsub $ff0e = FB_set_pixels() clobbers(A,X,Y) ; uses ptr=r0, count=r1
romsub $ff11 = FB_set_8_pixels(ubyte pattern @A, ubyte color @X) clobbers(A,X,Y)
romsub $ff14 = FB_set_8_pixels_opaque(ubyte pattern @A, ubyte color1 @X, ubyte color2 @Y) clobbers(A,X,Y) ; also uses mask=r0L
romsub $ff17 = FB_fill_pixels(ubyte color @A) clobbers(A,X,Y) ; also uses count=r0, step=r1
romsub $ff1a = FB_filter_pixels() clobbers(A,X,Y) ; uses ptr=r0, count=r1
romsub $ff1d = FB_move_pixels() clobbers(A,X,Y) ; uses sx=r0, sy=r1, tx=r2, ty=r3, count=r4
; misc
romsub $fef0 = sprite_set_image(ubyte number @A, ubyte width @X, ubyte height @Y, ubyte apply_mask @Pc) clobbers(A,X,Y) -> ubyte @Pc ; also uses pixels=r0, mask=r1, bpp=r2L
romsub $fef3 = sprite_set_position(ubyte number @A) clobbers(A,X,Y) ; also uses x=r0 and y=r1
romsub $fee4 = memory_fill(ubyte value @A) clobbers(A,X,Y) ; uses address=r0, num_bytes=r1
romsub $fee7 = memory_copy() clobbers(A,X,Y) ; uses source=r0, target=r1, num_bytes=r2
romsub $feea = memory_crc() clobbers(A,X,Y) ; uses address=r0, num_bytes=r1 result->r2
romsub $feed = memory_decompress() clobbers(A,X,Y) ; uses input=r0, output=r1 result->r1
romsub $fedb = console_init() clobbers(A,X,Y) ; uses x=r0, y=r1, width=r2, height=r3
romsub $fede = console_put_char(ubyte char @A, ubyte wrapping @Pc) clobbers(A,X,Y)
romsub $fee1 = console_get_char() clobbers(X,Y) -> ubyte @A
romsub $fed8 = console_put_image() clobbers(A,X,Y) ; uses ptr=r0, width=r1, height=r2
romsub $fed5 = console_set_paging_message() clobbers(A,X,Y) ; uses messageptr=r0
romsub $fed2 = kbdbuf_put(ubyte key @A) clobbers(A,X,Y)
romsub $fecf = entropy_get() -> ubyte @A, ubyte @X, ubyte @Y
romsub $fecc = monitor() clobbers(A,X,Y)
; ---- end of kernal routines ----
asmsub init_system() {
; Initializes the machine to a sane starting state.
; Called automatically by the loader program logic.
%asm {{
sei
cld
;stz $00
;stz $01
;stz d1prb ; select rom bank 0
lda #$80
sta VERA_CTRL
jsr c64.IOINIT
jsr c64.RESTOR
jsr c64.CINT
lda #$90 ; black
jsr c64.CHROUT
lda #1 ; swap fg/bg
jsr c64.CHROUT
lda #$9e ; yellow
jsr c64.CHROUT
lda #147 ; clear screen
jsr c64.CHROUT
lda #0
tax
tay
clc
clv
cli
rts
}}
}
asmsub reset_system() {
; Soft-reset the system back to Basic prompt.
%asm {{
sei
lda #14
sta $01
stz cx16.d1prb ; bank the kernal in
jmp (cx16.RESET_VEC)
}}
}
}

View File

@ -0,0 +1,699 @@
; Prog8 definitions for the Text I/O and Screen routines for the CommanderX16
;
; Written by Irmen de Jong (irmen@razorvine.net) - license: GNU GPL 3.0
;
; indent format: TABS, size=8
%target cx16
%import syslib
%import conv
txt {
const ubyte DEFAULT_WIDTH = 80
const ubyte DEFAULT_HEIGHT = 60
sub clear_screen() {
clear_screenchars(' ')
}
asmsub fill_screen (ubyte char @ A, ubyte color @ Y) clobbers(A) {
; ---- fill the character screen with the given fill character and character color.
%asm {{
sty _ly+1
phx
pha
jsr c64.SCREEN ; get dimensions in X/Y
txa
lsr a
lsr a
sta _lx+1
stz cx16.VERA_CTRL
lda #%00010000
sta cx16.VERA_ADDR_H ; enable auto increment by 1, bank 0.
stz cx16.VERA_ADDR_L ; start at (0,0)
stz cx16.VERA_ADDR_M
pla
_lx ldx #0 ; modified
phy
_ly ldy #1 ; modified
- sta cx16.VERA_DATA0
sty cx16.VERA_DATA0
sta cx16.VERA_DATA0
sty cx16.VERA_DATA0
sta cx16.VERA_DATA0
sty cx16.VERA_DATA0
sta cx16.VERA_DATA0
sty cx16.VERA_DATA0
dex
bne -
ply
dey
beq +
stz cx16.VERA_ADDR_L
inc cx16.VERA_ADDR_M ; next line
bra _lx
+ plx
rts
}}
}
asmsub clear_screenchars (ubyte char @ A) clobbers(Y) {
; ---- clear the character screen with the given fill character (leaves colors)
; (assumes screen matrix is at the default address)
%asm {{
phx
pha
jsr c64.SCREEN ; get dimensions in X/Y
txa
lsr a
lsr a
sta _lx+1
stz cx16.VERA_CTRL
lda #%00100000
sta cx16.VERA_ADDR_H ; enable auto increment by 2, bank 0.
stz cx16.VERA_ADDR_L ; start at (0,0)
stz cx16.VERA_ADDR_M
pla
_lx ldx #0 ; modified
- sta cx16.VERA_DATA0
sta cx16.VERA_DATA0
sta cx16.VERA_DATA0
sta cx16.VERA_DATA0
dex
bne -
dey
beq +
stz cx16.VERA_ADDR_L
inc cx16.VERA_ADDR_M ; next line
bra _lx
+ plx
rts
}}
}
asmsub clear_screencolors (ubyte color @ A) clobbers(Y) {
; ---- clear the character screen colors with the given color (leaves characters).
; (assumes color matrix is at the default address)
%asm {{
phx
sta _la+1
jsr c64.SCREEN ; get dimensions in X/Y
txa
lsr a
lsr a
sta _lx+1
stz cx16.VERA_CTRL
lda #%00100000
sta cx16.VERA_ADDR_H ; enable auto increment by 2, bank 0.
lda #1
sta cx16.VERA_ADDR_L ; start at (1,0)
stz cx16.VERA_ADDR_M
_lx ldx #0 ; modified
_la lda #0 ; modified
- sta cx16.VERA_DATA0
sta cx16.VERA_DATA0
sta cx16.VERA_DATA0
sta cx16.VERA_DATA0
dex
bne -
dey
beq +
lda #1
sta cx16.VERA_ADDR_L
inc cx16.VERA_ADDR_M ; next line
bra _lx
+ plx
rts
}}
}
ubyte[16] color_to_charcode = [$90,$05,$1c,$9f,$9c,$1e,$1f,$9e,$81,$95,$96,$97,$98,$99,$9a,$9b]
sub color (ubyte txtcol) {
txtcol &= 15
c64.CHROUT(color_to_charcode[txtcol])
}
sub color2 (ubyte txtcol, ubyte bgcol) {
txtcol &= 15
bgcol &= 15
c64.CHROUT(color_to_charcode[bgcol])
c64.CHROUT(1) ; switch fg and bg colors
c64.CHROUT(color_to_charcode[txtcol])
}
sub lowercase() {
cx16.screen_set_charset(3, 0) ; lowercase charset
}
sub uppercase() {
cx16.screen_set_charset(2, 0) ; uppercase charset
}
asmsub scroll_left (ubyte dummy @ Pc) clobbers(A, Y) {
; ---- scroll the whole screen 1 character to the left
; contents of the rightmost column are unchanged, you should clear/refill this yourself
; Carry flag is a dummy on the cx16
%asm {{
phx
jsr c64.SCREEN
dex
stx _lx+1
dey
sty P8ZP_SCRATCH_B1 ; number of rows to scroll
_nextline
stz cx16.VERA_CTRL ; data port 0: source column
lda #%00010000 ; auto increment 1
sta cx16.VERA_ADDR_H
lda #2
sta cx16.VERA_ADDR_L ; begin in column 1
ldy P8ZP_SCRATCH_B1
sty cx16.VERA_ADDR_M
lda #1
sta cx16.VERA_CTRL ; data port 1: destination column
lda #%00010000 ; auto increment 1
sta cx16.VERA_ADDR_H
stz cx16.VERA_ADDR_L
sty cx16.VERA_ADDR_M
_lx ldx #0 ; modified
- lda cx16.VERA_DATA0
sta cx16.VERA_DATA1 ; copy char
lda cx16.VERA_DATA0
sta cx16.VERA_DATA1 ; copy color
dex
bne -
dec P8ZP_SCRATCH_B1
bpl _nextline
lda #0
sta cx16.VERA_CTRL
plx
rts
}}
}
asmsub scroll_right (ubyte dummy @ Pc) clobbers(A) {
; ---- scroll the whole screen 1 character to the right
; contents of the leftmost column are unchanged, you should clear/refill this yourself
; Carry flag is a dummy on the cx16
%asm {{
phx
jsr c64.SCREEN
dex
stx _lx+1
txa
asl a
dea
sta _rcol+1
ina
ina
sta _rcol2+1
dey
sty P8ZP_SCRATCH_B1 ; number of rows to scroll
_nextline
stz cx16.VERA_CTRL ; data port 0: source column
lda #%00011000 ; auto decrement 1
sta cx16.VERA_ADDR_H
_rcol lda #79*2-1 ; modified
sta cx16.VERA_ADDR_L ; begin in rightmost column minus one
ldy P8ZP_SCRATCH_B1
sty cx16.VERA_ADDR_M
lda #1
sta cx16.VERA_CTRL ; data port 1: destination column
lda #%00011000 ; auto decrement 1
sta cx16.VERA_ADDR_H
_rcol2 lda #79*2+1 ; modified
sta cx16.VERA_ADDR_L
sty cx16.VERA_ADDR_M
_lx ldx #0 ; modified
- lda cx16.VERA_DATA0
sta cx16.VERA_DATA1 ; copy char
lda cx16.VERA_DATA0
sta cx16.VERA_DATA1 ; copy color
dex
bne -
dec P8ZP_SCRATCH_B1
bpl _nextline
lda #0
sta cx16.VERA_CTRL
plx
rts
}}
}
asmsub scroll_up (ubyte dummy @ Pc) clobbers(A, Y) {
; ---- scroll the whole screen 1 character up
; contents of the bottom row are unchanged, you should refill/clear this yourself
; Carry flag is a dummy on the cx16
%asm {{
phx
jsr c64.SCREEN
stx _nextline+1
dey
sty P8ZP_SCRATCH_B1
stz cx16.VERA_CTRL ; data port 0 is source
lda #1
sta cx16.VERA_ADDR_M ; start at second line
stz cx16.VERA_ADDR_L
lda #%00010000
sta cx16.VERA_ADDR_H ; enable auto increment by 1, bank 0.
lda #1
sta cx16.VERA_CTRL ; data port 1 is destination
stz cx16.VERA_ADDR_M ; start at top line
stz cx16.VERA_ADDR_L
lda #%00010000
sta cx16.VERA_ADDR_H ; enable auto increment by 1, bank 0.
_nextline
ldx #80 ; modified
- lda cx16.VERA_DATA0
sta cx16.VERA_DATA1 ; copy char
lda cx16.VERA_DATA0
sta cx16.VERA_DATA1 ; copy color
dex
bne -
dec P8ZP_SCRATCH_B1
beq +
stz cx16.VERA_CTRL ; data port 0
stz cx16.VERA_ADDR_L
inc cx16.VERA_ADDR_M
lda #1
sta cx16.VERA_CTRL ; data port 1
stz cx16.VERA_ADDR_L
inc cx16.VERA_ADDR_M
bra _nextline
+ lda #0
sta cx16.VERA_CTRL
plx
rts
}}
}
asmsub scroll_down (ubyte dummy @ Pc) clobbers(A, Y) {
; ---- scroll the whole screen 1 character down
; contents of the top row are unchanged, you should refill/clear this yourself
; Carry flag is a dummy on the cx16
%asm {{
phx
jsr c64.SCREEN
stx _nextline+1
dey
sty P8ZP_SCRATCH_B1
stz cx16.VERA_CTRL ; data port 0 is source
dey
sty cx16.VERA_ADDR_M ; start at line before bottom line
stz cx16.VERA_ADDR_L
lda #%00010000
sta cx16.VERA_ADDR_H ; enable auto increment by 1, bank 0.
lda #1
sta cx16.VERA_CTRL ; data port 1 is destination
iny
sty cx16.VERA_ADDR_M ; start at bottom line
stz cx16.VERA_ADDR_L
lda #%00010000
sta cx16.VERA_ADDR_H ; enable auto increment by 1, bank 0.
_nextline
ldx #80 ; modified
- lda cx16.VERA_DATA0
sta cx16.VERA_DATA1 ; copy char
lda cx16.VERA_DATA0
sta cx16.VERA_DATA1 ; copy color
dex
bne -
dec P8ZP_SCRATCH_B1
beq +
stz cx16.VERA_CTRL ; data port 0
stz cx16.VERA_ADDR_L
dec cx16.VERA_ADDR_M
lda #1
sta cx16.VERA_CTRL ; data port 1
stz cx16.VERA_ADDR_L
dec cx16.VERA_ADDR_M
bra _nextline
+ lda #0
sta cx16.VERA_CTRL
plx
rts
}}
}
romsub $FFD2 = chrout(ubyte char @ A) ; for consistency. You can also use c64.CHROUT directly ofcourse.
asmsub print (str text @ AY) clobbers(A,Y) {
; ---- print null terminated string from A/Y
; note: the compiler contains an optimization that will replace
; a call to this subroutine with a string argument of just one char,
; by just one call to c64.CHROUT of that single char.
%asm {{
sta P8ZP_SCRATCH_B1
sty P8ZP_SCRATCH_REG
ldy #0
- lda (P8ZP_SCRATCH_B1),y
beq +
jsr c64.CHROUT
iny
bne -
+ rts
}}
}
asmsub print_ub0 (ubyte value @ A) clobbers(A,Y) {
; ---- print the ubyte in A in decimal form, with left padding 0s (3 positions total)
%asm {{
phx
jsr conv.ubyte2decimal
pha
tya
jsr c64.CHROUT
pla
jsr c64.CHROUT
txa
jsr c64.CHROUT
plx
rts
}}
}
asmsub print_ub (ubyte value @ A) clobbers(A,Y) {
; ---- print the ubyte in A in decimal form, without left padding 0s
%asm {{
phx
jsr conv.ubyte2decimal
_print_byte_digits
pha
cpy #'0'
beq +
tya
jsr c64.CHROUT
pla
jsr c64.CHROUT
jmp _ones
+ pla
cmp #'0'
beq _ones
jsr c64.CHROUT
_ones txa
jsr c64.CHROUT
plx
rts
}}
}
asmsub print_b (byte value @ A) clobbers(A,Y) {
; ---- print the byte in A in decimal form, without left padding 0s
%asm {{
phx
pha
cmp #0
bpl +
lda #'-'
jsr c64.CHROUT
+ pla
jsr conv.byte2decimal
jmp print_ub._print_byte_digits
}}
}
asmsub print_ubhex (ubyte value @ A, ubyte prefix @ Pc) clobbers(A,Y) {
; ---- print the ubyte in A in hex form (if Carry is set, a radix prefix '$' is printed as well)
%asm {{
phx
bcc +
pha
lda #'$'
jsr c64.CHROUT
pla
+ jsr conv.ubyte2hex
jsr c64.CHROUT
tya
jsr c64.CHROUT
plx
rts
}}
}
asmsub print_ubbin (ubyte value @ A, ubyte prefix @ Pc) clobbers(A,Y) {
; ---- print the ubyte in A in binary form (if Carry is set, a radix prefix '%' is printed as well)
%asm {{
phx
sta P8ZP_SCRATCH_B1
bcc +
lda #'%'
jsr c64.CHROUT
+ ldy #8
- lda #'0'
asl P8ZP_SCRATCH_B1
bcc +
lda #'1'
+ jsr c64.CHROUT
dey
bne -
plx
rts
}}
}
asmsub print_uwbin (uword value @ AY, ubyte prefix @ Pc) clobbers(A,Y) {
; ---- print the uword in A/Y in binary form (if Carry is set, a radix prefix '%' is printed as well)
%asm {{
pha
tya
jsr print_ubbin
pla
clc
jmp print_ubbin
}}
}
asmsub print_uwhex (uword value @ AY, ubyte prefix @ Pc) clobbers(A,Y) {
; ---- print the uword in A/Y in hexadecimal form (4 digits)
; (if Carry is set, a radix prefix '$' is printed as well)
%asm {{
pha
tya
jsr print_ubhex
pla
clc
jmp print_ubhex
}}
}
asmsub print_uw0 (uword value @ AY) clobbers(A,Y) {
; ---- print the uword in A/Y in decimal form, with left padding 0s (5 positions total)
%asm {{
phx
jsr conv.uword2decimal
ldy #0
- lda conv.uword2decimal.decTenThousands,y
beq +
jsr c64.CHROUT
iny
bne -
+ plx
rts
}}
}
asmsub print_uw (uword value @ AY) clobbers(A,Y) {
; ---- print the uword in A/Y in decimal form, without left padding 0s
%asm {{
phx
jsr conv.uword2decimal
plx
ldy #0
- lda conv.uword2decimal.decTenThousands,y
beq _allzero
cmp #'0'
bne _gotdigit
iny
bne -
_gotdigit
jsr c64.CHROUT
iny
lda conv.uword2decimal.decTenThousands,y
bne _gotdigit
rts
_allzero
lda #'0'
jmp c64.CHROUT
}}
}
asmsub print_w (word value @ AY) clobbers(A,Y) {
; ---- print the (signed) word in A/Y in decimal form, without left padding 0's
%asm {{
cpy #0
bpl +
pha
lda #'-'
jsr c64.CHROUT
tya
eor #255
tay
pla
eor #255
clc
adc #1
bcc +
iny
+ jmp print_uw
}}
}
asmsub input_chars (uword buffer @ AY) clobbers(A) -> ubyte @ Y {
; ---- Input a string (max. 80 chars) from the keyboard. Returns length in Y. (string is terminated with a 0 byte as well)
; It assumes the keyboard is selected as I/O channel!
%asm {{
sta P8ZP_SCRATCH_W1
sty P8ZP_SCRATCH_W1+1
ldy #0 ; char counter = 0
- jsr c64.CHRIN
cmp #$0d ; return (ascii 13) pressed?
beq + ; yes, end.
sta (P8ZP_SCRATCH_W1),y ; else store char in buffer
iny
bne -
+ lda #0
sta (P8ZP_SCRATCH_W1),y ; finish string with 0 byte
rts
}}
}
asmsub setchr (ubyte col @X, ubyte row @Y, ubyte character @A) clobbers(A) {
; ---- sets the character in the screen matrix at the given position
%asm {{
pha
txa
asl a
stz cx16.VERA_CTRL
stz cx16.VERA_ADDR_H
sta cx16.VERA_ADDR_L
sty cx16.VERA_ADDR_M
pla
sta cx16.VERA_DATA0
rts
}}
}
asmsub getchr (ubyte col @A, ubyte row @Y) -> ubyte @ A {
; ---- get the character in the screen matrix at the given location
%asm {{
asl a
stz cx16.VERA_CTRL
stz cx16.VERA_ADDR_H
sta cx16.VERA_ADDR_L
sty cx16.VERA_ADDR_M
lda cx16.VERA_DATA0
rts
}}
}
asmsub setclr (ubyte col @X, ubyte row @Y, ubyte color @A) clobbers(A) {
; ---- set the color in A on the screen matrix at the given position
%asm {{
pha
txa
asl a
ina
stz cx16.VERA_CTRL
stz cx16.VERA_ADDR_H
sta cx16.VERA_ADDR_L
sty cx16.VERA_ADDR_M
pla
sta cx16.VERA_DATA0
rts
}}
}
asmsub getclr (ubyte col @A, ubyte row @Y) -> ubyte @ A {
; ---- get the color in the screen color matrix at the given location
%asm {{
asl a
ina
stz cx16.VERA_CTRL
stz cx16.VERA_ADDR_H
sta cx16.VERA_ADDR_L
sty cx16.VERA_ADDR_M
lda cx16.VERA_DATA0
rts
}}
}
sub setcc (ubyte column, ubyte row, ubyte char, ubyte charcolor) {
; ---- set char+color at the given position on the screen
%asm {{
phx
lda column
asl a
tax
ldy row
lda charcolor
and #$0f
sta P8ZP_SCRATCH_B1
stz cx16.VERA_CTRL
stz cx16.VERA_ADDR_H
stx cx16.VERA_ADDR_L
sty cx16.VERA_ADDR_M
lda char
sta cx16.VERA_DATA0
inx
stz cx16.VERA_ADDR_H
stx cx16.VERA_ADDR_L
sty cx16.VERA_ADDR_M
lda cx16.VERA_DATA0
and #$f0
ora P8ZP_SCRATCH_B1
sta cx16.VERA_DATA0
plx
rts
}}
}
asmsub plot (ubyte col @ Y, ubyte row @ A) clobbers(A) {
; ---- safe wrapper around PLOT kernel routine, to save the X register.
%asm {{
phx
tax
clc
jsr c64.PLOT
plx
rts
}}
}
asmsub width() clobbers(X,Y) -> ubyte @A {
; -- returns the text screen width (number of columns)
%asm {{
jsr c64.SCREEN
txa
rts
}}
}
asmsub height() clobbers(X, Y) -> ubyte @A {
; -- returns the text screen height (number of rows)
%asm {{
jsr c64.SCREEN
tya
rts
}}
}
}

View File

@ -0,0 +1,29 @@
%import textio
cx16logo {
sub logo_at(ubyte column, ubyte row) {
uword strptr
for strptr in logo_lines {
txt.plot(column, row)
txt.print(strptr)
row++
}
}
sub logo() {
uword strptr
for strptr in logo_lines
txt.print(strptr)
txt.chrout('\n')
}
str[] logo_lines = [
"\uf10d\uf11a\uf139\uf11b \uf11a\uf13a\uf11b\n",
"\uf10b\uf11a▎\uf139\uf11b \uf11a\uf13a\uf130\uf11b\n",
"\uf10f\uf11a▌ \uf139\uf11b \uf11a\uf13a \uf11b▌\n",
"\uf102 \uf132\uf11a▖\uf11b \uf11a▗\uf11b\uf132\n",
"\uf10e ▂\uf11a▘\uf11b \uf11a▝\uf11b▂\n",
"\uf104 \uf11a \uf11b\uf13a\uf11b \uf139\uf11a \uf11b\n",
"\uf101\uf130\uf13a \uf139▎\uf100"
]
}

View File

@ -0,0 +1,162 @@
%import textio
%import syslib
; Note: this code is compatible with C64 and CX16.
diskio {
sub directory(ubyte drivenumber) -> byte {
; -- Shows the directory contents of disk drive 8-11 (provide as argument).
c64.SETNAM(1, "$")
c64.SETLFS(1, drivenumber, 0)
void c64.OPEN() ; open 1,8,0,"$"
if_cs
goto io_error
void c64.CHKIN(1) ; use #1 as input channel
if_cs
goto io_error
repeat 4 {
void c64.CHRIN() ; skip the 4 prologue bytes
}
; while not key pressed / EOF encountered, read data.
ubyte status = c64.READST()
while not status {
txt.print_uw(mkword(c64.CHRIN(), c64.CHRIN()))
txt.chrout(' ')
ubyte @zp char
do {
char = c64.CHRIN()
txt.chrout(char)
} until char==0
txt.chrout('\n')
void c64.CHRIN() ; skip 2 bytes
void c64.CHRIN()
status = c64.READST()
void c64.STOP()
if_nz
break
}
io_error:
status = c64.READST()
c64.CLRCHN() ; restore default i/o devices
c64.CLOSE(1)
if status and status != 64 { ; 64=end of file
txt.print("\ni/o error, status: ")
txt.print_ub(status)
txt.chrout('\n')
return false
}
return true
}
sub status(ubyte drivenumber) {
; -- display the disk drive's current status message
c64.SETNAM(0, $0000)
c64.SETLFS(15, drivenumber, 15)
void c64.OPEN() ; open 15,8,15
if_cs
goto io_error
void c64.CHKIN(15) ; use #15 as input channel
if_cs
goto io_error
while not c64.READST()
txt.chrout(c64.CHRIN())
io_error:
c64.CLRCHN() ; restore default i/o devices
c64.CLOSE(15)
}
sub save(ubyte drivenumber, uword filenameptr, uword address, uword size) -> byte {
c64.SETNAM(strlen(filenameptr), filenameptr)
c64.SETLFS(1, drivenumber, 0)
uword end_address = address + size
%asm {{
lda address
sta P8ZP_SCRATCH_W1
lda address+1
sta P8ZP_SCRATCH_W1+1
stx P8ZP_SCRATCH_REG
lda #<P8ZP_SCRATCH_W1
ldx end_address
ldy end_address+1
jsr c64.SAVE
php
ldx P8ZP_SCRATCH_REG
plp
}}
if_cc
return c64.READST()==0
return false
}
sub load(ubyte drivenumber, uword filenameptr, uword address_override) -> uword {
c64.SETNAM(strlen(filenameptr), filenameptr)
ubyte secondary = 1
uword end_of_load = 0
if address_override
secondary = 0
c64.SETLFS(1, drivenumber, secondary)
%asm {{
stx P8ZP_SCRATCH_REG
lda #0
ldx address_override
ldy address_override+1
jsr c64.LOAD
bcs +
stx end_of_load
sty end_of_load+1
+ ldx P8ZP_SCRATCH_REG
}}
if end_of_load
return end_of_load - address_override
return 0
}
str filename = "0:??????????????????????????????????????"
sub delete(ubyte drivenumber, uword filenameptr) {
; -- delete a file on the drive
ubyte flen = strlen(filenameptr)
filename[0] = 's'
filename[1] = ':'
memcopy(filenameptr, &filename+2, flen+1)
c64.SETNAM(flen+2, filename)
c64.SETLFS(1, drivenumber, 15)
void c64.OPEN()
c64.CLRCHN()
c64.CLOSE(1)
}
sub rename(ubyte drivenumber, uword oldfileptr, uword newfileptr) {
; -- rename a file on the drive
ubyte flen_old = strlen(oldfileptr)
ubyte flen_new = strlen(newfileptr)
filename[0] = 'r'
filename[1] = ':'
memcopy(newfileptr, &filename+2, flen_new)
filename[flen_new+2] = '='
memcopy(oldfileptr, &filename+3+flen_new, flen_old+1)
c64.SETNAM(3+flen_new+flen_old, filename)
c64.SETLFS(1, drivenumber, 15)
void c64.OPEN()
c64.CLRCHN()
c64.CLOSE(1)
}
}

File diff suppressed because it is too large Load Diff

View File

@ -4,8 +4,6 @@
;
; indent format: TABS, size=8
%import c64lib
math {
%asminclude "library:math.asm", ""
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -4,8 +4,7 @@
;
; indent format: TABS, size=8
%import c64lib
prog8_lib {
%asminclude "library:prog8lib.asm", ""
%asminclude "library:prog8_lib.asm", ""
%asminclude "library:prog8_funcs.asm", ""
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,48 @@
%import textio
test_stack {
asmsub test() {
%asm {{
stx _saveX
lda #13
jsr txt.chrout
lda #'-'
ldy #12
- jsr txt.chrout
dey
bne -
lda #13
jsr txt.chrout
lda #'x'
jsr txt.chrout
lda #'='
jsr txt.chrout
lda _saveX
jsr txt.print_ub
lda #' '
jsr txt.chrout
lda #'s'
jsr txt.chrout
lda #'p'
jsr txt.chrout
lda #'='
jsr txt.chrout
tsx
txa
jsr txt.print_ub
lda #13
jsr txt.chrout
lda #'-'
ldy #12
- jsr txt.chrout
dey
bne -
lda #13
jsr txt.chrout
ldx _saveX
rts
_saveX .byte 0
}}
}
}

View File

@ -1 +1 @@
1.90
5.2

View File

@ -4,12 +4,10 @@ import kotlinx.cli.*
import prog8.ast.base.AstException
import prog8.compiler.CompilationResult
import prog8.compiler.compileProgram
import prog8.compiler.target.C64Target
import prog8.compiler.target.Cx16Target
import prog8.compiler.target.CompilationTarget
import prog8.compiler.target.c64.C64MachineDefinition
import prog8.compiler.target.c64.Petscii
import prog8.compiler.target.c64.codegen.AsmGen
import prog8.parser.ParsingFailedError
import java.io.IOException
import java.nio.file.FileSystems
import java.nio.file.Path
import java.nio.file.StandardWatchEventKinds
@ -35,12 +33,14 @@ fun pathFrom(stringPath: String, vararg rest: String): Path = FileSystems.getDe
private fun compileMain(args: Array<String>) {
val cli = CommandLineInterface("prog8compiler")
val startEmulator by cli.flagArgument("-emu", "auto-start the Vice C-64 emulator after successful compilation")
val startEmulator by cli.flagArgument("-emu", "auto-start emulator after successful compilation")
val outputDir by cli.flagValueArgument("-out", "directory", "directory for output files instead of current directory", ".")
val dontWriteAssembly by cli.flagArgument("-noasm", "don't create assembly code")
val dontOptimize by cli.flagArgument("-noopt", "don't perform any optimizations")
val watchMode by cli.flagArgument("-watch", "continuous compilation mode (watches for file changes), greatly increases compilation speed")
val compilationTarget by cli.flagValueArgument("-target", "compilertarget", "target output of the compiler, currently only 'c64' (C64 6502 assembly) available", "c64")
val slowCodegenWarnings by cli.flagArgument("-slowwarn", "show debug warnings about slow/problematic assembly code generation")
val compilationTarget by cli.flagValueArgument("-target", "compilertarget",
"target output of the compiler, currently '${C64Target.name}' and '${Cx16Target.name}' available", C64Target.name)
val moduleFiles by cli.positionalArgumentsList("modules", "main module file(s) to compile", minArgs = 1)
try {
@ -49,58 +49,48 @@ private fun compileMain(args: Array<String>) {
exitProcess(1)
}
when(compilationTarget) {
"c64" -> {
with(CompilationTarget) {
name = "c64"
machine = C64MachineDefinition
encodeString = { str, altEncoding ->
if(altEncoding) Petscii.encodeScreencode(str, true) else Petscii.encodePetscii(str, true)
}
decodeString = { bytes, altEncoding ->
if(altEncoding) Petscii.decodeScreencode(bytes, true) else Petscii.decodePetscii(bytes, true)
}
asmGenerator = ::AsmGen
}
}
else -> {
System.err.println("invalid compilation target")
exitProcess(1)
}
}
val outputPath = pathFrom(outputDir)
if(!outputPath.toFile().isDirectory) {
System.err.println("Output path doesn't exist")
exitProcess(1)
}
if(watchMode && moduleFiles.size<=1) {
if(watchMode) {
val watchservice = FileSystems.getDefault().newWatchService()
while(true) {
val filepath = pathFrom(moduleFiles.single()).normalize()
println("Continuous watch mode active. Main module: $filepath")
println("Continuous watch mode active. Modules: $moduleFiles")
val results = mutableListOf<CompilationResult>()
for(filepathRaw in moduleFiles) {
val filepath = pathFrom(filepathRaw).normalize()
val compilationResult = compileProgram(filepath, !dontOptimize, !dontWriteAssembly, slowCodegenWarnings, compilationTarget, outputPath)
results.add(compilationResult)
}
try {
val compilationResult = compileProgram(filepath, !dontOptimize, !dontWriteAssembly, outputDir=outputPath)
println("Imported files (now watching:)")
for (importedFile in compilationResult.importedFiles) {
print(" ")
println(importedFile)
importedFile.parent.register(watchservice, StandardWatchEventKinds.ENTRY_MODIFY)
}
println("[${LocalDateTime.now().withNano(0)}] Waiting for file changes.")
val allImportedFiles = results.flatMap { it.importedFiles }
println("Imported files (now watching:)")
for (importedFile in allImportedFiles) {
print(" ")
println(importedFile)
val watchDir = importedFile.parent ?: Path.of(".")
watchDir.register(watchservice, StandardWatchEventKinds.ENTRY_MODIFY)
}
println("[${LocalDateTime.now().withNano(0)}] Waiting for file changes.")
var recompile=false
while(!recompile) {
val event = watchservice.take()
for(changed in event.pollEvents()) {
for (changed in event.pollEvents()) {
val changedPath = changed.context() as Path
println(" change detected: $changedPath")
if(allImportedFiles.any { it.fileName == changedPath.fileName }) {
println(" change detected: $changedPath")
recompile = true
}
}
event.reset()
println("\u001b[H\u001b[2J") // clear the screen
} catch (x: Exception) {
throw x
}
println("\u001b[H\u001b[2J") // clear the screen
}
} else {
@ -108,7 +98,7 @@ private fun compileMain(args: Array<String>) {
val filepath = pathFrom(filepathRaw).normalize()
val compilationResult: CompilationResult
try {
compilationResult = compileProgram(filepath, !dontOptimize, !dontWriteAssembly, outputDir=outputPath)
compilationResult = compileProgram(filepath, !dontOptimize, !dontWriteAssembly, slowCodegenWarnings, compilationTarget, outputPath)
if(!compilationResult.success)
exitProcess(1)
} catch (x: ParsingFailedError) {
@ -121,20 +111,7 @@ private fun compileMain(args: Array<String>) {
if (compilationResult.programName.isEmpty())
println("\nCan't start emulator because no program was assembled.")
else if(startEmulator) {
for(emulator in listOf("x64sc", "x64")) {
println("\nStarting C-64 emulator $emulator...")
val cmdline = listOf(emulator, "-silent", "-moncommands", "${compilationResult.programName}.vice-mon-list",
"-autostartprgmode", "1", "-autostart-warp", "-autostart", compilationResult.programName + ".prg")
val processb = ProcessBuilder(cmdline).inheritIO()
val process: Process
try {
process=processb.start()
} catch(x: IOException) {
continue // try the next emulator executable
}
process.waitFor()
break
}
CompilationTarget.instance.machine.launchEmulator(compilationResult.programName)
}
}
}

View File

@ -53,12 +53,14 @@ class AstToSourceCode(val output: (text: String) -> Unit, val program: Program):
}
override fun visit(expr: BinaryExpression) {
output("(")
expr.left.accept(this)
if(expr.operator.any { it.isLetter() })
output(" ${expr.operator} ")
else
output(expr.operator)
expr.right.accept(this)
output(")")
}
override fun visit(directive: Directive) {
@ -85,7 +87,7 @@ class AstToSourceCode(val output: (text: String) -> Unit, val program: Program):
DataType.ARRAY_W -> "word["
DataType.ARRAY_F -> "float["
DataType.STRUCT -> "" // the name of the struct is enough
else -> "?????2"
else -> "?????"
}
}
@ -102,15 +104,25 @@ class AstToSourceCode(val output: (text: String) -> Unit, val program: Program):
}
override fun visit(decl: VarDecl) {
// if the vardecl is a parameter of a subroutine, don't output it again
val paramNames = (decl.definingScope() as? Subroutine)?.parameters?.map { it.name }
if(paramNames!=null && decl.name in paramNames)
return
when(decl.type) {
VarDeclType.VAR -> {}
VarDeclType.CONST -> output("const ")
VarDeclType.MEMORY -> output("&")
}
output(decl.struct?.name ?: "")
if(decl.datatype==DataType.STRUCT && decl.struct!=null)
output(decl.struct!!.name)
output(datatypeString(decl.datatype))
if(decl.arraysize!=null) {
decl.arraysize!!.index.accept(this)
decl.arraysize!!.indexNum?.accept(this)
decl.arraysize!!.indexVar?.accept(this)
}
if(decl.isArray)
output("]")
@ -131,10 +143,9 @@ class AstToSourceCode(val output: (text: String) -> Unit, val program: Program):
for(param in subroutine.parameters.zip(subroutine.asmParameterRegisters)) {
val reg =
when {
param.second.stack -> "stack"
param.second.registerOrPair!=null -> param.second.registerOrPair.toString()
param.second.statusflag!=null -> param.second.statusflag.toString()
else -> "?????1"
else -> "?????"
}
output("${datatypeString(param.first.type)} ${param.first.name} @$reg")
if(param.first!==subroutine.parameters.last())
@ -177,8 +188,6 @@ class AstToSourceCode(val output: (text: String) -> Unit, val program: Program):
private fun outputStatements(statements: List<Statement>) {
for(stmt in statements) {
if(stmt is VarDecl && stmt.autogeneratedDontRemove)
continue // skip autogenerated decls (to avoid generating a newline)
outputi("")
stmt.accept(this)
output("\n")
@ -283,12 +292,19 @@ class AstToSourceCode(val output: (text: String) -> Unit, val program: Program):
}
override fun visit(assignment: Assignment) {
assignment.target.accept(this)
if (assignment.aug_op != null)
output(" ${assignment.aug_op} ")
else
val binExpr = assignment.value as? BinaryExpression
if(binExpr!=null && binExpr.left isSameAs assignment.target
&& binExpr.operator !in setOf("and", "or", "xor")
&& binExpr.operator !in comparisonOperators) {
// we only support the inplace assignments of the form A = A <operator> <value>
assignment.target.accept(this)
output(" ${binExpr.operator}= ")
binExpr.right.accept(this)
} else {
assignment.target.accept(this)
output(" = ")
assignment.value.accept(this)
assignment.value.accept(this)
}
}
override fun visit(postIncrDecr: PostIncrDecr) {
@ -296,20 +312,13 @@ class AstToSourceCode(val output: (text: String) -> Unit, val program: Program):
output(postIncrDecr.operator)
}
override fun visit(contStmt: Continue) {
output("continue")
}
override fun visit(breakStmt: Break) {
output("break")
}
override fun visit(forLoop: ForLoop) {
output("for ")
if(forLoop.loopRegister!=null)
output(forLoop.loopRegister.toString())
else
forLoop.loopVar!!.accept(this)
forLoop.loopVar.accept(this)
output(" in ")
forLoop.iterable.accept(this)
output(" ")
@ -323,16 +332,18 @@ class AstToSourceCode(val output: (text: String) -> Unit, val program: Program):
whileLoop.body.accept(this)
}
override fun visit(foreverLoop: ForeverLoop) {
output("forever ")
foreverLoop.body.accept(this)
}
override fun visit(repeatLoop: RepeatLoop) {
output("repeat ")
repeatLoop.iterations?.accept(this)
output(" ")
repeatLoop.body.accept(this)
}
override fun visit(untilLoop: UntilLoop) {
output("do ")
untilLoop.body.accept(this)
output(" until ")
repeatLoop.untilCondition.accept(this)
untilLoop.condition.accept(this)
}
override fun visit(returnStmt: Return) {
@ -341,19 +352,16 @@ class AstToSourceCode(val output: (text: String) -> Unit, val program: Program):
}
override fun visit(arrayIndexedExpression: ArrayIndexedExpression) {
arrayIndexedExpression.identifier.accept(this)
arrayIndexedExpression.arrayvar.accept(this)
output("[")
arrayIndexedExpression.arrayspec.index.accept(this)
arrayIndexedExpression.indexer.indexNum?.accept(this)
arrayIndexedExpression.indexer.indexVar?.accept(this)
output("]")
}
override fun visit(assignTarget: AssignTarget) {
if(assignTarget.register!=null)
output(assignTarget.register.toString())
else {
assignTarget.memoryAddress?.accept(this)
assignTarget.identifier?.accept(this)
}
assignTarget.memoryAddress?.accept(this)
assignTarget.identifier?.accept(this)
assignTarget.arrayindexed?.accept(this)
}
@ -394,10 +402,6 @@ class AstToSourceCode(val output: (text: String) -> Unit, val program: Program):
outputlni("}}")
}
override fun visit(registerExpr: RegisterExpr) {
output(registerExpr.register.toString())
}
override fun visit(builtinFunctionStatementPlaceholder: BuiltinFunctionStatementPlaceholder) {
output(builtinFunctionStatementPlaceholder.name)
}
@ -431,12 +435,4 @@ class AstToSourceCode(val output: (text: String) -> Unit, val program: Program):
whenChoice.statements.accept(this)
outputln("")
}
override fun visit(structLv: StructLiteralValue) {
outputListMembers(structLv.values.asSequence(), '{', '}')
}
override fun visit(nopStatement: NopStatement) {
output("; NOP @ ${nopStatement.position} $nopStatement")
}
}

View File

@ -4,7 +4,6 @@ import prog8.ast.base.*
import prog8.ast.expressions.Expression
import prog8.ast.expressions.IdentifierReference
import prog8.ast.processing.AstWalker
import prog8.ast.processing.IAstModifyingVisitor
import prog8.ast.processing.IAstVisitor
import prog8.ast.statements.*
import prog8.functions.BuiltinFunctions
@ -37,6 +36,18 @@ interface Node {
throw FatalAstException("scope missing from $this")
}
fun definingBlock(): Block {
if(this is Block)
return this
return findParentNode<Block>(this)!!
}
fun containingStatement(): Statement {
if(this is Statement)
return this
return findParentNode<Statement>(this)!!
}
fun replaceChildNode(node: Node, replacement: Node)
}
@ -45,6 +56,7 @@ interface IFunctionCall {
var args: MutableList<Expression>
}
interface INameScope {
val name: String
val position: Position
@ -53,32 +65,31 @@ interface INameScope {
fun linkParents(parent: Node)
fun subScopes(): Map<String, INameScope> {
val subscopes = mutableMapOf<String, INameScope>()
fun subScope(name: String): INameScope? {
for(stmt in statements) {
when(stmt) {
// NOTE: if other nodes are introduced that are a scope, or contain subscopes, they must be added here!
is ForLoop -> subscopes[stmt.body.name] = stmt.body
is RepeatLoop -> subscopes[stmt.body.name] = stmt.body
is WhileLoop -> subscopes[stmt.body.name] = stmt.body
is ForLoop -> if(stmt.body.name==name) return stmt.body
is UntilLoop -> if(stmt.body.name==name) return stmt.body
is WhileLoop -> if(stmt.body.name==name) return stmt.body
is BranchStatement -> {
subscopes[stmt.truepart.name] = stmt.truepart
if(stmt.elsepart.containsCodeOrVars())
subscopes[stmt.elsepart.name] = stmt.elsepart
if(stmt.truepart.name==name) return stmt.truepart
if(stmt.elsepart.containsCodeOrVars() && stmt.elsepart.name==name) return stmt.elsepart
}
is IfStatement -> {
subscopes[stmt.truepart.name] = stmt.truepart
if(stmt.elsepart.containsCodeOrVars())
subscopes[stmt.elsepart.name] = stmt.elsepart
if(stmt.truepart.name==name) return stmt.truepart
if(stmt.elsepart.containsCodeOrVars() && stmt.elsepart.name==name) return stmt.elsepart
}
is WhenStatement -> {
stmt.choices.forEach { subscopes[it.statements.name] = it.statements }
val scope = stmt.choices.firstOrNull { it.statements.name==name }
if(scope!=null)
return scope.statements
}
is INameScope -> subscopes[stmt.name] = stmt
is INameScope -> if(stmt.name==name) return stmt
else -> {}
}
}
return subscopes
return null
}
fun getLabelOrVariable(name: String): Statement? {
@ -126,7 +137,7 @@ interface INameScope {
for(module in localContext.definingModule().program.modules) {
var scope: INameScope? = module
for(name in scopedName.dropLast(1)) {
scope = scope?.subScopes()?.get(name)
scope = scope?.subScope(name)
if(scope==null)
break
}
@ -134,19 +145,27 @@ interface INameScope {
val result = scope.getLabelOrVariable(scopedName.last())
if(result!=null)
return result
return scope.subScopes()[scopedName.last()] as Statement?
return scope.subScope(scopedName.last()) as Statement?
}
}
return null
} else {
// unqualified name, find the scope the localContext is in, look in that first
// unqualified name
// special case: the do....until statement can also look INSIDE the anonymous scope
if(localContext.parent.parent is UntilLoop) {
val symbolFromInnerScope = (localContext.parent.parent as UntilLoop).body.getLabelOrVariable(scopedName[0])
if(symbolFromInnerScope!=null)
return symbolFromInnerScope
}
// find the scope the localContext is in, look in that first
var statementScope = localContext
while(statementScope !is ParentSentinel) {
val localScope = statementScope.definingScope()
val result = localScope.getLabelOrVariable(scopedName[0])
if (result != null)
return result
val subscope = localScope.subScopes()[scopedName[0]] as Statement?
val subscope = localScope.subScope(scopedName[0]) as Statement?
if (subscope != null)
return subscope
// not found in this scope, look one higher up
@ -176,8 +195,8 @@ interface INameScope {
find(it.truepart)
find(it.elsepart)
}
is UntilLoop -> find(it.body)
is RepeatLoop -> find(it.body)
is ForeverLoop -> find(it.body)
is WhileLoop -> find(it.body)
is WhenStatement -> it.choices.forEach { choice->find(choice.statements) }
else -> { /* do nothing */ }
@ -188,6 +207,30 @@ interface INameScope {
find(this)
return result
}
fun nextSibling(stmt: Statement): Statement? {
val nextIdx = statements.indexOfFirst { it===stmt } + 1
return if(nextIdx < statements.size)
statements[nextIdx]
else
null
}
fun previousSibling(stmt: Statement): Statement? {
val previousIdx = statements.indexOfFirst { it===stmt } - 1
return if(previousIdx>=0)
statements[previousIdx]
else
null
}
fun indexOfChild(stmt: Statement): Int {
val idx = statements.indexOfFirst { it===stmt }
if(idx>=0)
return idx
else
throw FatalAstException("attempt to find a non-child")
}
}
interface IAssignable {
@ -212,7 +255,7 @@ class Program(val name: String, val modules: MutableList<Module>): Node {
return if(mainBlocks.isEmpty()) {
null
} else {
mainBlocks[0].subScopes()["start"] as Subroutine?
mainBlocks[0].subScope("start") as Subroutine?
}
}
@ -221,18 +264,19 @@ class Program(val name: String, val modules: MutableList<Module>): Node {
override val position: Position = Position.DUMMY
override var parent: Node
get() = throw FatalAstException("program has no parent")
set(value) = throw FatalAstException("can't set parent of program")
set(_) = throw FatalAstException("can't set parent of program")
override fun linkParents(parent: Node) {
modules.forEach {
it.linkParents(this)
it.linkParents(namespace)
}
}
override fun replaceChildNode(node: Node, replacement: Node) {
require(node is Module && replacement is Module)
val idx = modules.indexOf(node)
val idx = modules.indexOfFirst { it===node }
modules[idx] = replacement
replacement.parent = this
}
}
@ -247,7 +291,10 @@ class Module(override val name: String,
val importedBy = mutableListOf<Module>()
val imports = mutableSetOf<Module>()
var loadAddress: Int = 0 // can be set with the %address directive
val loadAddress: Int by lazy {
val address = (statements.singleOrNull { it is Directive && it.directive == "%address" } as? Directive)?.args?.single()?.int ?: 0
address
}
override fun linkParents(parent: Node) {
this.parent = parent
@ -257,13 +304,13 @@ class Module(override val name: String,
override fun definingScope(): INameScope = program.namespace
override fun replaceChildNode(node: Node, replacement: Node) {
require(node is Statement && replacement is Statement)
val idx = statements.indexOf(node)
val idx = statements.indexOfFirst { it===node }
statements[idx] = replacement
replacement.parent = this
}
override fun toString() = "Module(name=$name, pos=$position, lib=$isLibraryModule)"
fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
fun accept(visitor: IAstVisitor) = visitor.visit(this)
fun accept(visitor: AstWalker, parent: Node) = visitor.visit(this, parent)
}
@ -272,7 +319,7 @@ class Module(override val name: String,
class GlobalNamespace(val modules: List<Module>): Node, INameScope {
override val name = "<<<global>>>"
override val position = Position("<<<global>>>", 0, 0, 0)
override val statements = mutableListOf<Statement>()
override val statements = mutableListOf<Statement>() // not used
override var parent: Node = ParentSentinel
override fun linkParents(parent: Node) {
@ -304,11 +351,19 @@ class GlobalNamespace(val modules: List<Module>): Node, INameScope {
}
}
}
// special case: the do....until statement can also look INSIDE the anonymous scope
if(localContext.parent.parent is UntilLoop) {
val symbolFromInnerScope = (localContext.parent.parent as UntilLoop).body.lookup(scopedName, localContext)
if(symbolFromInnerScope!=null)
return symbolFromInnerScope
}
// lookup something from the module.
return when (val stmt = localContext.definingModule().lookup(scopedName, localContext)) {
is Label, is VarDecl, is Block, is Subroutine -> stmt
is Label, is VarDecl, is Block, is Subroutine, is StructDecl -> stmt
null -> null
else -> throw SyntaxError("wrong identifier target for $scopedName: $stmt", stmt.position)
else -> throw SyntaxError("invalid identifier target type", stmt.position)
}
}
}

View File

@ -30,7 +30,7 @@ private fun ParserRuleContext.toPosition() : Position {
val customTokensource = this.start.tokenSource as? CustomLexer
val filename =
when {
customTokensource!=null -> customTokensource.modulePath.fileName.toString()
customTokensource!=null -> customTokensource.modulePath.toString()
start.tokenSource.sourceName == IntStream.UNKNOWN_SOURCE_NAME -> "@internal@"
else -> File(start.inputStream.sourceName).name
}
@ -161,14 +161,15 @@ private fun prog8Parser.StatementContext.toAst() : Statement {
if(vardecl!=null) return vardecl
assignment()?.let {
return Assignment(it.assign_target().toAst(), null, it.expression().toAst(), it.toPosition())
return Assignment(it.assign_target().toAst(), it.expression().toAst(), it.toPosition())
}
augassignment()?.let {
return Assignment(it.assign_target().toAst(),
it.operator.text,
it.expression().toAst(),
it.toPosition())
// replace A += X with A = A + X
val target = it.assign_target().toAst()
val oper = it.operator.text.substringBefore('=')
val expression = BinaryExpression(target.toExpression(), oper, it.expression().toAst(), it.expression().toPosition())
return Assignment(it.assign_target().toAst(), expression, it.toPosition())
}
postincrdecr()?.let {
@ -205,21 +206,18 @@ private fun prog8Parser.StatementContext.toAst() : Statement {
val forloop = forloop()?.toAst()
if(forloop!=null) return forloop
val repeatloop = repeatloop()?.toAst()
if(repeatloop!=null) return repeatloop
val untilloop = untilloop()?.toAst()
if(untilloop!=null) return untilloop
val whileloop = whileloop()?.toAst()
if(whileloop!=null) return whileloop
val foreverloop = foreverloop()?.toAst()
if(foreverloop!=null) return foreverloop
val repeatloop = repeatloop()?.toAst()
if(repeatloop!=null) return repeatloop
val breakstmt = breakstmt()?.toAst()
if(breakstmt!=null) return breakstmt
val continuestmt = continuestmt()?.toAst()
if(continuestmt!=null) return continuestmt
val whenstmt = whenstmt()?.toAst()
if(whenstmt!=null) return whenstmt
@ -247,7 +245,7 @@ private class AsmsubDecl(val name: String,
val returntypes: List<DataType>,
val asmParameterRegisters: List<RegisterOrStatusflag>,
val asmReturnvaluesRegisters: List<RegisterOrStatusflag>,
val asmClobbers: Set<Register>)
val asmClobbers: Set<CpuRegister>)
private fun prog8Parser.Asmsub_declContext.toAst(): AsmsubDecl {
val name = identifier().text
@ -256,8 +254,8 @@ private fun prog8Parser.Asmsub_declContext.toAst(): AsmsubDecl {
val clobbers = asmsub_clobbers()?.clobber()?.toAst() ?: emptySet()
val normalParameters = params.map { SubroutineParameter(it.name, it.type, it.position) }
val normalReturntypes = returns.map { it.type }
val paramRegisters = params.map { RegisterOrStatusflag(it.registerOrPair, it.statusflag, it.stack) }
val returnRegisters = returns.map { RegisterOrStatusflag(it.registerOrPair, it.statusflag, it.stack) }
val paramRegisters = params.map { RegisterOrStatusflag(it.registerOrPair, it.statusflag) }
val returnRegisters = returns.map { RegisterOrStatusflag(it.registerOrPair, it.statusflag) }
return AsmsubDecl(name, normalParameters, normalReturntypes, paramRegisters, returnRegisters, clobbers)
}
@ -265,33 +263,49 @@ private class AsmSubroutineParameter(name: String,
type: DataType,
val registerOrPair: RegisterOrPair?,
val statusflag: Statusflag?,
val stack: Boolean,
position: Position) : SubroutineParameter(name, type, position)
private class AsmSubroutineReturn(val type: DataType,
val registerOrPair: RegisterOrPair?,
val statusflag: Statusflag?,
val stack: Boolean,
val position: Position)
private fun prog8Parser.ClobberContext.toAst(): Set<Register>
= this.register().asSequence().map { it.toAst() }.toSet()
private fun prog8Parser.Asmsub_returnsContext.toAst(): List<AsmSubroutineReturn>
= asmsub_return().map { AsmSubroutineReturn(it.datatype().toAst(), it.registerorpair()?.toAst(), it.statusregister()?.toAst(), !it.stack?.text.isNullOrEmpty(), toPosition()) }
= asmsub_return().map {
val register = it.identifier()?.toAst()
var registerorpair: RegisterOrPair? = null
var statusregister: Statusflag? = null
if(register!=null) {
when (val name = register.nameInSource.single()) {
in RegisterOrPair.names -> registerorpair = RegisterOrPair.valueOf(name)
in Statusflag.names -> statusregister = Statusflag.valueOf(name)
else -> throw FatalAstException("invalid register or status flag in $it")
}
}
AsmSubroutineReturn(
it.datatype().toAst(),
registerorpair,
statusregister,
toPosition())
}
private fun prog8Parser.Asmsub_paramsContext.toAst(): List<AsmSubroutineParameter>
= asmsub_param().map {
val vardecl = it.vardecl()
val datatype = vardecl.datatype()?.toAst() ?: DataType.STRUCT
AsmSubroutineParameter(vardecl.varname.text, datatype,
it.registerorpair()?.toAst(),
it.statusregister()?.toAst(),
!it.stack?.text.isNullOrEmpty(), toPosition())
val register = it.identifier()?.toAst()
var registerorpair: RegisterOrPair? = null
var statusregister: Statusflag? = null
if(register!=null) {
when (val name = register.nameInSource.single()) {
in RegisterOrPair.names -> registerorpair = RegisterOrPair.valueOf(name)
in Statusflag.names -> statusregister = Statusflag.valueOf(name)
else -> throw FatalAstException("invalid register or status flag '$name'")
}
}
AsmSubroutineParameter(vardecl.varname.text, datatype, registerorpair, statusregister, toPosition())
}
private fun prog8Parser.StatusregisterContext.toAst() = Statusflag.valueOf(text)
private fun prog8Parser.Functioncall_stmtContext.toAst(): Statement {
val void = this.VOID() != null
val location = scoped_identifier().toAst()
@ -326,14 +340,11 @@ private fun prog8Parser.LabeldefContext.toAst(): Statement =
Label(children[0].text, toPosition())
private fun prog8Parser.SubroutineContext.toAst() : Subroutine {
// non-asm subroutine
val returntypes = sub_return_part()?.toAst() ?: emptyList()
return Subroutine(identifier().text,
sub_params()?.toAst() ?: emptyList(),
sub_return_part()?.toAst() ?: emptyList(),
emptyList(),
emptyList(),
emptySet(),
null,
false,
returntypes,
statement_block()?.toAst() ?: mutableListOf(),
toPosition())
}
@ -350,23 +361,22 @@ private fun prog8Parser.Sub_paramsContext.toAst(): List<SubroutineParameter> =
}
private fun prog8Parser.Assign_targetContext.toAst() : AssignTarget {
val register = register()?.toAst()
val identifier = scoped_identifier()
return when {
register!=null -> AssignTarget(register, null, null, null, toPosition())
identifier!=null -> AssignTarget(null, identifier.toAst(), null, null, toPosition())
arrayindexed()!=null -> AssignTarget(null, null, arrayindexed().toAst(), null, toPosition())
directmemory()!=null -> AssignTarget(null, null, null, DirectMemoryWrite(directmemory().expression().toAst(), toPosition()), toPosition())
else -> AssignTarget(null, scoped_identifier()?.toAst(), null, null, toPosition())
identifier!=null -> AssignTarget(identifier.toAst(), null, null, toPosition())
arrayindexed()!=null -> AssignTarget(null, arrayindexed().toAst(), null, toPosition())
directmemory()!=null -> AssignTarget(null, null, DirectMemoryWrite(directmemory().expression().toAst(), toPosition()), toPosition())
else -> AssignTarget(scoped_identifier()?.toAst(), null, null, toPosition())
}
}
private fun prog8Parser.RegisterContext.toAst() = Register.valueOf(text.toUpperCase())
private fun prog8Parser.ClobberContext.toAst() : Set<CpuRegister> {
val names = this.identifier().map { it.toAst().nameInSource.single() }
return names.map { CpuRegister.valueOf(it) }.toSet()
}
private fun prog8Parser.DatatypeContext.toAst() = DataType.valueOf(text.toUpperCase())
private fun prog8Parser.RegisterorpairContext.toAst() = RegisterOrPair.valueOf(text.toUpperCase())
private fun prog8Parser.ArrayindexContext.toAst() : ArrayIndex =
ArrayIndex(expression().toAst(), toPosition())
@ -382,7 +392,7 @@ private fun prog8Parser.DirectiveargContext.toAst() : DirectiveArg {
}
private fun prog8Parser.IntegerliteralContext.toAst(): NumericLiteral {
fun makeLiteral(text: String, radix: Int, forceWord: Boolean): NumericLiteral {
fun makeLiteral(text: String, radix: Int): NumericLiteral {
val integer: Int
var datatype = DataType.UBYTE
when (radix) {
@ -420,14 +430,14 @@ private fun prog8Parser.IntegerliteralContext.toAst(): NumericLiteral {
}
else -> throw FatalAstException("invalid radix")
}
return NumericLiteral(integer, if (forceWord) DataType.UWORD else datatype)
return NumericLiteral(integer, datatype)
}
val terminal: TerminalNode = children[0] as TerminalNode
val integerPart = this.intpart.text
return when (terminal.symbol.type) {
prog8Parser.DEC_INTEGER -> makeLiteral(integerPart, 10, wordsuffix()!=null)
prog8Parser.HEX_INTEGER -> makeLiteral(integerPart.substring(1), 16, wordsuffix()!=null)
prog8Parser.BIN_INTEGER -> makeLiteral(integerPart.substring(1), 2, wordsuffix()!=null)
prog8Parser.DEC_INTEGER -> makeLiteral(integerPart, 10)
prog8Parser.HEX_INTEGER -> makeLiteral(integerPart.substring(1), 16)
prog8Parser.BIN_INTEGER -> makeLiteral(integerPart.substring(1), 2)
else -> throw FatalAstException(terminal.text)
}
}
@ -455,8 +465,7 @@ private fun prog8Parser.ExpressionContext.toAst() : Expression {
litval.stringliteral()!=null -> litval.stringliteral().toAst()
litval.charliteral()!=null -> {
try {
val cc=litval.charliteral()
NumericLiteralValue(DataType.UBYTE, CompilationTarget.encodeString(
NumericLiteralValue(DataType.UBYTE, CompilationTarget.instance.encodeString(
unescape(litval.charliteral().SINGLECHAR().text, litval.toPosition()),
litval.charliteral().ALT_STRING_ENCODING()!=null)[0], litval.toPosition())
} catch (ce: CharConversionException) {
@ -469,18 +478,11 @@ private fun prog8Parser.ExpressionContext.toAst() : Expression {
// the ConstantFold takes care of that and converts the type if needed.
ArrayLiteralValue(InferredTypes.InferredType.unknown(), array, position = litval.toPosition())
}
litval.structliteral()!=null -> {
val values = litval.structliteral().expression().map { it.toAst() }
StructLiteralValue(values, litval.toPosition())
}
else -> throw FatalAstException("invalid parsed literal")
}
}
}
if(register()!=null)
return RegisterExpr(register().toAst(), register().toPosition())
if(scoped_identifier()!=null)
return scoped_identifier().toAst()
@ -572,19 +574,16 @@ private fun prog8Parser.Branch_stmtContext.toAst(): BranchStatement {
private fun prog8Parser.BranchconditionContext.toAst() = BranchCondition.valueOf(text.substringAfter('_').toUpperCase())
private fun prog8Parser.ForloopContext.toAst(): ForLoop {
val loopregister = register()?.toAst()
val loopvar = identifier()?.toAst()
val loopvar = identifier().toAst()
val iterable = expression()!!.toAst()
val scope =
if(statement()!=null)
AnonymousScope(mutableListOf(statement().toAst()), statement().toPosition())
else
AnonymousScope(statement_block().toAst(), statement_block().toPosition())
return ForLoop(loopregister, loopvar, iterable, scope, toPosition())
return ForLoop(loopvar, iterable, scope, toPosition())
}
private fun prog8Parser.ContinuestmtContext.toAst() = Continue(toPosition())
private fun prog8Parser.BreakstmtContext.toAst() = Break(toPosition())
private fun prog8Parser.WhileloopContext.toAst(): WhileLoop {
@ -595,19 +594,20 @@ private fun prog8Parser.WhileloopContext.toAst(): WhileLoop {
return WhileLoop(condition, scope, toPosition())
}
private fun prog8Parser.ForeverloopContext.toAst(): ForeverLoop {
private fun prog8Parser.RepeatloopContext.toAst(): RepeatLoop {
val iterations = expression()?.toAst()
val statements = statement_block()?.toAst() ?: mutableListOf(statement().toAst())
val scope = AnonymousScope(statements, statement_block()?.toPosition()
?: statement().toPosition())
return ForeverLoop(scope, toPosition())
return RepeatLoop(iterations, scope, toPosition())
}
private fun prog8Parser.RepeatloopContext.toAst(): RepeatLoop {
private fun prog8Parser.UntilloopContext.toAst(): UntilLoop {
val untilCondition = expression().toAst()
val statements = statement_block()?.toAst() ?: mutableListOf(statement().toAst())
val scope = AnonymousScope(statements, statement_block()?.toPosition()
?: statement().toPosition())
return RepeatLoop(scope, untilCondition, toPosition())
return UntilLoop(scope, untilCondition, toPosition())
}
private fun prog8Parser.WhenstmtContext.toAst(): WhenStatement {
@ -641,7 +641,20 @@ private fun prog8Parser.VardeclContext.toAst(): VarDecl {
)
}
internal fun escape(str: String) = str.replace("\t", "\\t").replace("\n", "\\n").replace("\r", "\\r")
internal fun escape(str: String): String {
val es = str.map {
when(it) {
'\t' -> "\\t"
'\n' -> "\\n"
'\r' -> "\\r"
'"' -> "\\\""
in '\u8000'..'\u80ff' -> "\\x" + (it.toInt() - 0x8000).toString(16).padStart(2, '0')
in '\u0000'..'\u00ff' -> it.toString()
else -> "\\u" + it.toInt().toString(16).padStart(4, '0')
}
}
return es.joinToString("")
}
internal fun unescape(str: String, position: Position): String {
val result = mutableListOf<Char>()
@ -655,9 +668,15 @@ internal fun unescape(str: String, position: Position): String {
'n' -> '\n'
'r' -> '\r'
'"' -> '"'
'\'' -> '\''
'u' -> {
"${iter.nextChar()}${iter.nextChar()}${iter.nextChar()}${iter.nextChar()}".toInt(16).toChar()
}
'x' -> {
// special hack 0x8000..0x80ff will be outputted verbatim without encoding
val hex = ("" + iter.nextChar() + iter.nextChar()).toInt(16)
(0x8000 + hex).toChar()
}
else -> throw SyntaxError("invalid escape char in string: \\$ec", position)
})
} else {

View File

@ -21,35 +21,39 @@ enum class DataType {
STRUCT; // pass by reference
/**
* is the type assignable to the given other type?
* is the type assignable to the given other type (perhaps via a typecast) without loss of precision?
*/
infix fun isAssignableTo(targetType: DataType) =
// what types are assignable to others without loss of precision?
when(this) {
UBYTE -> targetType in setOf(UBYTE, WORD, UWORD, FLOAT)
BYTE -> targetType in setOf(BYTE, WORD, FLOAT)
UWORD -> targetType in setOf(UWORD, FLOAT)
WORD -> targetType in setOf(WORD, FLOAT)
FLOAT -> targetType == FLOAT
STR -> targetType == STR
in ArrayDatatypes -> targetType == this
STR -> targetType == STR || targetType == UWORD
in ArrayDatatypes -> targetType == this || targetType == UWORD
else -> false
}
infix fun isAssignableTo(targetTypes: Set<DataType>) = targetTypes.any { this isAssignableTo it }
infix fun isNotAssignableTo(targetType: DataType) = !this.isAssignableTo(targetType)
infix fun isNotAssignableTo(targetTypes: Set<DataType>) = !this.isAssignableTo(targetTypes)
infix fun largerThan(other: DataType) =
when(this) {
in ByteDatatypes -> false
in WordDatatypes -> other in ByteDatatypes
when {
this == other -> false
this in ByteDatatypes -> false
this in WordDatatypes -> other in ByteDatatypes
this==STR && other==UWORD || this==UWORD && other==STR -> false
else -> true
}
infix fun equalsSize(other: DataType) =
when(this) {
in ByteDatatypes -> other in ByteDatatypes
in WordDatatypes -> other in WordDatatypes
when {
this == other -> true
this in ByteDatatypes -> other in ByteDatatypes
this in WordDatatypes -> other in WordDatatypes
this==STR && other==UWORD || this==UWORD && other==STR -> true
else -> false
}
@ -57,14 +61,14 @@ enum class DataType {
return when(this) {
in ByteDatatypes -> 1
in WordDatatypes -> 2
FLOAT -> CompilationTarget.machine.FLOAT_MEM_SIZE
in PassByReferenceDatatypes -> 2
FLOAT -> CompilationTarget.instance.machine.FLOAT_MEM_SIZE
in PassByReferenceDatatypes -> CompilationTarget.instance.machine.POINTER_MEM_SIZE
else -> -9999999
}
}
}
enum class Register {
enum class CpuRegister {
A,
X,
Y
@ -76,14 +80,25 @@ enum class RegisterOrPair {
Y,
AX,
AY,
XY
XY,
FAC1,
FAC2;
companion object {
val names by lazy { values().map { it.toString()} }
}
} // only used in parameter and return value specs in asm subroutines
enum class Statusflag {
Pc,
Pz,
Pv,
Pn
Pn;
companion object {
val names by lazy { values().map { it.toString()} }
}
}
enum class BranchCondition {
@ -150,11 +165,14 @@ object ParentSentinel : Node {
override val position = Position("<<sentinel>>", 0, 0, 0)
override var parent: Node = this
override fun linkParents(parent: Node) {}
override fun replaceChildNode(node: Node, replacement: Node) {}
override fun replaceChildNode(node: Node, replacement: Node) {
replacement.parent = this
}
}
data class Position(val file: String, val line: Int, val startCol: Int, val endCol: Int) {
override fun toString(): String = "[$file: line $line col ${startCol+1}-${endCol+1}]"
fun toClickableStr(): String = "$file:$line:$startCol:"
companion object {
val DUMMY = Position("<dummy>", 0, 0, 0)

View File

@ -24,7 +24,7 @@ class ErrorReporter {
MessageSeverity.ERROR -> System.err.print("\u001b[91m") // bright red
MessageSeverity.WARNING -> System.err.print("\u001b[93m") // bright yellow
}
val msg = "${it.position} ${it.severity} ${it.message}".trim()
val msg = "${it.position.toClickableStr()} ${it.severity} ${it.message}".trim()
if(msg !in alreadyReportedMessages) {
System.err.println(msg)
alreadyReportedMessages.add(msg)

View File

@ -2,16 +2,16 @@ package prog8.ast.base
import prog8.ast.expressions.IdentifierReference
class FatalAstException (override var message: String) : Exception(message)
open class FatalAstException (override var message: String) : Exception(message)
open class AstException (override var message: String) : Exception(message)
open class SyntaxError(override var message: String, val position: Position) : AstException(message) {
override fun toString() = "$position Syntax error: $message"
override fun toString() = "${position.toClickableStr()} Syntax error: $message"
}
class ExpressionError(message: String, val position: Position) : AstException(message) {
override fun toString() = "$position Error: $message"
override fun toString() = "${position.toClickableStr()} Error: $message"
}
class UndefinedSymbolError(symbol: IdentifierReference)

View File

@ -3,9 +3,9 @@ package prog8.ast.base
import prog8.ast.Module
import prog8.ast.Program
import prog8.ast.processing.*
import prog8.ast.statements.Directive
import prog8.compiler.CompilationOptions
import prog8.compiler.target.AsmVariableAndReturnsPreparer
import prog8.optimizer.FlattenAnonymousScopesAndNopRemover
import prog8.compiler.BeforeAsmGenerationAstChanger
internal fun Program.checkValid(compilerOptions: CompilationOptions, errors: ErrorReporter) {
@ -13,19 +13,16 @@ internal fun Program.checkValid(compilerOptions: CompilationOptions, errors: Err
checker.visit(this)
}
internal fun Program.prepareAsmVariablesAndReturns(errors: ErrorReporter) {
val fixer = AsmVariableAndReturnsPreparer(this, errors)
internal fun Program.processAstBeforeAsmGeneration(errors: ErrorReporter) {
val fixer = BeforeAsmGenerationAstChanger(this, errors)
fixer.visit(this)
fixer.applyModifications()
}
internal fun Program.reorderStatements() {
val initvalueCreator = AddressOfInserter(this)
initvalueCreator.visit(this)
initvalueCreator.applyModifications()
val checker = StatementReorderer(this)
checker.visit(this)
internal fun Program.reorderStatements(errors: ErrorReporter) {
val reorder = StatementReorderer(this, errors)
reorder.visit(this)
reorder.applyModifications()
}
internal fun Program.addTypecasts(errors: ErrorReporter) {
@ -34,34 +31,72 @@ internal fun Program.addTypecasts(errors: ErrorReporter) {
caster.applyModifications()
}
internal fun Program.verifyFunctionArgTypes() {
val fixer = VerifyFunctionArgTypes(this)
fixer.visit(this)
}
internal fun Module.checkImportedValid() {
val imr = ImportedModuleDirectiveRemover()
imr.visit(this, this.parent)
imr.applyModifications()
}
internal fun Program.checkRecursion(errors: ErrorReporter) {
val checker = AstRecursionChecker(namespace, errors)
checker.visit(this)
checker.processMessages(name)
}
internal fun Program.checkIdentifiers(errors: ErrorReporter) {
val checker = AstIdentifiersChecker(this, errors)
checker.visit(this)
val checker2 = AstIdentifiersChecker(this, errors)
checker2.visit(this)
if(errors.isEmpty()) {
val transforms = AstVariousTransforms(this)
transforms.visit(this)
transforms.applyModifications()
val lit2decl = LiteralsToAutoVars(this)
lit2decl.visit(this)
lit2decl.applyModifications()
}
if (modules.map { it.name }.toSet().size != modules.size) {
throw FatalAstException("modules should all be unique")
}
}
internal fun Program.makeForeverLoops() {
val checker = ForeverLoopsMaker()
checker.visit(this)
checker.applyModifications()
internal fun Program.variousCleanups() {
val process = VariousCleanups()
process.visit(this)
process.applyModifications()
}
internal fun Program.removeNopsFlattenAnonScopes() {
val flattener = FlattenAnonymousScopesAndNopRemover()
flattener.visit(this)
internal fun Program.moveMainAndStartToFirst() {
// the module containing the program entrypoint is moved to the first in the sequence.
// the "main" block containing the entrypoint is moved to the top in there,
// and finally the entrypoint subroutine "start" itself is moved to the top in that block.
val directives = modules[0].statements.filterIsInstance<Directive>()
val start = this.entrypoint()
if(start!=null) {
val mod = start.definingModule()
val block = start.definingBlock()
if(!modules.remove(mod))
throw FatalAstException("module wrong")
modules.add(0, mod)
mod.remove(block)
var afterDirective = mod.statements.indexOfFirst { it !is Directive }
if(afterDirective<0)
mod.statements.add(block)
else
mod.statements.add(afterDirective, block)
block.remove(start)
afterDirective = block.statements.indexOfFirst { it !is Directive }
if(afterDirective<0)
block.statements.add(start)
else
block.statements.add(afterDirective, start)
// overwrite the directives in the module containing the entrypoint
for(directive in directives) {
modules[0].statements.removeAll { it is Directive && it.directive == directive.directive }
modules[0].statements.add(0, directive)
}
}
}

View File

@ -4,11 +4,11 @@ import prog8.ast.*
import prog8.ast.antlr.escape
import prog8.ast.base.*
import prog8.ast.processing.AstWalker
import prog8.ast.processing.IAstModifyingVisitor
import prog8.ast.processing.IAstVisitor
import prog8.ast.statements.*
import prog8.compiler.target.CompilationTarget
import prog8.functions.BuiltinFunctions
import prog8.functions.CannotEvaluateException
import prog8.functions.NotConstArgumentException
import prog8.functions.builtinFunctionReturnType
import java.util.*
@ -16,35 +16,52 @@ import kotlin.math.abs
val associativeOperators = setOf("+", "*", "&", "|", "^", "or", "and", "xor", "==", "!=")
val comparisonOperators = setOf("==", "!=", "<", ">", "<=", ">=")
val augmentAssignmentOperators = setOf("+", "-", "/", "*", "**", "&", "|", "^", "<<", ">>", "%", "and", "or", "xor")
sealed class Expression: Node {
abstract fun constValue(program: Program): NumericLiteralValue?
abstract fun accept(visitor: IAstModifyingVisitor): Expression
abstract fun accept(visitor: IAstVisitor)
abstract fun accept(visitor: AstWalker, parent: Node)
abstract fun referencesIdentifiers(vararg name: String): Boolean // todo: remove this and add identifier usage tracking into CallGraph instead
abstract fun referencesIdentifier(vararg scopedName: String): Boolean
abstract fun inferType(program: Program): InferredTypes.InferredType
infix fun isSameAs(assigntarget: AssignTarget) = assigntarget.isSameAs(this)
infix fun isSameAs(other: Expression): Boolean {
if(this===other)
return true
when(this) {
is RegisterExpr ->
return (other is RegisterExpr && other.register==register)
return when(this) {
is IdentifierReference ->
return (other is IdentifierReference && other.nameInSource==nameInSource)
(other is IdentifierReference && other.nameInSource==nameInSource)
is PrefixExpression ->
return (other is PrefixExpression && other.operator==operator && other.expression isSameAs expression)
(other is PrefixExpression && other.operator==operator && other.expression isSameAs expression)
is BinaryExpression ->
return (other is BinaryExpression && other.operator==operator
(other is BinaryExpression && other.operator==operator
&& other.left isSameAs left
&& other.right isSameAs right)
is ArrayIndexedExpression -> {
return (other is ArrayIndexedExpression && other.identifier.nameInSource == identifier.nameInSource
&& other.arrayspec.index isSameAs arrayspec.index)
(other is ArrayIndexedExpression && other.arrayvar.nameInSource == arrayvar.nameInSource
&& other.indexer isSameAs indexer)
}
else -> return other==this
is DirectMemoryRead -> {
(other is DirectMemoryRead && other.addressExpression isSameAs addressExpression)
}
is TypecastExpression -> {
(other is TypecastExpression && other.implicit==implicit && other.type==type && other.expression isSameAs expression)
}
is AddressOf -> {
(other is AddressOf && other.identifier.nameInSource == identifier.nameInSource)
}
is RangeExpr -> {
(other is RangeExpr && other.from==from && other.to==to && other.step==step)
}
is FunctionCall -> {
(other is FunctionCall && other.target.nameInSource == target.nameInSource
&& other.args.size == args.size
&& other.args.zip(args).all { it.first isSameAs it.second } )
}
else -> other==this
}
}
}
@ -61,14 +78,14 @@ class PrefixExpression(val operator: String, var expression: Expression, overrid
override fun replaceChildNode(node: Node, replacement: Node) {
require(node === expression && replacement is Expression)
expression = replacement
replacement.parent = this
}
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
override fun referencesIdentifiers(vararg name: String) = expression.referencesIdentifiers(*name)
override fun referencesIdentifier(vararg scopedName: String) = expression.referencesIdentifier(*scopedName)
override fun inferType(program: Program): InferredTypes.InferredType {
val inferred = expression.inferType(program)
return when(operator) {
@ -112,6 +129,7 @@ class BinaryExpression(var left: Expression, var operator: String, var right: Ex
node===right -> right = replacement
else -> throw FatalAstException("invalid replace, no child $node")
}
replacement.parent = this
}
override fun toString(): String {
@ -121,11 +139,10 @@ class BinaryExpression(var left: Expression, var operator: String, var right: Ex
// binary expression should actually have been optimized away into a single value, before const value was requested...
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
override fun referencesIdentifiers(vararg name: String) = left.referencesIdentifiers(*name) || right.referencesIdentifiers(*name)
override fun referencesIdentifier(vararg scopedName: String) = left.referencesIdentifier(*scopedName) || right.referencesIdentifier(*scopedName)
override fun inferType(program: Program): InferredTypes.InferredType {
val leftDt = left.inferType(program)
val rightDt = right.inferType(program)
@ -215,33 +232,32 @@ class BinaryExpression(var left: Expression, var operator: String, var right: Ex
}
}
class ArrayIndexedExpression(var identifier: IdentifierReference,
val arrayspec: ArrayIndex,
class ArrayIndexedExpression(var arrayvar: IdentifierReference,
val indexer: ArrayIndex,
override val position: Position) : Expression(), IAssignable {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
identifier.linkParents(this)
arrayspec.linkParents(this)
arrayvar.linkParents(this)
indexer.linkParents(this)
}
override fun replaceChildNode(node: Node, replacement: Node) {
when {
node===identifier -> identifier = replacement as IdentifierReference
node===arrayspec.index -> arrayspec.index = replacement as Expression
node===arrayvar -> arrayvar = replacement as IdentifierReference
else -> throw FatalAstException("invalid replace")
}
replacement.parent = this
}
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
override fun referencesIdentifiers(vararg name: String) = identifier.referencesIdentifiers(*name)
override fun referencesIdentifier(vararg scopedName: String) = arrayvar.referencesIdentifier(*scopedName)
override fun inferType(program: Program): InferredTypes.InferredType {
val target = identifier.targetStatement(program.namespace)
val target = arrayvar.targetStatement(program.namespace)
if (target is VarDecl) {
return when (target.datatype) {
DataType.STR -> InferredTypes.knownFor(DataType.UBYTE)
@ -253,7 +269,7 @@ class ArrayIndexedExpression(var identifier: IdentifierReference,
}
override fun toString(): String {
return "ArrayIndexed(ident=$identifier, arraysize=$arrayspec; pos=$position)"
return "ArrayIndexed(ident=$arrayvar, arraysize=$indexer; pos=$position)"
}
}
@ -268,19 +284,21 @@ class TypecastExpression(var expression: Expression, var type: DataType, val imp
override fun replaceChildNode(node: Node, replacement: Node) {
require(replacement is Expression && node===expression)
expression = replacement
replacement.parent = this
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
override fun referencesIdentifiers(vararg name: String) = expression.referencesIdentifiers(*name)
override fun referencesIdentifier(vararg scopedName: String) = expression.referencesIdentifier(*scopedName)
override fun inferType(program: Program): InferredTypes.InferredType = InferredTypes.knownFor(type)
override fun constValue(program: Program): NumericLiteralValue? {
val cv = expression.constValue(program) ?: return null
return cv.cast(type)
// val value = RuntimeValue(cv.type, cv.asNumericValue!!).cast(type)
// return LiteralValue.fromNumber(value.numericValue(), value.type, position).cast(type)
val cast = cv.cast(type)
return if(cast.isValid)
cast.valueOrZero()
else
null
}
override fun toString(): String {
@ -299,12 +317,12 @@ data class AddressOf(var identifier: IdentifierReference, override val position:
override fun replaceChildNode(node: Node, replacement: Node) {
require(replacement is IdentifierReference && node===identifier)
identifier = replacement
replacement.parent = this
}
override fun constValue(program: Program): NumericLiteralValue? = null
override fun referencesIdentifiers(vararg name: String) = false
override fun referencesIdentifier(vararg scopedName: String) = false
override fun inferType(program: Program): InferredTypes.InferredType = InferredTypes.knownFor(DataType.UWORD)
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
}
@ -320,13 +338,13 @@ class DirectMemoryRead(var addressExpression: Expression, override val position:
override fun replaceChildNode(node: Node, replacement: Node) {
require(replacement is Expression && node===addressExpression)
addressExpression = replacement
replacement.parent = this
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
override fun referencesIdentifiers(vararg name: String) = false
override fun referencesIdentifier(vararg scopedName: String) = false
override fun inferType(program: Program): InferredTypes.InferredType = InferredTypes.knownFor(DataType.UBYTE)
override fun constValue(program: Program): NumericLiteralValue? = null
@ -379,10 +397,9 @@ class NumericLiteralValue(val type: DataType, // only numerical types allowed
throw FatalAstException("can't replace here")
}
override fun referencesIdentifiers(vararg name: String) = false
override fun referencesIdentifier(vararg scopedName: String) = false
override fun constValue(program: Program) = this
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
@ -400,88 +417,66 @@ class NumericLiteralValue(val type: DataType, // only numerical types allowed
operator fun compareTo(other: NumericLiteralValue): Int = number.toDouble().compareTo(other.number.toDouble())
fun cast(targettype: DataType): NumericLiteralValue {
class CastValue(val isValid: Boolean, private val value: NumericLiteralValue?) {
fun valueOrZero() = if(isValid) value!! else NumericLiteralValue(DataType.UBYTE, 0, Position.DUMMY)
}
fun cast(targettype: DataType): CastValue {
if(type==targettype)
return this
return CastValue(true, this)
val numval = number.toDouble()
when(type) {
DataType.UBYTE -> {
if(targettype== DataType.BYTE && numval <= 127)
return NumericLiteralValue(targettype, number.toShort(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toShort(), position))
if(targettype== DataType.WORD || targettype== DataType.UWORD)
return NumericLiteralValue(targettype, number.toInt(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toInt(), position))
if(targettype== DataType.FLOAT)
return NumericLiteralValue(targettype, number.toDouble(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toDouble(), position))
}
DataType.BYTE -> {
if(targettype== DataType.UBYTE && numval >= 0)
return NumericLiteralValue(targettype, number.toShort(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toShort(), position))
if(targettype== DataType.UWORD && numval >= 0)
return NumericLiteralValue(targettype, number.toInt(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toInt(), position))
if(targettype== DataType.WORD)
return NumericLiteralValue(targettype, number.toInt(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toInt(), position))
if(targettype== DataType.FLOAT)
return NumericLiteralValue(targettype, number.toDouble(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toDouble(), position))
}
DataType.UWORD -> {
if(targettype== DataType.BYTE && numval <= 127)
return NumericLiteralValue(targettype, number.toShort(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toShort(), position))
if(targettype== DataType.UBYTE && numval <= 255)
return NumericLiteralValue(targettype, number.toShort(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toShort(), position))
if(targettype== DataType.WORD && numval <= 32767)
return NumericLiteralValue(targettype, number.toInt(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toInt(), position))
if(targettype== DataType.FLOAT)
return NumericLiteralValue(targettype, number.toDouble(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toDouble(), position))
}
DataType.WORD -> {
if(targettype== DataType.BYTE && numval >= -128 && numval <=127)
return NumericLiteralValue(targettype, number.toShort(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toShort(), position))
if(targettype== DataType.UBYTE && numval >= 0 && numval <= 255)
return NumericLiteralValue(targettype, number.toShort(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toShort(), position))
if(targettype== DataType.UWORD && numval >=0)
return NumericLiteralValue(targettype, number.toInt(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toInt(), position))
if(targettype== DataType.FLOAT)
return NumericLiteralValue(targettype, number.toDouble(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toDouble(), position))
}
DataType.FLOAT -> {
if (targettype == DataType.BYTE && numval >= -128 && numval <=127)
return NumericLiteralValue(targettype, number.toShort(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toShort(), position))
if (targettype == DataType.UBYTE && numval >=0 && numval <= 255)
return NumericLiteralValue(targettype, number.toShort(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toShort(), position))
if (targettype == DataType.WORD && numval >= -32768 && numval <= 32767)
return NumericLiteralValue(targettype, number.toInt(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toInt(), position))
if (targettype == DataType.UWORD && numval >=0 && numval <= 65535)
return NumericLiteralValue(targettype, number.toInt(), position)
return CastValue(true, NumericLiteralValue(targettype, number.toInt(), position))
}
else -> {}
}
throw ExpressionError("can't cast $type into $targettype", position)
}
}
class StructLiteralValue(var values: List<Expression>,
override val position: Position): Expression() {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent=parent
values.forEach { it.linkParents(this) }
}
override fun replaceChildNode(node: Node, replacement: Node) {
throw FatalAstException("can't replace here")
}
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
override fun referencesIdentifiers(vararg name: String) = values.any { it.referencesIdentifiers(*name) }
override fun inferType(program: Program): InferredTypes.InferredType = InferredTypes.knownFor(DataType.STRUCT)
override fun toString(): String {
return "struct{ ${values.joinToString(", ")} }"
return CastValue(false, null)
}
}
@ -502,9 +497,8 @@ class StringLiteralValue(val value: String,
throw FatalAstException("can't replace here")
}
override fun referencesIdentifiers(vararg name: String) = false
override fun referencesIdentifier(vararg scopedName: String) = false
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
@ -533,18 +527,18 @@ class ArrayLiteralValue(val type: InferredTypes.InferredType, // inferred be
override fun replaceChildNode(node: Node, replacement: Node) {
require(replacement is Expression)
val idx = value.indexOf(node)
val idx = value.indexOfFirst { it===node }
value[idx] = replacement
replacement.parent = this
}
override fun referencesIdentifiers(vararg name: String) = value.any { it.referencesIdentifiers(*name) }
override fun referencesIdentifier(vararg scopedName: String) = value.any { it.referencesIdentifier(*scopedName) }
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
override fun toString(): String = "$value"
override fun inferType(program: Program): InferredTypes.InferredType = if(type.isUnknown) type else guessDatatype(program)
override fun inferType(program: Program): InferredTypes.InferredType = if(type.isKnown) type else guessDatatype(program)
operator fun compareTo(other: ArrayLiteralValue): Int = throw ExpressionError("cannot order compare arrays", position)
override fun hashCode(): Int = Objects.hash(value, type)
@ -574,10 +568,17 @@ class ArrayLiteralValue(val type: InferredTypes.InferredType, // inferred be
val dts = datatypesInArray.map { it.typeOrElse(DataType.STRUCT) }
return when {
DataType.FLOAT in dts -> InferredTypes.InferredType.known(DataType.ARRAY_F)
DataType.STR in dts -> InferredTypes.InferredType.known(DataType.ARRAY_UW)
DataType.WORD in dts -> InferredTypes.InferredType.known(DataType.ARRAY_W)
DataType.UWORD in dts -> InferredTypes.InferredType.known(DataType.ARRAY_UW)
DataType.BYTE in dts -> InferredTypes.InferredType.known(DataType.ARRAY_B)
DataType.UBYTE in dts -> InferredTypes.InferredType.known(DataType.ARRAY_UB)
DataType.ARRAY_UW in dts ||
DataType.ARRAY_W in dts ||
DataType.ARRAY_UB in dts ||
DataType.ARRAY_B in dts ||
DataType.ARRAY_F in dts ||
DataType.STRUCT in dts -> InferredTypes.InferredType.known(DataType.ARRAY_UW)
else -> InferredTypes.InferredType.unknown()
}
}
@ -592,14 +593,14 @@ class ArrayLiteralValue(val type: InferredTypes.InferredType, // inferred be
if(num==null) {
// an array of UWORDs could possibly also contain AddressOfs, other stuff can't be casted
if (elementType != DataType.UWORD || it !is AddressOf)
return null
return null // can't cast a value of the array, abort
it
} else {
try {
num.cast(elementType)
} catch(x: ExpressionError) {
return null
}
val cast = num.cast(elementType)
if(cast.isValid)
cast.valueOrZero()
else
return null // can't cast a value of the array, abort
}
}.toTypedArray()
return ArrayLiteralValue(InferredTypes.InferredType.known(targettype), castArray, position = position)
@ -629,14 +630,14 @@ class RangeExpr(var from: Expression,
step===node -> step=replacement
else -> throw FatalAstException("invalid replacement")
}
replacement.parent = this
}
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
override fun referencesIdentifiers(vararg name: String): Boolean = from.referencesIdentifiers(*name) || to.referencesIdentifiers(*name)
override fun referencesIdentifier(vararg scopedName: String): Boolean = from.referencesIdentifier(*scopedName) || to.referencesIdentifier(*scopedName)
override fun inferType(program: Program): InferredTypes.InferredType {
val fromDt=from.inferType(program)
val toDt=to.inferType(program)
@ -647,7 +648,14 @@ class RangeExpr(var from: Expression,
fromDt istype DataType.STR && toDt istype DataType.STR -> InferredTypes.knownFor(DataType.STR)
fromDt istype DataType.WORD || toDt istype DataType.WORD -> InferredTypes.knownFor(DataType.ARRAY_W)
fromDt istype DataType.BYTE || toDt istype DataType.BYTE -> InferredTypes.knownFor(DataType.ARRAY_B)
else -> InferredTypes.knownFor(DataType.ARRAY_UB)
else -> {
val fdt = fromDt.typeOrElse(DataType.STRUCT)
val tdt = toDt.typeOrElse(DataType.STRUCT)
if(fdt largerThan tdt)
InferredTypes.knownFor(ElementArrayTypes.getValue(fdt))
else
InferredTypes.knownFor(ElementArrayTypes.getValue(tdt))
}
}
}
override fun toString(): String {
@ -669,8 +677,8 @@ class RangeExpr(var from: Expression,
val toString = to as? StringLiteralValue
if(fromString!=null && toString!=null ) {
// string range -> int range over character values
fromVal = CompilationTarget.encodeString(fromString.value, fromString.altEncoding)[0].toInt()
toVal = CompilationTarget.encodeString(toString.value, fromString.altEncoding)[0].toInt()
fromVal = CompilationTarget.instance.encodeString(fromString.value, fromString.altEncoding)[0].toInt()
toVal = CompilationTarget.instance.encodeString(toString.value, fromString.altEncoding)[0].toInt()
} else {
val fromLv = from as? NumericLiteralValue
val toLv = to as? NumericLiteralValue
@ -700,30 +708,6 @@ internal fun makeRange(fromVal: Int, toVal: Int, stepVal: Int): IntProgression {
}
}
class RegisterExpr(val register: Register, override val position: Position) : Expression(), IAssignable {
override lateinit var parent: Node
override fun linkParents(parent: Node) {
this.parent = parent
}
override fun replaceChildNode(node: Node, replacement: Node) {
throw FatalAstException("can't replace here")
}
override fun constValue(program: Program): NumericLiteralValue? = null
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
override fun referencesIdentifiers(vararg name: String): Boolean = register.name in name
override fun toString(): String {
return "RegisterExpr(register=$register, pos=$position)"
}
override fun inferType(program: Program): InferredTypes.InferredType = InferredTypes.knownFor(DataType.UBYTE)
}
data class IdentifierReference(val nameInSource: List<String>, override val position: Position) : Expression(), IAssignable {
override lateinit var parent: Node
@ -736,6 +720,9 @@ data class IdentifierReference(val nameInSource: List<String>, override val posi
fun targetVarDecl(namespace: INameScope): VarDecl? = targetStatement(namespace) as? VarDecl
fun targetSubroutine(namespace: INameScope): Subroutine? = targetStatement(namespace) as? Subroutine
override fun equals(other: Any?) = other is IdentifierReference && other.nameInSource==nameInSource
override fun hashCode() = nameInSource.hashCode()
override fun linkParents(parent: Node) {
this.parent = parent
}
@ -760,18 +747,17 @@ data class IdentifierReference(val nameInSource: List<String>, override val posi
return "IdentifierRef($nameInSource)"
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
override fun referencesIdentifiers(vararg name: String): Boolean = nameInSource.last() in name
override fun referencesIdentifier(vararg scopedName: String): Boolean =
nameInSource.size==scopedName.size && nameInSource.toTypedArray().contentEquals(scopedName)
override fun inferType(program: Program): InferredTypes.InferredType {
val targetStmt = targetStatement(program.namespace)
return if(targetStmt is VarDecl) {
InferredTypes.knownFor(targetStmt.datatype)
} else {
InferredTypes.InferredType.unknown()
return when (val targetStmt = targetStatement(program.namespace)) {
is VarDecl -> InferredTypes.knownFor(targetStmt.datatype)
is StructDecl -> InferredTypes.knownFor(DataType.STRUCT)
else -> InferredTypes.InferredType.unknown()
}
}
@ -787,6 +773,21 @@ data class IdentifierReference(val nameInSource: List<String>, override val posi
else -> throw FatalAstException("requires a reference value")
}
}
fun firstStructVarName(namespace: INameScope): String? {
// take the name of the first struct member of the structvariable instead
// if it's just a regular variable, return null.
val struct = memberOfStruct(namespace) ?: return null
val decl = targetVarDecl(namespace)!!
if(decl.datatype!=DataType.STRUCT)
return null
val firstStructMember = struct.nameOfFirstMember()
// find the flattened var that belongs to this first struct member
val firstVarName = listOf(decl.name, firstStructMember)
val firstVar = definingScope().lookup(firstVarName, this) as VarDecl
return firstVar.name
}
}
class FunctionCall(override var target: IdentifierReference,
@ -804,9 +805,10 @@ class FunctionCall(override var target: IdentifierReference,
if(node===target)
target=replacement as IdentifierReference
else {
val idx = args.indexOf(node)
val idx = args.indexOfFirst { it===node }
args[idx] = replacement as Expression
}
replacement.parent = this
}
override fun constValue(program: Program) = constValue(program, true)
@ -822,7 +824,7 @@ class FunctionCall(override var target: IdentifierReference,
val exprfunc = func.constExpressionFunc
if(exprfunc!=null)
resultValue = exprfunc(args, position, program)
else if(func.returntype==null)
else if(func.known_returntype==null)
throw ExpressionError("builtin function ${target.nameInSource[0]} can't be used here because it doesn't return a value", position)
}
@ -839,17 +841,20 @@ class FunctionCall(override var target: IdentifierReference,
// const-evaluating the builtin function call failed.
return null
}
catch(x: CannotEvaluateException) {
// const-evaluating the builtin function call failed.
return null
}
}
override fun toString(): String {
return "FunctionCall(target=$target, pos=$position)"
}
override fun accept(visitor: IAstModifyingVisitor) = visitor.visit(this)
override fun accept(visitor: IAstVisitor) = visitor.visit(this)
override fun accept(visitor: AstWalker, parent: Node)= visitor.visit(this, parent)
override fun referencesIdentifiers(vararg name: String): Boolean = target.referencesIdentifiers(*name) || args.any{it.referencesIdentifiers(*name)}
override fun referencesIdentifier(vararg scopedName: String): Boolean = target.referencesIdentifier(*scopedName) || args.any{it.referencesIdentifier(*scopedName)}
override fun inferType(program: Program): InferredTypes.InferredType {
val constVal = constValue(program ,false)
@ -869,6 +874,12 @@ class FunctionCall(override var target: IdentifierReference,
return InferredTypes.void() // no return value
if(stmt.returntypes.size==1)
return InferredTypes.knownFor(stmt.returntypes[0])
// multiple return values. Can occur for asmsub routines. If there is exactly one register return value, take that.
val numRegisterReturns = stmt.asmReturnvaluesRegisters.count { it.registerOrPair!=null }
if(numRegisterReturns==1)
return InferredTypes.InferredType.known(DataType.UBYTE)
return InferredTypes.unknown() // has multiple return types... so not a single resulting datatype possible
}
else -> return InferredTypes.unknown()

View File

@ -35,6 +35,13 @@ object InferredTypes {
}
override fun hashCode(): Int = Objects.hash(isVoid, datatype)
infix fun isAssignableTo(targetDt: InferredType): Boolean =
isKnown && targetDt.isKnown && (datatype!! isAssignableTo targetDt.datatype!!)
infix fun isAssignableTo(targetDt: DataType): Boolean =
isKnown && (datatype!! isAssignableTo targetDt)
infix fun isNotAssignableTo(targetDt: InferredType): Boolean = !this.isAssignableTo(targetDt)
infix fun isNotAssignableTo(targetDt: DataType): Boolean = !this.isAssignableTo(targetDt)
}
private val unknownInstance = InferredType.unknown()

View File

@ -1,93 +0,0 @@
package prog8.ast.processing
import prog8.ast.IFunctionCall
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.DataType
import prog8.ast.base.IterableDatatypes
import prog8.ast.base.PassByReferenceDatatypes
import prog8.ast.expressions.AddressOf
import prog8.ast.expressions.Expression
import prog8.ast.expressions.FunctionCall
import prog8.ast.expressions.IdentifierReference
import prog8.ast.statements.FunctionCallStatement
import prog8.ast.statements.Statement
import prog8.ast.statements.Subroutine
import prog8.compiler.CompilerException
import prog8.functions.BuiltinFunctions
import prog8.functions.FSignature
internal class AddressOfInserter(val program: Program): AstWalker() {
// Insert AddressOf (&) expression where required (string params to a UWORD function param etc).
// TODO join this into the StatementReorderer?
override fun after(functionCall: FunctionCall, parent: Node): Iterable<IAstModification> {
// insert AddressOf (&) expression where required (string params to a UWORD function param etc).
var parentStatement: Node = functionCall
while(parentStatement !is Statement)
parentStatement = parentStatement.parent
val targetStatement = functionCall.target.targetSubroutine(program.namespace)
if(targetStatement!=null) {
return addAddressOfExprIfNeeded(targetStatement, functionCall.args, functionCall)
} else {
val builtinFunc = BuiltinFunctions[functionCall.target.nameInSource.joinToString (".")]
if(builtinFunc!=null)
return addAddressOfExprIfNeededForBuiltinFuncs(builtinFunc, functionCall.args, functionCall)
}
return emptyList()
}
override fun after(functionCallStatement: FunctionCallStatement, parent: Node): Iterable<IAstModification> {
// insert AddressOf (&) expression where required (string params to a UWORD function param etc).
val targetStatement = functionCallStatement.target.targetSubroutine(program.namespace)
if(targetStatement!=null) {
return addAddressOfExprIfNeeded(targetStatement, functionCallStatement.args, functionCallStatement)
} else {
val builtinFunc = BuiltinFunctions[functionCallStatement.target.nameInSource.joinToString (".")]
if(builtinFunc!=null)
return addAddressOfExprIfNeededForBuiltinFuncs(builtinFunc, functionCallStatement.args, functionCallStatement)
}
return emptyList()
}
private fun addAddressOfExprIfNeeded(subroutine: Subroutine, args: MutableList<Expression>, parent: IFunctionCall): Iterable<IAstModification> {
// functions that accept UWORD and are given an array type, or string, will receive the AddressOf (memory location) of that value instead.
val replacements = mutableListOf<IAstModification>()
for(argparam in subroutine.parameters.withIndex().zip(args)) {
if(argparam.first.value.type==DataType.UWORD || argparam.first.value.type == DataType.STR) {
if(argparam.second is AddressOf)
continue
val idref = argparam.second as? IdentifierReference
if(idref!=null) {
val variable = idref.targetVarDecl(program.namespace)
if(variable!=null && variable.datatype in IterableDatatypes) {
replacements += IAstModification.ReplaceNode(
args[argparam.first.index],
AddressOf(idref, idref.position),
parent as Node)
}
}
}
}
return replacements
}
private fun addAddressOfExprIfNeededForBuiltinFuncs(signature: FSignature, args: MutableList<Expression>, parent: IFunctionCall): Iterable<IAstModification> {
// val paramTypesForAddressOf = PassByReferenceDatatypes + DataType.UWORD
val replacements = mutableListOf<IAstModification>()
for(arg in args.withIndex().zip(signature.parameters)) {
val argvalue = arg.first.value
val argDt = argvalue.inferType(program)
if(argDt.typeOrElse(DataType.UBYTE) in PassByReferenceDatatypes && DataType.UWORD in arg.second.possibleDatatypes) {
if(argvalue !is IdentifierReference)
throw CompilerException("pass-by-reference parameter isn't an identifier? $argvalue")
replacements += IAstModification.ReplaceNode(
args[arg.first.index],
AddressOf(argvalue, argvalue.position),
parent as Node)
}
}
return replacements
}
}

View File

@ -7,7 +7,9 @@ import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.*
import prog8.compiler.CompilationOptions
import prog8.compiler.target.C64Target
import prog8.compiler.target.CompilationTarget
import prog8.compiler.target.Cx16Target
import prog8.functions.BuiltinFunctions
import java.io.File
@ -22,10 +24,10 @@ internal class AstChecker(private val program: Program,
if(mainBlocks.size>1)
errors.err("more than one 'main' block", mainBlocks[0].position)
if(mainBlocks.isEmpty())
errors.err("there is no 'main' block", program.position)
errors.err("there is no 'main' block", program.modules.firstOrNull()?.position ?: program.position)
for(mainBlock in mainBlocks) {
val startSub = mainBlock.subScopes()["start"] as? Subroutine
val startSub = mainBlock.subScope("start") as? Subroutine
if (startSub == null) {
errors.err("missing program entrypoint ('start' subroutine in 'main' block)", mainBlock.position)
} else {
@ -58,7 +60,7 @@ internal class AstChecker(private val program: Program,
if(irqBlocks.size>1)
errors.err("more than one 'irq' block", irqBlocks[0].position)
for(irqBlock in irqBlocks) {
val irqSub = irqBlock.subScopes()["irq"] as? Subroutine
val irqSub = irqBlock.subScope("irq") as? Subroutine
if (irqSub != null) {
if (irqSub.parameters.isNotEmpty() || irqSub.returntypes.isNotEmpty())
errors.err("irq entrypoint subroutine can't have parameters and/or return values", irqSub.position)
@ -82,7 +84,7 @@ internal class AstChecker(private val program: Program,
override fun visit(returnStmt: Return) {
val expectedReturnValues = returnStmt.definingSubroutine()?.returntypes ?: emptyList()
if(expectedReturnValues.size>1) {
throw AstException("cannot use a return with one value in a subroutine that has multiple return values: $returnStmt")
throw FatalAstException("cannot use a return with one value in a subroutine that has multiple return values: $returnStmt")
}
if(expectedReturnValues.isEmpty() && returnStmt.value!=null) {
@ -110,48 +112,52 @@ internal class AstChecker(private val program: Program,
}
override fun visit(forLoop: ForLoop) {
if(forLoop.body.containsNoCodeNorVars())
errors.warn("for loop body is empty", forLoop.position)
val iterableDt = forLoop.iterable.inferType(program).typeOrElse(DataType.BYTE)
if(iterableDt !in IterableDatatypes && forLoop.iterable !is RangeExpr) {
errors.err("can only loop over an iterable type", forLoop.position)
} else {
if (forLoop.loopRegister != null) {
// loop register
if (iterableDt != DataType.ARRAY_UB && iterableDt != DataType.ARRAY_B && iterableDt != DataType.STR)
errors.err("register can only loop over bytes", forLoop.position)
if(forLoop.loopRegister!=Register.A)
errors.err("it's only possible to use A as a loop register", forLoop.position)
val loopvar = forLoop.loopVar.targetVarDecl(program.namespace)
if(loopvar==null || loopvar.type== VarDeclType.CONST) {
errors.err("for loop requires a variable to loop with", forLoop.position)
} else {
// loop variable
val loopvar = forLoop.loopVar!!.targetVarDecl(program.namespace)
if(loopvar==null || loopvar.type== VarDeclType.CONST) {
errors.err("for loop requires a variable to loop with", forLoop.position)
} else {
when (loopvar.datatype) {
DataType.UBYTE -> {
if(iterableDt!= DataType.UBYTE && iterableDt!= DataType.ARRAY_UB && iterableDt != DataType.STR)
errors.err("ubyte loop variable can only loop over unsigned bytes or strings", forLoop.position)
}
DataType.UWORD -> {
if(iterableDt!= DataType.UBYTE && iterableDt!= DataType.UWORD && iterableDt != DataType.STR &&
iterableDt != DataType.ARRAY_UB && iterableDt!= DataType.ARRAY_UW)
errors.err("uword loop variable can only loop over unsigned bytes, words or strings", forLoop.position)
}
DataType.BYTE -> {
if(iterableDt!= DataType.BYTE && iterableDt!= DataType.ARRAY_B)
errors.err("byte loop variable can only loop over bytes", forLoop.position)
}
DataType.WORD -> {
if(iterableDt!= DataType.BYTE && iterableDt!= DataType.WORD &&
iterableDt != DataType.ARRAY_B && iterableDt!= DataType.ARRAY_W)
errors.err("word loop variable can only loop over bytes or words", forLoop.position)
}
DataType.FLOAT -> {
errors.err("for loop only supports integers", forLoop.position)
}
else -> errors.err("loop variable must be numeric type", forLoop.position)
when (loopvar.datatype) {
DataType.UBYTE -> {
if(iterableDt!= DataType.UBYTE && iterableDt!= DataType.ARRAY_UB && iterableDt != DataType.STR)
errors.err("ubyte loop variable can only loop over unsigned bytes or strings", forLoop.position)
}
DataType.UWORD -> {
if(iterableDt!= DataType.UBYTE && iterableDt!= DataType.UWORD && iterableDt != DataType.STR &&
iterableDt != DataType.ARRAY_UB && iterableDt!= DataType.ARRAY_UW)
errors.err("uword loop variable can only loop over unsigned bytes, words or strings", forLoop.position)
}
DataType.BYTE -> {
if(iterableDt!= DataType.BYTE && iterableDt!= DataType.ARRAY_B)
errors.err("byte loop variable can only loop over bytes", forLoop.position)
}
DataType.WORD -> {
if(iterableDt!= DataType.BYTE && iterableDt!= DataType.WORD &&
iterableDt != DataType.ARRAY_B && iterableDt!= DataType.ARRAY_W)
errors.err("word loop variable can only loop over bytes or words", forLoop.position)
}
DataType.FLOAT -> {
errors.err("for loop only supports integers", forLoop.position)
}
else -> errors.err("loop variable must be numeric type", forLoop.position)
}
if(errors.isEmpty()) {
// check loop range values
val range = forLoop.iterable as? RangeExpr
if(range!=null) {
val from = range.from as? NumericLiteralValue
val to = range.to as? NumericLiteralValue
if(from != null)
checkValueTypeAndRange(loopvar.datatype, from)
else if(!range.from.inferType(program).istype(loopvar.datatype))
errors.err("range start value is incompatible with loop variable type", range.position)
if(to != null)
checkValueTypeAndRange(loopvar.datatype, to)
else if(!range.to.inferType(program).istype(loopvar.datatype))
errors.err("range end value is incompatible with loop variable type", range.position)
}
}
}
@ -244,44 +250,45 @@ internal class AstChecker(private val program: Program,
err("parameter '${param.first.name}' should be ubyte")
}
}
for(ret in subroutine.returntypes.withIndex().zip(subroutine.asmReturnvaluesRegisters)) {
if(ret.second.registerOrPair in setOf(RegisterOrPair.A, RegisterOrPair.X, RegisterOrPair.Y)) {
if (ret.first.value != DataType.UBYTE && ret.first.value != DataType.BYTE)
err("return value #${ret.first.index + 1} should be (u)byte")
subroutine.returntypes.zip(subroutine.asmReturnvaluesRegisters).forEachIndexed { index, pair ->
if(pair.second.registerOrPair in setOf(RegisterOrPair.A, RegisterOrPair.X, RegisterOrPair.Y)) {
if (pair.first != DataType.UBYTE && pair.first != DataType.BYTE)
err("return value #${index + 1} should be (u)byte")
}
else if(ret.second.registerOrPair in setOf(RegisterOrPair.AX, RegisterOrPair.AY, RegisterOrPair.XY)) {
if (ret.first.value != DataType.UWORD && ret.first.value != DataType.WORD
&& ret.first.value != DataType.STR && ret.first.value !in ArrayDatatypes && ret.first.value != DataType.FLOAT)
err("return value #${ret.first.index + 1} should be (u)word/address")
else if(pair.second.registerOrPair in setOf(RegisterOrPair.AX, RegisterOrPair.AY, RegisterOrPair.XY)) {
if (pair.first != DataType.UWORD && pair.first != DataType.WORD
&& pair.first != DataType.STR && pair.first !in ArrayDatatypes && pair.first != DataType.FLOAT)
err("return value #${index + 1} should be (u)word/address")
}
else if(ret.second.statusflag!=null) {
if (ret.first.value != DataType.UBYTE)
err("return value #${ret.first.index + 1} should be ubyte")
else if(pair.second.statusflag!=null) {
if (pair.first != DataType.UBYTE)
err("return value #${index + 1} should be ubyte")
}
}
val regCounts = mutableMapOf<Register, Int>().withDefault { 0 }
val regCounts = mutableMapOf<CpuRegister, Int>().withDefault { 0 }
val statusflagCounts = mutableMapOf<Statusflag, Int>().withDefault { 0 }
fun countRegisters(from: Iterable<RegisterOrStatusflag>) {
regCounts.clear()
statusflagCounts.clear()
for(p in from) {
when(p.registerOrPair) {
RegisterOrPair.A -> regCounts[Register.A]=regCounts.getValue(Register.A)+1
RegisterOrPair.X -> regCounts[Register.X]=regCounts.getValue(Register.X)+1
RegisterOrPair.Y -> regCounts[Register.Y]=regCounts.getValue(Register.Y)+1
RegisterOrPair.A -> regCounts[CpuRegister.A]=regCounts.getValue(CpuRegister.A)+1
RegisterOrPair.X -> regCounts[CpuRegister.X]=regCounts.getValue(CpuRegister.X)+1
RegisterOrPair.Y -> regCounts[CpuRegister.Y]=regCounts.getValue(CpuRegister.Y)+1
RegisterOrPair.AX -> {
regCounts[Register.A]=regCounts.getValue(Register.A)+1
regCounts[Register.X]=regCounts.getValue(Register.X)+1
regCounts[CpuRegister.A]=regCounts.getValue(CpuRegister.A)+1
regCounts[CpuRegister.X]=regCounts.getValue(CpuRegister.X)+1
}
RegisterOrPair.AY -> {
regCounts[Register.A]=regCounts.getValue(Register.A)+1
regCounts[Register.Y]=regCounts.getValue(Register.Y)+1
regCounts[CpuRegister.A]=regCounts.getValue(CpuRegister.A)+1
regCounts[CpuRegister.Y]=regCounts.getValue(CpuRegister.Y)+1
}
RegisterOrPair.XY -> {
regCounts[Register.X]=regCounts.getValue(Register.X)+1
regCounts[Register.Y]=regCounts.getValue(Register.Y)+1
regCounts[CpuRegister.X]=regCounts.getValue(CpuRegister.X)+1
regCounts[CpuRegister.Y]=regCounts.getValue(CpuRegister.Y)+1
}
RegisterOrPair.FAC1, RegisterOrPair.FAC2 -> { /* no sensible way to count this */ }
null ->
if(p.statusflag!=null)
statusflagCounts[p.statusflag] = statusflagCounts.getValue(p.statusflag) + 1
@ -316,43 +323,34 @@ internal class AstChecker(private val program: Program,
} else {
// Pass-by-reference datatypes can not occur as parameters to a subroutine directly
// Instead, their reference (address) should be passed (as an UWORD).
// The language has no typed pointers at this time.
if(subroutine.parameters.any{it.type in PassByReferenceDatatypes }) {
err("Pass-by-reference types (str, array) cannot occur as a parameter type directly. Instead, use an uword for their address, or access the variable from the outer scope directly.")
err("Pass-by-reference types (str, array) cannot occur as a parameter type directly. Instead, use an uword to receive their address, or access the variable from the outer scope directly.")
}
}
visitStatements(subroutine.statements)
}
override fun visit(repeatLoop: RepeatLoop) {
if(repeatLoop.untilCondition.referencesIdentifiers("A", "X", "Y"))
errors.warn("using a register in the loop condition is risky (it could get clobbered)", repeatLoop.untilCondition.position)
if(repeatLoop.untilCondition.inferType(program).typeOrElse(DataType.STRUCT) !in IntegerDatatypes)
errors.err("condition value should be an integer type", repeatLoop.untilCondition.position)
super.visit(repeatLoop)
override fun visit(untilLoop: UntilLoop) {
if(untilLoop.condition.inferType(program).typeOrElse(DataType.STRUCT) !in IntegerDatatypes)
errors.err("condition value should be an integer type", untilLoop.condition.position)
super.visit(untilLoop)
}
override fun visit(whileLoop: WhileLoop) {
if(whileLoop.condition.referencesIdentifiers("A", "X", "Y"))
errors.warn("using a register in the loop condition is risky (it could get clobbered)", whileLoop.condition.position)
if(whileLoop.condition.inferType(program).typeOrElse(DataType.STRUCT) !in IntegerDatatypes)
errors.err("condition value should be an integer type", whileLoop.condition.position)
super.visit(whileLoop)
}
override fun visit(assignment: Assignment) {
// assigning from a functioncall COULD return multiple values (from an asm subroutine)
if(assignment.value is FunctionCall) {
val stmt = (assignment.value as FunctionCall).target.targetStatement(program.namespace)
if (stmt is Subroutine && stmt.isAsmSubroutine) {
if(stmt.returntypes.size>1)
errors.err("It's not possible to store the multiple results of this asmsub call; you should use a small block of custom inline assembly for this.", assignment.value.position)
else {
val idt = assignment.target.inferType(program, assignment)
if(!idt.isKnown || stmt.returntypes.single()!=idt.typeOrElse(DataType.BYTE)) {
errors.err("return type mismatch", assignment.value.position)
}
if (stmt is Subroutine) {
val idt = assignment.target.inferType(program)
if(!idt.isKnown) {
errors.err("return type mismatch", assignment.value.position)
}
if(stmt.returntypes.size <= 1 && stmt.returntypes.single() isNotAssignableTo idt.typeOrElse(DataType.BYTE)) {
errors.err("return type mismatch", assignment.value.position)
}
}
}
@ -361,9 +359,9 @@ internal class AstChecker(private val program: Program,
if(targetIdent!=null) {
val targetVar = targetIdent.targetVarDecl(program.namespace)
if(targetVar?.struct != null) {
val sourceStructLv = assignment.value as? StructLiteralValue
val sourceStructLv = assignment.value as? ArrayLiteralValue
if (sourceStructLv != null) {
if (sourceStructLv.values.size != targetVar.struct?.numberOfElements)
if (sourceStructLv.value.size != targetVar.struct?.numberOfElements)
errors.err("number of elements doesn't match struct definition", sourceStructLv.position)
} else {
val sourceIdent = assignment.value as? IdentifierReference
@ -372,14 +370,28 @@ internal class AstChecker(private val program: Program,
if (sourceVar?.struct != null) {
if (sourceVar.struct !== targetVar.struct)
errors.err("assignment of different struct types", assignment.position)
} else if(sourceVar?.isArray==true) {
if((sourceVar.value as ArrayLiteralValue).value.size != targetVar.struct?.numberOfElements)
errors.err("number of elements doesn't match struct definition", sourceVar.position)
}
}
}
}
}
if(assignment.value.inferType(program) != assignment.target.inferType(program, assignment))
errors.err("assignment value is of different type as the target", assignment.value.position)
val targetDt = assignment.target.inferType(program)
val valueDt = assignment.value.inferType(program)
if(valueDt.isKnown && !(valueDt isAssignableTo targetDt)) {
if(targetDt.typeOrElse(DataType.STRUCT) in IterableDatatypes)
errors.err("cannot assign value to string or array", assignment.value.position)
else
errors.err("value's type doesn't match target", assignment.value.position)
}
if(assignment.value is TypecastExpression) {
if(assignment.isAugmentable && targetDt.istype(DataType.FLOAT))
errors.err("typecasting a float value in-place makes no sense", assignment.value.position)
}
super.visit(assignment)
}
@ -397,8 +409,7 @@ internal class AstChecker(private val program: Program,
val targetIdentifier = assignTarget.identifier
if (targetIdentifier != null) {
val targetName = targetIdentifier.nameInSource
val targetSymbol = program.namespace.lookup(targetName, assignment)
when (targetSymbol) {
when (val targetSymbol = program.namespace.lookup(targetName, assignment)) {
null -> {
errors.err("undefined symbol: ${targetIdentifier.nameInSource.joinToString(".")}", targetIdentifier.position)
return
@ -423,22 +434,15 @@ internal class AstChecker(private val program: Program,
if (assignment is Assignment) {
if (assignment.aug_op != null)
throw FatalAstException("augmented assignment should have been converted into normal assignment")
val targetDatatype = assignTarget.inferType(program, assignment)
val targetDatatype = assignTarget.inferType(program)
if (targetDatatype.isKnown) {
val constVal = assignment.value.constValue(program)
if (constVal != null) {
checkValueTypeAndRange(targetDatatype.typeOrElse(DataType.BYTE), constVal)
} else {
val sourceDatatype = assignment.value.inferType(program)
if (!sourceDatatype.isKnown) {
if (assignment.value is FunctionCall) {
val targetStmt = (assignment.value as FunctionCall).target.targetStatement(program.namespace)
if (targetStmt != null)
errors.err("function call doesn't return a suitable value to use in assignment", assignment.value.position)
} else
if (sourceDatatype.isUnknown) {
if (assignment.value !is FunctionCall)
errors.err("assignment value is invalid or has no proper datatype", assignment.value.position)
} else {
checkAssignmentCompatible(targetDatatype.typeOrElse(DataType.BYTE), assignTarget,
@ -454,21 +458,21 @@ internal class AstChecker(private val program: Program,
if(variable==null)
errors.err("pointer-of operand must be the name of a heap variable", addressOf.position)
else {
if(variable.datatype !in ArrayDatatypes && variable.datatype != DataType.STR && variable.datatype!=DataType.STRUCT)
if(variable.datatype !in ArrayDatatypes
&& variable.type!=VarDeclType.MEMORY
&& variable.struct == null
&& variable.datatype != DataType.STR && variable.datatype!=DataType.STRUCT)
errors.err("invalid pointer-of operand type", addressOf.position)
}
super.visit(addressOf)
}
override fun visit(decl: VarDecl) {
fun err(msg: String, position: Position?=null) {
errors.err(msg, position ?: decl.position)
}
fun err(msg: String, position: Position?=null) = errors.err(msg, position ?: decl.position)
// the initializer value can't refer to the variable itself (recursive definition)
if(decl.value?.referencesIdentifiers(decl.name) == true || decl.arraysize?.index?.referencesIdentifiers(decl.name) == true) {
if(decl.value?.referencesIdentifier(decl.name) == true || decl.arraysize?.indexVar?.referencesIdentifier(decl.name) == true)
err("recursive var declaration")
}
// CONST can only occur on simple types (byte, word, float)
if(decl.type== VarDeclType.CONST) {
@ -476,10 +480,12 @@ internal class AstChecker(private val program: Program,
err("const modifier can only be used on numeric types (byte, word, float)")
}
// FLOATS
if(!compilerOptions.floats && decl.datatype in setOf(DataType.FLOAT, DataType.ARRAY_F) && decl.type!= VarDeclType.MEMORY) {
// FLOATS enabled?
if(!compilerOptions.floats && decl.datatype in setOf(DataType.FLOAT, DataType.ARRAY_F) && decl.type!= VarDeclType.MEMORY)
err("floating point used, but that is not enabled via options")
}
if(decl.datatype == DataType.FLOAT && (decl.zeropage==ZeropageWish.REQUIRE_ZEROPAGE || decl.zeropage==ZeropageWish.PREFER_ZEROPAGE))
errors.warn("floating point values won't be placed in Zeropage due to size constraints", decl.position)
// ARRAY without size specifier MUST have an iterable initializer value
if(decl.isArray && decl.arraysize==null) {
@ -512,29 +518,21 @@ internal class AstChecker(private val program: Program,
when(decl.value) {
null -> {
// a vardecl without an initial value, don't bother with the rest
return super.visit(decl)
// a vardecl without an initial value, don't bother with it
}
is RangeExpr -> throw FatalAstException("range expression should have been converted to a true array value")
is StringLiteralValue -> {
checkValueTypeAndRangeString(decl.datatype, decl.value as StringLiteralValue)
}
is ArrayLiteralValue -> {
val arraySpec = decl.arraysize ?: ArrayIndex.forArray(decl.value as ArrayLiteralValue)
checkValueTypeAndRangeArray(decl.datatype, decl.struct, arraySpec, decl.value as ArrayLiteralValue)
}
is NumericLiteralValue -> {
checkValueTypeAndRange(decl.datatype, decl.value as NumericLiteralValue)
}
is StructLiteralValue -> {
if(decl.datatype==DataType.STRUCT) {
val struct = decl.struct!!
val structLv = decl.value as StructLiteralValue
if(struct.numberOfElements != structLv.values.size) {
val structLv = decl.value as ArrayLiteralValue
if(struct.numberOfElements != structLv.value.size) {
errors.err("struct value has incorrect number of elements", structLv.position)
return
}
for(value in structLv.values.zip(struct.statements)) {
for(value in structLv.value.zip(struct.statements)) {
val memberdecl = value.second as VarDecl
val constValue = value.first.constValue(program)
if(constValue==null) {
@ -548,19 +546,25 @@ internal class AstChecker(private val program: Program,
}
}
} else {
errors.err("struct literal is wrong type to initialize this variable", decl.value!!.position)
val arraySpec = decl.arraysize ?: ArrayIndex.forArray(decl.value as ArrayLiteralValue)
checkValueTypeAndRangeArray(decl.datatype, decl.struct, arraySpec, decl.value as ArrayLiteralValue)
}
}
is NumericLiteralValue -> {
checkValueTypeAndRange(decl.datatype, decl.value as NumericLiteralValue)
}
else -> {
err("var/const declaration needs a compile-time constant initializer value, or range, instead found: ${decl.value!!.javaClass.simpleName}")
super.visit(decl)
return
if(decl.type==VarDeclType.CONST) {
err("const declaration needs a compile-time constant initializer value, or range")
super.visit(decl)
return
}
}
}
}
VarDeclType.MEMORY -> {
if(decl.arraysize!=null) {
val arraySize = decl.arraysize!!.size() ?: 1
val arraySize = decl.arraysize!!.constIndex() ?: 1
when(decl.datatype) {
DataType.ARRAY_B, DataType.ARRAY_UB ->
if(arraySize > 256)
@ -575,20 +579,58 @@ internal class AstChecker(private val program: Program,
}
}
if(decl.value !is NumericLiteralValue) {
err("value of memory var decl is not a numeric literal (it is a ${decl.value!!.javaClass.simpleName}).", decl.value?.position)
} else {
if(decl.value is NumericLiteralValue) {
val value = decl.value as NumericLiteralValue
if (value.type !in IntegerDatatypes || value.number.toInt() < 0 || value.number.toInt() > 65535) {
err("memory address must be valid integer 0..\$ffff", decl.value?.position)
}
} else {
err("value of memory mapped variable can only be a number, perhaps you meant to use an address pointer type instead?", decl.value?.position)
}
}
}
val declValue = decl.value
if(declValue!=null && decl.type==VarDeclType.VAR && !declValue.inferType(program).istype(decl.datatype))
throw FatalAstException("initialisation value $declValue is of different type (${declValue.inferType(program)} as the variable (${decl.datatype}) at ${decl.position}")
if(declValue!=null && decl.type==VarDeclType.VAR) {
if(decl.datatype==DataType.STRUCT) {
val valueIdt = declValue.inferType(program)
if(!valueIdt.isKnown)
throw AstException("unknown dt")
val valueDt = valueIdt.typeOrElse(DataType.STRUCT)
if(valueDt !in ArrayDatatypes)
err("initialisation of struct should be with array value", declValue.position)
} else if (!declValue.inferType(program).istype(decl.datatype)) {
err("initialisation value has incompatible type (${declValue.inferType(program)}) for the variable (${decl.datatype})", declValue.position)
}
}
// array length limits
if(decl.isArray) {
val length = decl.arraysize!!.constIndex() ?: 1
when (decl.datatype) {
DataType.STR, DataType.ARRAY_UB, DataType.ARRAY_B -> {
if(length==0 || length>256)
err("string and byte array length must be 1-256")
}
DataType.ARRAY_UW, DataType.ARRAY_W -> {
if(length==0 || length>128)
err("word array length must be 1-128")
}
DataType.ARRAY_F -> {
if(length==0 || length>51)
err("float array length must be 1-51")
}
else -> {}
}
}
// string assignment is not supported in a vard
if(decl.datatype==DataType.STR) {
if(decl.value==null)
err("string var must be initialized with a string literal")
else if (decl.type==VarDeclType.VAR && decl.value !is StringLiteralValue)
err("string var can only be initialized with a string literal")
}
super.visit(decl)
}
@ -670,9 +712,17 @@ internal class AstChecker(private val program: Program,
err("this directive may only occur in a block or at module level")
if(directive.args.isEmpty())
err("missing option directive argument(s)")
else if(directive.args.map{it.name in setOf("enable_floats", "force_output")}.any { !it })
else if(directive.args.map{it.name in setOf("enable_floats", "force_output", "no_sysinit")}.any { !it })
err("invalid option directive argument(s)")
}
"%target" -> {
if(directive.parent !is Block && directive.parent !is Module)
err("this directive may only occur in a block or at module level")
if(directive.args.size != 1)
err("directive requires one argument")
if(directive.args.single().name !in setOf(C64Target.name, Cx16Target.name))
err("invalid compilation target")
}
else -> throw SyntaxError("invalid directive ${directive.directive}", directive.position)
}
super.visit(directive)
@ -695,6 +745,22 @@ internal class AstChecker(private val program: Program,
checkValueTypeAndRangeArray(array.type.typeOrElse(DataType.STRUCT), null, arrayspec, array)
}
fun isPassByReferenceElement(e: Expression): Boolean {
if(e is IdentifierReference) {
val decl = e.targetVarDecl(program.namespace)!!
return decl.datatype in PassByReferenceDatatypes
}
return e is StringLiteralValue
}
if(array.parent is VarDecl) {
if (!array.value.all { it is NumericLiteralValue || it is AddressOf || isPassByReferenceElement(it) })
errors.err("array literal for variable initialization contains invalid types", array.position)
} else if(array.parent is ForLoop) {
if (!array.value.all { it.constValue(program) != null })
errors.err("array literal for iteration must contain constants. Try using a separate array variable instead?", array.position)
}
super.visit(array)
}
@ -704,16 +770,30 @@ internal class AstChecker(private val program: Program,
}
override fun visit(expr: PrefixExpression) {
val idt = expr.inferType(program)
if(!idt.isKnown)
return // any error should be reported elsewhere
val dt = idt.typeOrElse(DataType.STRUCT)
if(expr.operator=="-") {
val dt = expr.inferType(program).typeOrElse(DataType.STRUCT)
if (dt != DataType.BYTE && dt != DataType.WORD && dt != DataType.FLOAT) {
errors.err("can only take negative of a signed number type", expr.position)
}
}
else if(expr.operator == "not") {
if(dt !in IntegerDatatypes)
errors.err("can only use boolean not on integer types", expr.position)
}
else if(expr.operator == "~") {
if(dt !in IntegerDatatypes)
errors.err("can only use bitwise invert on integer types", expr.position)
}
super.visit(expr)
}
override fun visit(expr: BinaryExpression) {
super.visit(expr)
val leftIDt = expr.left.inferType(program)
val rightIDt = expr.right.inferType(program)
if(!leftIDt.isKnown || !rightIDt.isKnown)
@ -735,7 +815,7 @@ internal class AstChecker(private val program: Program,
}
"**" -> {
if(leftDt in IntegerDatatypes)
errors.err("power operator requires floating point", expr.position)
errors.err("power operator requires floating point operands", expr.position)
}
"and", "or", "xor" -> {
// only integer numeric operands accepted, and if literal constants, only boolean values accepted (0 or 1)
@ -751,21 +831,14 @@ internal class AstChecker(private val program: Program,
if(leftDt !in IntegerDatatypes || rightDt !in IntegerDatatypes)
errors.err("bitwise operator can only be used on integer operands", expr.right.position)
}
"<<", ">>" -> {
// for now, bit-shifts can only shift by a constant number
val constRight = expr.right.constValue(program)
if(constRight==null)
errors.err("bit-shift can only be done by a constant number (for now)", expr.right.position)
}
}
if(leftDt !in NumericDatatypes)
errors.err("left operand is not numeric", expr.left.position)
if(rightDt!in NumericDatatypes)
errors.err("right operand is not numeric", expr.right.position)
if(leftDt !in NumericDatatypes && leftDt != DataType.STR)
errors.err("left operand is not numeric or str", expr.left.position)
if(rightDt!in NumericDatatypes && rightDt != DataType.STR)
errors.err("right operand is not numeric or str", expr.right.position)
if(leftDt!=rightDt)
errors.err("left and right operands aren't the same type", expr.left.position)
super.visit(expr)
}
override fun visit(typecast: TypecastExpression) {
@ -823,6 +896,32 @@ internal class AstChecker(private val program: Program,
errors.warn("sgn() of unsigned type is always 0 or 1, this is perhaps not what was intended", functionCall.args.first().position)
}
val error = VerifyFunctionArgTypes.checkTypes(functionCall, functionCall.definingScope(), program)
if(error!=null)
errors.err(error, functionCall.position)
// check the functions that return multiple returnvalues.
val stmt = functionCall.target.targetStatement(program.namespace)
if (stmt is Subroutine) {
if (stmt.returntypes.size > 1) {
// Currently, it's only possible to handle ONE (or zero) return values from a subroutine.
// asmsub routines can have multiple return values, for instance in 2 different registers.
// It's not (yet) possible to handle these multiple return values because assignments
// are only to a single unique target at the same time.
// EXCEPTION:
// if the asmsub returns multiple values and one of them is via a status register bit,
// it *is* possible to handle them by just actually assigning the register value and
// dealing with the status bit as just being that, the status bit after the call.
val (returnRegisters, returnStatusflags) = stmt.asmReturnvaluesRegisters.partition { rr -> rr.registerOrPair != null }
if (returnRegisters.isEmpty() || returnRegisters.size == 1) {
if (returnStatusflags.any())
errors.warn("this asmsub also has one or more return 'values' in one of the status flags", functionCall.position)
} else {
errors.err("It's not possible to store the multiple result values of this asmsub call; you should use a small block of custom inline assembly for this.", functionCall.position)
}
}
}
super.visit(functionCall)
}
@ -845,12 +944,18 @@ internal class AstChecker(private val program: Program,
}
}
if(functionCallStatement.target.nameInSource.last() in setOf("lsl", "lsr", "rol", "ror", "rol2", "ror2", "swap", "sort", "reverse")) {
if(functionCallStatement.target.nameInSource.last() in setOf("rol", "ror", "rol2", "ror2", "swap", "sort", "reverse")) {
// in-place modification, can't be done on literals
if(functionCallStatement.args.any { it !is IdentifierReference && it !is RegisterExpr && it !is ArrayIndexedExpression && it !is DirectMemoryRead }) {
errors.err("can't use that as argument to a in-place modifying function", functionCallStatement.args.first().position)
if(functionCallStatement.args.any { it !is IdentifierReference && it !is ArrayIndexedExpression && it !is DirectMemoryRead }) {
errors.err("invalid argument to a in-place modifying function", functionCallStatement.args.first().position)
}
}
val error = VerifyFunctionArgTypes.checkTypes(functionCallStatement, functionCallStatement.definingScope(), program)
if(error!=null) {
errors.err(error, functionCallStatement.args.firstOrNull()?.position ?: functionCallStatement.position)
}
super.visit(functionCallStatement)
}
@ -859,77 +964,35 @@ internal class AstChecker(private val program: Program,
errors.err("cannot use arguments when calling a label", position)
if(target is BuiltinFunctionStatementPlaceholder) {
// it's a call to a builtin function.
val func = BuiltinFunctions.getValue(target.name)
if(args.size!=func.parameters.size)
errors.err("invalid number of arguments", position)
else {
val paramTypesForAddressOf = PassByReferenceDatatypes + DataType.UWORD
for (arg in args.withIndex().zip(func.parameters)) {
val argDt=arg.first.value.inferType(program)
if (argDt.isKnown
&& !(argDt.typeOrElse(DataType.STRUCT) isAssignableTo arg.second.possibleDatatypes)
&& (argDt.typeOrElse(DataType.STRUCT) != DataType.UWORD || arg.second.possibleDatatypes.intersect(paramTypesForAddressOf).isEmpty())) {
errors.err("builtin function '${target.name}' argument ${arg.first.index + 1} has invalid type $argDt, expected ${arg.second.possibleDatatypes}", position)
}
if(target.name=="swap") {
// swap() is a bit weird because this one is translated into a operations directly, instead of being a function call
val dt1 = args[0].inferType(program)
val dt2 = args[1].inferType(program)
if (dt1 != dt2)
errors.err("swap requires 2 args of identical type", position)
else if (args[0].constValue(program) != null || args[1].constValue(program) != null)
errors.err("swap requires 2 variables, not constant value(s)", position)
else if(args[0] isSameAs args[1])
errors.err("swap should have 2 different args", position)
else if(dt1.typeOrElse(DataType.STRUCT) !in NumericDatatypes)
errors.err("swap requires args of numerical type", position)
}
else if(target.name=="all" || target.name=="any") {
if((args[0] as? AddressOf)?.identifier?.targetVarDecl(program.namespace)?.datatype == DataType.STR) {
errors.err("any/all on a string is useless (is always true unless the string is empty)", position)
}
if(target.name=="swap") {
// swap() is a bit weird because this one is translated into a operations directly, instead of being a function call
val dt1 = args[0].inferType(program)
val dt2 = args[1].inferType(program)
if (dt1 != dt2)
errors.err("swap requires 2 args of identical type", position)
else if (args[0].constValue(program) != null || args[1].constValue(program) != null)
errors.err("swap requires 2 variables, not constant value(s)", position)
else if(args[0] isSameAs args[1])
errors.err("swap should have 2 different args", position)
else if(dt1.typeOrElse(DataType.STRUCT) !in NumericDatatypes)
errors.err("swap requires args of numerical type", position)
}
else if(target.name=="all" || target.name=="any") {
if((args[0] as? AddressOf)?.identifier?.targetVarDecl(program.namespace)?.datatype == DataType.STR) {
errors.err("any/all on a string is useless (is always true unless the string is empty)", position)
}
if(args[0].inferType(program).typeOrElse(DataType.STR) == DataType.STR) {
errors.err("any/all on a string is useless (is always true unless the string is empty)", position)
}
if(args[0].inferType(program).typeOrElse(DataType.STR) == DataType.STR) {
errors.err("any/all on a string is useless (is always true unless the string is empty)", position)
}
}
} else if(target is Subroutine) {
if(args.size!=target.parameters.size)
errors.err("invalid number of arguments", position)
else {
for (arg in args.withIndex().zip(target.parameters)) {
val argIDt = arg.first.value.inferType(program)
if(!argIDt.isKnown) {
if(target.regXasResult())
errors.warn("subroutine call return value in X register is discarded and replaced by 0", position)
if(target.isAsmSubroutine) {
for (arg in args.zip(target.parameters)) {
val argIDt = arg.first.inferType(program)
if (!argIDt.isKnown)
return
}
val argDt=argIDt.typeOrElse(DataType.STRUCT)
if(!(argDt isAssignableTo arg.second.type)) {
// for asm subroutines having STR param it's okay to provide a UWORD (address value)
if(!(target.isAsmSubroutine && arg.second.type == DataType.STR && argDt == DataType.UWORD))
errors.err("subroutine '${target.name}' argument ${arg.first.index + 1} has invalid type $argDt, expected ${arg.second.type}", position)
}
if(target.isAsmSubroutine) {
if (target.asmParameterRegisters[arg.first.index].registerOrPair in setOf(RegisterOrPair.AX, RegisterOrPair.XY, RegisterOrPair.X)) {
if (arg.first.value !is NumericLiteralValue && arg.first.value !is IdentifierReference)
errors.warn("calling a subroutine that expects X as a parameter is problematic, more so when providing complex arguments. If you see a compiler error/crash about this later, try to simplify this call", position)
}
// check if the argument types match the register(pairs)
val asmParamReg = target.asmParameterRegisters[arg.first.index]
if(asmParamReg.statusflag!=null) {
if(argDt !in ByteDatatypes)
errors.err("subroutine '${target.name}' argument ${arg.first.index + 1} must be byte type for statusflag", position)
} else if(asmParamReg.registerOrPair in setOf(RegisterOrPair.A, RegisterOrPair.X, RegisterOrPair.Y)) {
if(argDt !in ByteDatatypes)
errors.err("subroutine '${target.name}' argument ${arg.first.index + 1} must be byte type for single register", position)
} else if(asmParamReg.registerOrPair in setOf(RegisterOrPair.AX, RegisterOrPair.AY, RegisterOrPair.XY)) {
if(argDt !in WordDatatypes + IterableDatatypes)
errors.err("subroutine '${target.name}' argument ${arg.first.index + 1} must be word type for register pair", position)
}
}
}
}
}
@ -950,7 +1013,7 @@ internal class AstChecker(private val program: Program,
}
}
} else if(postIncrDecr.target.arrayindexed != null) {
val target = postIncrDecr.target.arrayindexed?.identifier?.targetStatement(program.namespace)
val target = postIncrDecr.target.arrayindexed?.arrayvar?.targetStatement(program.namespace)
if(target==null) {
errors.err("undefined symbol", postIncrDecr.position)
}
@ -965,32 +1028,38 @@ internal class AstChecker(private val program: Program,
}
override fun visit(arrayIndexedExpression: ArrayIndexedExpression) {
val target = arrayIndexedExpression.identifier.targetStatement(program.namespace)
val target = arrayIndexedExpression.arrayvar.targetStatement(program.namespace)
if(target is VarDecl) {
if(target.datatype !in IterableDatatypes)
errors.err("indexing requires an iterable variable", arrayIndexedExpression.position)
val arraysize = target.arraysize?.size()
val arraysize = target.arraysize?.constIndex()
if(arraysize!=null) {
// check out of bounds
val index = (arrayIndexedExpression.arrayspec.index as? NumericLiteralValue)?.number?.toInt()
val index = arrayIndexedExpression.indexer.constIndex()
if(index!=null && (index<0 || index>=arraysize))
errors.err("array index out of bounds", arrayIndexedExpression.arrayspec.position)
errors.err("array index out of bounds", arrayIndexedExpression.indexer.position)
} else if(target.datatype == DataType.STR) {
if(target.value is StringLiteralValue) {
// check string lengths for non-memory mapped strings
val stringLen = (target.value as StringLiteralValue).value.length
val index = (arrayIndexedExpression.arrayspec.index as? NumericLiteralValue)?.number?.toInt()
val index = arrayIndexedExpression.indexer.constIndex()
if (index != null && (index < 0 || index >= stringLen))
errors.err("index out of bounds", arrayIndexedExpression.arrayspec.position)
errors.err("index out of bounds", arrayIndexedExpression.indexer.position)
}
}
} else
errors.err("indexing requires a variable to act upon", arrayIndexedExpression.position)
// check index value 0..255
val dtx = arrayIndexedExpression.arrayspec.index.inferType(program).typeOrElse(DataType.STRUCT)
if(dtx!= DataType.UBYTE && dtx!= DataType.BYTE)
val dtxNum = arrayIndexedExpression.indexer.indexNum?.inferType(program)?.typeOrElse(DataType.STRUCT)
if(dtxNum!=null && dtxNum != DataType.UBYTE && dtxNum != DataType.BYTE)
errors.err("array indexing is limited to byte size 0..255", arrayIndexedExpression.position)
val dtxVar = arrayIndexedExpression.indexer.indexVar?.inferType(program)?.typeOrElse(DataType.STRUCT)
if(dtxVar!=null && dtxVar != DataType.UBYTE && dtxVar != DataType.BYTE)
errors.err("array indexing is limited to byte size 0..255", arrayIndexedExpression.position)
if(arrayIndexedExpression.indexer.origExpression!=null)
throw FatalAstException("array indexer should have been replaced with a temp var @ ${arrayIndexedExpression.indexer.position}")
super.visit(arrayIndexedExpression)
}
@ -1050,35 +1119,14 @@ internal class AstChecker(private val program: Program,
}
}
override fun visit(scope: AnonymousScope) {
visitStatements(scope.statements)
}
private fun visitStatements(statements: List<Statement>) {
for((index, stmt) in statements.withIndex()) {
if(index < statements.lastIndex && statements[index+1] !is Subroutine) {
when {
stmt is FunctionCallStatement && stmt.target.nameInSource.last() == "exit" -> {
errors.warn("unreachable code, preceding exit call will never return", statements[index + 1].position)
}
stmt is Return && statements[index + 1] !is Subroutine -> {
errors.warn("unreachable code, preceding return statement", statements[index + 1].position)
}
stmt is Jump && statements[index + 1] !is Subroutine -> {
errors.warn("unreachable code, preceding jump statement", statements[index + 1].position)
}
}
}
stmt.accept(this)
}
}
private fun checkFunctionOrLabelExists(target: IdentifierReference, statement: Statement): Statement? {
val targetStatement = target.targetStatement(program.namespace)
if(targetStatement is Label || targetStatement is Subroutine || targetStatement is BuiltinFunctionStatementPlaceholder)
return targetStatement
errors.err("undefined function or subroutine: ${target.nameInSource.joinToString(".")}", statement.position)
else if(targetStatement==null)
errors.err("undefined function or subroutine: ${target.nameInSource.joinToString(".")}", statement.position)
else
errors.err("cannot call that: ${target.nameInSource.joinToString(".")}", statement.position)
return null
}
@ -1102,7 +1150,7 @@ internal class AstChecker(private val program: Program,
}
if(value.type.isUnknown)
return err("attempt to check values of array with as yet unknown datatype")
return false
when (targetDt) {
DataType.STR -> return err("string value expected")
@ -1111,15 +1159,12 @@ internal class AstChecker(private val program: Program,
if(value.type.istype(targetDt)) {
if(!checkArrayValues(value, targetDt))
return false
val arraySpecSize = arrayspec.size()
val arraySpecSize = arrayspec.constIndex()
val arraySize = value.value.size
if(arraySpecSize!=null && arraySpecSize>0) {
if(arraySpecSize<1 || arraySpecSize>256)
return err("byte array length must be 1-256")
val constX = arrayspec.index.constValue(program)
if(constX?.type !in IntegerDatatypes)
return err("array size specifier must be constant integer value")
val expectedSize = constX!!.number.toInt()
val expectedSize = arrayspec.constIndex() ?: return err("array size specifier must be constant integer value")
if (arraySize != expectedSize)
return err("initializer array size mismatch (expecting $expectedSize, got $arraySize)")
return true
@ -1133,15 +1178,12 @@ internal class AstChecker(private val program: Program,
if(value.type.istype(targetDt)) {
if(!checkArrayValues(value, targetDt))
return false
val arraySpecSize = arrayspec.size()
val arraySpecSize = arrayspec.constIndex()
val arraySize = value.value.size
if(arraySpecSize!=null && arraySpecSize>0) {
if(arraySpecSize<1 || arraySpecSize>128)
return err("word array length must be 1-128")
val constX = arrayspec.index.constValue(program)
if(constX?.type !in IntegerDatatypes)
return err("array size specifier must be constant integer value")
val expectedSize = constX!!.number.toInt()
val expectedSize = arrayspec.constIndex() ?: return err("array size specifier must be constant integer value")
if (arraySize != expectedSize)
return err("initializer array size mismatch (expecting $expectedSize, got $arraySize)")
return true
@ -1156,14 +1198,11 @@ internal class AstChecker(private val program: Program,
if(!checkArrayValues(value, targetDt))
return false
val arraySize = value.value.size
val arraySpecSize = arrayspec.size()
val arraySpecSize = arrayspec.constIndex()
if(arraySpecSize!=null && arraySpecSize>0) {
if(arraySpecSize < 1 || arraySpecSize>51)
return err("float array length must be 1-51")
val constX = arrayspec.index.constValue(program)
if(constX?.type !in IntegerDatatypes)
return err("array size specifier must be constant integer value")
val expectedSize = constX!!.number.toInt()
val expectedSize = arrayspec.constIndex() ?: return err("array size specifier must be constant integer value")
if (arraySize != expectedSize)
return err("initializer array size mismatch (expecting $expectedSize, got $arraySize)")
} else
@ -1171,7 +1210,7 @@ internal class AstChecker(private val program: Program,
// check if the floating point values are all within range
val doubles = value.value.map {it.constValue(program)?.number!!.toDouble()}.toDoubleArray()
if(doubles.any { it < CompilationTarget.machine.FLOAT_MAX_NEGATIVE || it > CompilationTarget.machine.FLOAT_MAX_POSITIVE })
if(doubles.any { it < CompilationTarget.instance.machine.FLOAT_MAX_NEGATIVE || it > CompilationTarget.instance.machine.FLOAT_MAX_POSITIVE })
return err("floating point value overflow")
return true
}
@ -1184,7 +1223,7 @@ internal class AstChecker(private val program: Program,
for(elt in value.value.zip(struct.statements)) {
val vardecl = elt.second as VarDecl
val valuetype = elt.first.inferType(program)
if (!valuetype.isKnown || !(valuetype.typeOrElse(DataType.STRUCT) isAssignableTo vardecl.datatype)) {
if (!valuetype.isKnown || valuetype isNotAssignableTo vardecl.datatype) {
errors.err("invalid struct member init value type $valuetype, expected ${vardecl.datatype}", elt.first.position)
return false
}
@ -1248,7 +1287,11 @@ internal class AstChecker(private val program: Program,
is AddressOf -> it.identifier.heapId(program.namespace)
is TypecastExpression -> {
val constVal = it.expression.constValue(program)
constVal?.cast(it.type)?.number?.toInt() ?: -9999999
val cast = constVal?.cast(it.type)
if(cast==null || !cast.isValid)
-9999999
else
cast.valueOrZero().number.toInt()
}
else -> -9999999
}
@ -1268,7 +1311,7 @@ internal class AstChecker(private val program: Program,
correct = array.all { it in -32768..32767 }
}
DataType.ARRAY_F -> correct = true
else -> throw AstException("invalid array type $type")
else -> throw FatalAstException("invalid array type $type")
}
if (!correct)
errors.err("array value out of range for type $type", value.position)
@ -1293,8 +1336,8 @@ internal class AstChecker(private val program: Program,
DataType.STR -> sourceDatatype== DataType.STR
DataType.STRUCT -> {
if(sourceDatatype==DataType.STRUCT) {
val structLv = sourceValue as StructLiteralValue
val numValues = structLv.values.size
val structLv = sourceValue as ArrayLiteralValue
val numValues = structLv.value.size
val targetstruct = target.identifier!!.targetVarDecl(program.namespace)!!.struct!!
return targetstruct.numberOfElements == numValues
}
@ -1312,9 +1355,7 @@ internal class AstChecker(private val program: Program,
else if(sourceDatatype== DataType.FLOAT && targetDatatype in IntegerDatatypes)
errors.err("cannot assign float to ${targetDatatype.name.toLowerCase()}; possible loss of precision. Suggestion: round the value or revert to integer arithmetic", position)
else {
if(targetDatatype==DataType.UWORD && sourceDatatype in PassByReferenceDatatypes)
errors.err("cannot assign ${sourceDatatype.name.toLowerCase()} to ${targetDatatype.name.toLowerCase()}, perhaps forgot '&' ?", position)
else
if(targetDatatype!=DataType.UWORD && sourceDatatype !in PassByReferenceDatatypes)
errors.err("cannot assign ${sourceDatatype.name.toLowerCase()} to ${targetDatatype.name.toLowerCase()}", position)
}

View File

@ -1,8 +1,6 @@
package prog8.ast.processing
import prog8.ast.INameScope
import prog8.ast.Module
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
@ -10,99 +8,88 @@ import prog8.ast.statements.*
import prog8.compiler.target.CompilationTarget
import prog8.functions.BuiltinFunctions
internal class AstIdentifiersChecker(private val program: Program,
private val errors: ErrorReporter) : IAstModifyingVisitor {
internal class AstIdentifiersChecker(private val program: Program, private val errors: ErrorReporter) : IAstVisitor {
private var blocks = mutableMapOf<String, Block>()
private val vardeclsToAdd = mutableMapOf<INameScope, MutableList<VarDecl>>()
private fun nameError(name: String, position: Position, existing: Statement) {
errors.err("name conflict '$name', also defined in ${existing.position.file} line ${existing.position.line}", position)
}
override fun visit(module: Module) {
vardeclsToAdd.clear()
blocks.clear() // blocks may be redefined within a different module
super.visit(module)
// add any new vardecls to the various scopes
for((where, decls) in vardeclsToAdd) {
where.statements.addAll(0, decls)
decls.forEach { it.linkParents(where as Node) }
}
}
override fun visit(block: Block): Statement {
override fun visit(block: Block) {
if(block.name in CompilationTarget.instance.machine.opcodeNames)
errors.err("can't use a cpu opcode name as a symbol: '${block.name}'", block.position)
val existing = blocks[block.name]
if(existing!=null)
nameError(block.name, block.position, existing)
else
blocks[block.name] = block
return super.visit(block)
super.visit(block)
}
override fun visit(functionCall: FunctionCall): Expression {
if(functionCall.target.nameInSource.size==1 && functionCall.target.nameInSource[0]=="lsb") {
// lsb(...) is just an alias for type cast to ubyte, so replace with "... as ubyte"
val typecast = TypecastExpression(functionCall.args.single(), DataType.UBYTE, false, functionCall.position)
typecast.linkParents(functionCall.parent)
return super.visit(typecast)
override fun visit(directive: Directive) {
if(directive.directive=="%target") {
val compatibleTarget = directive.args.single().name
if (compatibleTarget != CompilationTarget.instance.name)
errors.err("module's compilation target ($compatibleTarget) differs from active target (${CompilationTarget.instance.name})", directive.position)
}
return super.visit(functionCall)
super.visit(directive)
}
override fun visit(decl: VarDecl): Statement {
// first, check if there are datatype errors on the vardecl
override fun visit(decl: VarDecl) {
decl.datatypeErrors.forEach { errors.err(it.message, it.position) }
// now check the identifier
if(decl.name in BuiltinFunctions)
// the builtin functions can't be redefined
errors.err("builtin function cannot be redefined", decl.position)
if(decl.name in CompilationTarget.machine.opcodeNames)
if(decl.name in CompilationTarget.instance.machine.opcodeNames)
errors.err("can't use a cpu opcode name as a symbol: '${decl.name}'", decl.position)
// is it a struct variable? then define all its struct members as mangled names,
// and include the original decl as well.
if(decl.datatype==DataType.STRUCT) {
if(decl.structHasBeenFlattened)
if (decl.structHasBeenFlattened)
return super.visit(decl) // don't do this multiple times
if(decl.struct==null) {
if (decl.struct == null) {
errors.err("undefined struct type", decl.position)
return super.visit(decl)
}
if(decl.struct!!.statements.any { (it as VarDecl).datatype !in NumericDatatypes})
if (decl.struct!!.statements.any { (it as VarDecl).datatype !in NumericDatatypes })
return super.visit(decl) // a non-numeric member, not supported. proper error is given by AstChecker later
if(decl.value is NumericLiteralValue) {
if (decl.value is NumericLiteralValue) {
errors.err("you cannot initialize a struct using a single value", decl.position)
return super.visit(decl)
}
if(decl.value != null && decl.value !is StructLiteralValue) {
errors.err("initializing requires struct literal value", decl.value?.position ?: decl.position)
if (decl.value != null && decl.value !is ArrayLiteralValue) {
errors.err("initializing a struct requires array literal value", decl.value?.position ?: decl.position)
return super.visit(decl)
}
val decls = decl.flattenStructMembers()
decls.add(decl)
val result = AnonymousScope(decls, decl.position)
result.linkParents(decl.parent)
return result
}
val existing = program.namespace.lookup(listOf(decl.name), decl)
if (existing != null && existing !== decl)
nameError(decl.name, decl.position, existing)
return super.visit(decl)
if(decl.definingBlock().name==decl.name)
nameError(decl.name, decl.position, decl.definingBlock())
if(decl.definingSubroutine()?.name==decl.name)
nameError(decl.name, decl.position, decl.definingSubroutine()!!)
super.visit(decl)
}
override fun visit(subroutine: Subroutine): Statement {
if(subroutine.name in CompilationTarget.machine.opcodeNames) {
override fun visit(subroutine: Subroutine) {
if(subroutine.name in CompilationTarget.instance.machine.opcodeNames) {
errors.err("can't use a cpu opcode name as a symbol: '${subroutine.name}'", subroutine.position)
} else if(subroutine.name in BuiltinFunctions) {
// the builtin functions can't be redefined
@ -116,14 +103,6 @@ internal class AstIdentifiersChecker(private val program: Program,
if (existing != null && existing !== subroutine)
nameError(subroutine.name, subroutine.position, existing)
// does the parameter redefine a variable declared elsewhere?
for(param in subroutine.parameters) {
val existingVar = subroutine.lookup(listOf(param.name), subroutine)
if (existingVar != null && existingVar.parent !== subroutine) {
nameError(param.name, param.position, existingVar)
}
}
// check that there are no local variables, labels, or other subs that redefine the subroutine's parameters
val symbolsInSub = subroutine.allDefinedSymbols()
val namesInSub = symbolsInSub.map{ it.first }.toSet()
@ -138,31 +117,16 @@ internal class AstIdentifiersChecker(private val program: Program,
nameError(name, sub.position, subroutine)
}
// inject subroutine params as local variables (if they're not there yet) (for non-kernel subroutines and non-asm parameters)
// NOTE:
// - numeric types BYTE and WORD and FLOAT are passed by value;
// - strings, arrays, matrices are passed by reference (their 16-bit address is passed as an uword parameter)
if(subroutine.asmAddress==null) {
if(subroutine.asmParameterRegisters.isEmpty()) {
subroutine.parameters
.filter { it.name !in namesInSub }
.forEach {
val vardecl = ParameterVarDecl(it.name, it.type, subroutine.position)
vardecl.linkParents(subroutine)
subroutine.statements.add(0, vardecl)
}
}
}
if(subroutine.isAsmSubroutine && subroutine.statements.any{it !is InlineAssembly}) {
errors.err("asmsub can only contain inline assembly (%asm)", subroutine.position)
}
}
return super.visit(subroutine)
super.visit(subroutine)
}
override fun visit(label: Label): Statement {
if(label.name in CompilationTarget.machine.opcodeNames)
override fun visit(label: Label) {
if(label.name in CompilationTarget.instance.machine.opcodeNames)
errors.err("can't use a cpu opcode name as a symbol: '${label.name}'", label.position)
if(label.name in BuiltinFunctions) {
@ -179,163 +143,24 @@ internal class AstIdentifiersChecker(private val program: Program,
}
}
}
return super.visit(label)
super.visit(label)
}
override fun visit(forLoop: ForLoop): Statement {
// If the for loop has a decltype, it means to declare the loopvar inside the loop body
// rather than reusing an already declared loopvar from an outer scope.
// For loops that loop over an interable variable (instead of a range of numbers) get an
// additional interation count variable in their scope.
if(forLoop.loopRegister!=null) {
if(forLoop.loopRegister == Register.X)
errors.warn("writing to the X register is dangerous, because it's used as an internal pointer", forLoop.position)
} else {
val loopVar = forLoop.loopVar
if (loopVar != null) {
val validName = forLoop.body.name.replace("<", "").replace(">", "").replace("-", "")
val loopvarName = "prog8_loopvar_$validName"
if (forLoop.iterable !is RangeExpr) {
val existing = if (forLoop.body.containsNoCodeNorVars()) null else forLoop.body.lookup(listOf(loopvarName), forLoop.body.statements.first())
if (existing == null) {
// create loop iteration counter variable (without value, to avoid an assignment)
val vardecl = VarDecl(VarDeclType.VAR, DataType.UBYTE, ZeropageWish.PREFER_ZEROPAGE, null, loopvarName, null, null,
isArray = false, autogeneratedDontRemove = true, position = loopVar.position)
vardecl.linkParents(forLoop.body)
forLoop.body.statements.add(0, vardecl)
loopVar.parent = forLoop.body // loopvar 'is defined in the body'
}
}
}
}
return super.visit(forLoop)
override fun visit(string: StringLiteralValue) {
if (string.value.length > 255)
errors.err("string literal length max is 255", string.position)
super.visit(string)
}
override fun visit(assignTarget: AssignTarget): AssignTarget {
if(assignTarget.register== Register.X)
errors.warn("writing to the X register is dangerous, because it's used as an internal pointer", assignTarget.position)
return super.visit(assignTarget)
}
override fun visit(arrayLiteral: ArrayLiteralValue): Expression {
val array = super.visit(arrayLiteral)
if(array is ArrayLiteralValue) {
val vardecl = array.parent as? VarDecl
// adjust the datatype of the array (to an educated guess)
if(vardecl!=null) {
val arrayDt = array.type
if(!arrayDt.istype(vardecl.datatype)) {
val cast = array.cast(vardecl.datatype)
if (cast != null) {
vardecl.value = cast
cast.linkParents(vardecl)
return cast
}
}
return array
}
else {
val arrayDt = array.guessDatatype(program)
if(arrayDt.isKnown) {
// this array literal is part of an expression, turn it into an identifier reference
val litval2 = array.cast(arrayDt.typeOrElse(DataType.STRUCT))
return if (litval2 != null) {
litval2.parent = array.parent
makeIdentifierFromRefLv(litval2)
} else array
}
}
}
return array
}
override fun visit(stringLiteral: StringLiteralValue): Expression {
val string = super.visit(stringLiteral)
if(string is StringLiteralValue) {
val vardecl = string.parent as? VarDecl
// intern the string; move it into the heap
if (string.value.length !in 1..255)
errors.err("string literal length must be between 1 and 255", string.position)
return if (vardecl != null)
string
else
makeIdentifierFromRefLv(string) // replace the literal string by a identifier reference.
}
return string
}
private fun makeIdentifierFromRefLv(array: ArrayLiteralValue): IdentifierReference {
// a referencetype literal value that's not declared as a variable
// we need to introduce an auto-generated variable for this to be able to refer to the value
// note: if the var references the same literal value, it is not yet de-duplicated here.
val scope = array.definingScope()
val variable = VarDecl.createAuto(array)
return replaceWithIdentifier(variable, scope, array.parent)
}
private fun makeIdentifierFromRefLv(string: StringLiteralValue): IdentifierReference {
// a referencetype literal value that's not declared as a variable
// we need to introduce an auto-generated variable for this to be able to refer to the value
// note: if the var references the same literal value, it is not yet de-duplicated here.
val scope = string.definingScope()
val variable = VarDecl.createAuto(string)
return replaceWithIdentifier(variable, scope, string.parent)
}
private fun replaceWithIdentifier(variable: VarDecl, scope: INameScope, parent: Node): IdentifierReference {
val variable1 = addVarDecl(scope, variable)
// replace the reference literal by a identifier reference
val identifier = IdentifierReference(listOf(variable1.name), variable1.position)
identifier.parent = parent
return identifier
}
override fun visit(structDecl: StructDecl): Statement {
override fun visit(structDecl: StructDecl) {
for(member in structDecl.statements){
val decl = member as? VarDecl
if(decl!=null && decl.datatype !in NumericDatatypes)
errors.err("structs can only contain numerical types", decl.position)
}
return super.visit(structDecl)
super.visit(structDecl)
}
override fun visit(expr: BinaryExpression): Expression {
return when {
expr.left is StringLiteralValue ->
processBinaryExprWithString(expr.left as StringLiteralValue, expr.right, expr)
expr.right is StringLiteralValue ->
processBinaryExprWithString(expr.right as StringLiteralValue, expr.left, expr)
else -> super.visit(expr)
}
}
private fun processBinaryExprWithString(string: StringLiteralValue, operand: Expression, expr: BinaryExpression): Expression {
val constvalue = operand.constValue(program)
if(constvalue!=null) {
if (expr.operator == "*") {
// repeat a string a number of times
return StringLiteralValue(string.value.repeat(constvalue.number.toInt()), string.altEncoding, expr.position)
}
}
if(expr.operator == "+" && operand is StringLiteralValue) {
// concatenate two strings
return StringLiteralValue("${string.value}${operand.value}", string.altEncoding, expr.position)
}
return expr
}
private fun addVarDecl(scope: INameScope, variable: VarDecl): VarDecl {
if(scope !in vardeclsToAdd)
vardeclsToAdd[scope] = mutableListOf()
val declList = vardeclsToAdd.getValue(scope)
val existing = declList.singleOrNull { it.name==variable.name }
return if(existing!=null) {
existing
} else {
declList.add(variable)
variable
}
}
}

View File

@ -1,118 +0,0 @@
package prog8.ast.processing
import prog8.ast.INameScope
import prog8.ast.base.ErrorReporter
import prog8.ast.base.Position
import prog8.ast.expressions.FunctionCall
import prog8.ast.statements.FunctionCallStatement
import prog8.ast.statements.Subroutine
internal class AstRecursionChecker(private val namespace: INameScope,
private val errors: ErrorReporter) : IAstVisitor {
private val callGraph = DirectedGraph<INameScope>()
fun processMessages(modulename: String) {
val cycle = callGraph.checkForCycle()
if(cycle.isEmpty())
return
val chain = cycle.joinToString(" <-- ") { "${it.name} at ${it.position}" }
errors.err("Program contains recursive subroutine calls, this is not supported. Recursive chain:\n (a subroutine call in) $chain", Position.DUMMY)
}
override fun visit(functionCallStatement: FunctionCallStatement) {
val scope = functionCallStatement.definingScope()
val targetStatement = functionCallStatement.target.targetStatement(namespace)
if(targetStatement!=null) {
val targetScope = when (targetStatement) {
is Subroutine -> targetStatement
else -> targetStatement.definingScope()
}
callGraph.add(scope, targetScope)
}
super.visit(functionCallStatement)
}
override fun visit(functionCall: FunctionCall) {
val scope = functionCall.definingScope()
val targetStatement = functionCall.target.targetStatement(namespace)
if(targetStatement!=null) {
val targetScope = when (targetStatement) {
is Subroutine -> targetStatement
else -> targetStatement.definingScope()
}
callGraph.add(scope, targetScope)
}
super.visit(functionCall)
}
private class DirectedGraph<VT> {
private val graph = mutableMapOf<VT, MutableSet<VT>>()
private var uniqueVertices = mutableSetOf<VT>()
val numVertices : Int
get() = uniqueVertices.size
fun add(from: VT, to: VT) {
var targets = graph[from]
if(targets==null) {
targets = mutableSetOf()
graph[from] = targets
}
targets.add(to)
uniqueVertices.add(from)
uniqueVertices.add(to)
}
fun print() {
println("#vertices: $numVertices")
graph.forEach { (from, to) ->
println("$from CALLS:")
to.forEach { println(" $it") }
}
val cycle = checkForCycle()
if(cycle.isNotEmpty()) {
println("CYCLIC! $cycle")
}
}
fun checkForCycle(): MutableList<VT> {
val visited = uniqueVertices.associateWith { false }.toMutableMap()
val recStack = uniqueVertices.associateWith { false }.toMutableMap()
val cycle = mutableListOf<VT>()
for(node in uniqueVertices) {
if(isCyclicUntil(node, visited, recStack, cycle))
return cycle
}
return mutableListOf()
}
private fun isCyclicUntil(node: VT,
visited: MutableMap<VT, Boolean>,
recStack: MutableMap<VT, Boolean>,
cycleNodes: MutableList<VT>): Boolean {
if(recStack[node]==true) return true
if(visited[node]==true) return false
// mark current node as visited and add to recursion stack
visited[node] = true
recStack[node] = true
// recurse for all neighbours
val neighbors = graph[node]
if(neighbors!=null) {
for (neighbour in neighbors) {
if (isCyclicUntil(neighbour, visited, recStack, cycleNodes)) {
cycleNodes.add(node)
return true
}
}
}
// pop node from recursion stack
recStack[node] = false
return false
}
}
}

View File

@ -0,0 +1,105 @@
package prog8.ast.processing
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.*
internal class AstVariousTransforms(private val program: Program) : AstWalker() {
private val noModifications = emptyList<IAstModification>()
override fun before(decl: VarDecl, parent: Node): Iterable<IAstModification> {
// is it a struct variable? then define all its struct members as mangled names,
// and include the original decl as well.
if(decl.datatype==DataType.STRUCT && !decl.structHasBeenFlattened) {
val decls = decl.flattenStructMembers()
decls.add(decl)
val result = AnonymousScope(decls, decl.position)
return listOf(IAstModification.ReplaceNode(
decl, result, parent
))
}
return noModifications
}
override fun after(subroutine: Subroutine, parent: Node): Iterable<IAstModification> {
// For non-kernel subroutines and non-asm parameters:
// inject subroutine params as local variables (if they're not there yet).
val symbolsInSub = subroutine.allDefinedSymbols()
val namesInSub = symbolsInSub.map{ it.first }.toSet()
if(subroutine.asmAddress==null) {
if(subroutine.asmParameterRegisters.isEmpty() && subroutine.parameters.isNotEmpty()) {
val vars = subroutine.statements.filterIsInstance<VarDecl>().map { it.name }.toSet()
if(!vars.containsAll(subroutine.parameters.map{it.name})) {
return subroutine.parameters
.filter { it.name !in namesInSub }
.map {
val vardecl = ParameterVarDecl(it.name, it.type, subroutine.position)
IAstModification.InsertFirst(vardecl, subroutine)
}
}
}
}
return noModifications
}
override fun after(expr: BinaryExpression, parent: Node): Iterable<IAstModification> {
val leftStr = expr.left as? StringLiteralValue
val rightStr = expr.right as? StringLiteralValue
if(expr.operator == "+") {
val concatenatedString = concatString(expr)
if(concatenatedString!=null)
return listOf(IAstModification.ReplaceNode(expr, concatenatedString, parent))
}
else if(expr.operator == "*") {
if (leftStr!=null) {
val amount = expr.right.constValue(program)
if(amount!=null) {
val string = leftStr.value.repeat(amount.number.toInt())
val strval = StringLiteralValue(string, leftStr.altEncoding, expr.position)
return listOf(IAstModification.ReplaceNode(expr, strval, parent))
}
}
else if (rightStr!=null) {
val amount = expr.right.constValue(program)
if(amount!=null) {
val string = rightStr.value.repeat(amount.number.toInt())
val strval = StringLiteralValue(string, rightStr.altEncoding, expr.position)
return listOf(IAstModification.ReplaceNode(expr, strval, parent))
}
}
}
return noModifications
}
private fun concatString(expr: BinaryExpression): StringLiteralValue? {
val rightStrval = expr.right as? StringLiteralValue
val leftStrval = expr.left as? StringLiteralValue
return when {
expr.operator!="+" -> null
expr.left is BinaryExpression && rightStrval!=null -> {
val subStrVal = concatString(expr.left as BinaryExpression)
if(subStrVal==null)
null
else
StringLiteralValue("${subStrVal.value}${rightStrval.value}", subStrVal.altEncoding, rightStrval.position)
}
expr.right is BinaryExpression && leftStrval!=null -> {
val subStrVal = concatString(expr.right as BinaryExpression)
if(subStrVal==null)
null
else
StringLiteralValue("${leftStrval.value}${subStrVal.value}", subStrVal.altEncoding, leftStrval.position)
}
leftStrval!=null && rightStrval!=null -> {
StringLiteralValue("${leftStrval.value}${rightStrval.value}", leftStrval.altEncoding, leftStrval.position)
}
else -> null
}
}
}

View File

@ -1,9 +1,6 @@
package prog8.ast.processing
import prog8.ast.INameScope
import prog8.ast.Module
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.*
import prog8.ast.base.FatalAstException
import prog8.ast.expressions.*
import prog8.ast.statements.*
@ -12,56 +9,60 @@ import prog8.ast.statements.*
interface IAstModification {
fun perform()
class Remove(val node: Node, val parent: Node) : IAstModification {
class Remove(val node: Node, val parent: INameScope) : IAstModification {
override fun perform() {
if(parent is INameScope) {
if (!parent.statements.remove(node))
throw FatalAstException("attempt to remove non-existing node $node")
} else {
throw FatalAstException("parent of a remove modification is not an INameScope")
}
if (!parent.statements.remove(node) && parent !is GlobalNamespace)
throw FatalAstException("attempt to remove non-existing node $node")
}
}
class SetExpression(val setter: (newExpr: Expression) -> Unit, val newExpr: Expression, val parent: Node) : IAstModification {
class SetExpression(private val setter: (newExpr: Expression) -> Unit, private val newExpr: Expression, private val parent: Node) : IAstModification {
override fun perform() {
setter(newExpr)
newExpr.linkParents(parent)
}
}
class InsertFirst(val stmt: Statement, val parent: Node) : IAstModification {
class InsertFirst(private val stmt: Statement, private val parent: INameScope) : IAstModification {
override fun perform() {
if(parent is INameScope) {
parent.statements.add(0, stmt)
stmt.linkParents(parent)
} else {
throw FatalAstException("parent of an insert modification is not an INameScope")
}
parent.statements.add(0, stmt)
stmt.linkParents(parent as Node)
}
}
class InsertAfter(val after: Statement, val stmt: Statement, val parent: Node) : IAstModification {
class InsertLast(private val stmt: Statement, private val parent: INameScope) : IAstModification {
override fun perform() {
if(parent is INameScope) {
val idx = parent.statements.indexOf(after)+1
parent.statements.add(idx, stmt)
stmt.linkParents(parent)
} else {
throw FatalAstException("parent of an insert modification is not an INameScope")
}
parent.statements.add(stmt)
stmt.linkParents(parent as Node)
}
}
class ReplaceNode(val node: Node, val replacement: Node, val parent: Node) : IAstModification {
class InsertAfter(private val after: Statement, private val stmt: Statement, private val parent: INameScope) : IAstModification {
override fun perform() {
val idx = parent.statements.indexOfFirst { it===after } + 1
parent.statements.add(idx, stmt)
stmt.linkParents(parent as Node)
}
}
class InsertBefore(private val before: Statement, private val stmt: Statement, private val parent: INameScope) : IAstModification {
override fun perform() {
val idx = parent.statements.indexOfFirst { it===before }
parent.statements.add(idx, stmt)
stmt.linkParents(parent as Node)
}
}
class ReplaceNode(private val node: Node, private val replacement: Node, private val parent: Node) : IAstModification {
override fun perform() {
parent.replaceChildNode(node, replacement)
replacement.parent = parent
replacement.linkParents(parent)
}
}
class SwapOperands(val expr: BinaryExpression): IAstModification {
class SwapOperands(private val expr: BinaryExpression): IAstModification {
override fun perform() {
require(expr.operator in associativeOperators)
val tmp = expr.left
expr.left = expr.right
expr.right = tmp
@ -80,13 +81,12 @@ abstract class AstWalker {
open fun before(branchStatement: BranchStatement, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(breakStmt: Break, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(builtinFunctionStatementPlaceholder: BuiltinFunctionStatementPlaceholder, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(contStmt: Continue, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(decl: VarDecl, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(directive: Directive, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(expr: BinaryExpression, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(expr: PrefixExpression, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(forLoop: ForLoop, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(foreverLoop: ForeverLoop, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(repeatLoop: RepeatLoop, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(functionCall: FunctionCall, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(functionCallStatement: FunctionCallStatement, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(identifier: IdentifierReference, parent: Node): Iterable<IAstModification> = emptyList()
@ -102,13 +102,11 @@ abstract class AstWalker {
open fun before(postIncrDecr: PostIncrDecr, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(program: Program, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(range: RangeExpr, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(registerExpr: RegisterExpr, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(repeatLoop: RepeatLoop, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(untilLoop: UntilLoop, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(returnStmt: Return, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(scope: AnonymousScope, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(string: StringLiteralValue, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(structDecl: StructDecl, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(structLv: StructLiteralValue, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(subroutine: Subroutine, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(typecast: TypecastExpression, parent: Node): Iterable<IAstModification> = emptyList()
open fun before(whenChoice: WhenChoice, parent: Node): Iterable<IAstModification> = emptyList()
@ -124,13 +122,12 @@ abstract class AstWalker {
open fun after(branchStatement: BranchStatement, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(breakStmt: Break, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(builtinFunctionStatementPlaceholder: BuiltinFunctionStatementPlaceholder, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(contStmt: Continue, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(decl: VarDecl, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(directive: Directive, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(expr: BinaryExpression, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(expr: PrefixExpression, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(forLoop: ForLoop, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(foreverLoop: ForeverLoop, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(repeatLoop: RepeatLoop, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(functionCall: FunctionCall, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(functionCallStatement: FunctionCallStatement, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(identifier: IdentifierReference, parent: Node): Iterable<IAstModification> = emptyList()
@ -146,13 +143,11 @@ abstract class AstWalker {
open fun after(postIncrDecr: PostIncrDecr, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(program: Program, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(range: RangeExpr, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(registerExpr: RegisterExpr, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(repeatLoop: RepeatLoop, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(untilLoop: UntilLoop, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(returnStmt: Return, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(scope: AnonymousScope, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(string: StringLiteralValue, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(structDecl: StructDecl, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(structLv: StructLiteralValue, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(subroutine: Subroutine, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(typecast: TypecastExpression, parent: Node): Iterable<IAstModification> = emptyList()
open fun after(whenChoice: WhenChoice, parent: Node): Iterable<IAstModification> = emptyList()
@ -214,6 +209,7 @@ abstract class AstWalker {
track(before(decl, parent), decl, parent)
decl.value?.accept(this, decl)
decl.arraysize?.accept(this, decl)
decl.struct?.accept(this, decl)
track(after(decl, parent), decl, parent)
}
@ -305,11 +301,6 @@ abstract class AstWalker {
track(after(postIncrDecr, parent), postIncrDecr, parent)
}
fun visit(contStmt: Continue, parent: Node) {
track(before(contStmt, parent), contStmt, parent)
track(after(contStmt, parent), contStmt, parent)
}
fun visit(breakStmt: Break, parent: Node) {
track(before(breakStmt, parent), breakStmt, parent)
track(after(breakStmt, parent), breakStmt, parent)
@ -317,7 +308,7 @@ abstract class AstWalker {
fun visit(forLoop: ForLoop, parent: Node) {
track(before(forLoop, parent), forLoop, parent)
forLoop.loopVar?.accept(this, forLoop)
forLoop.loopVar.accept(this, forLoop)
forLoop.iterable.accept(this, forLoop)
forLoop.body.accept(this, forLoop)
track(after(forLoop, parent), forLoop, parent)
@ -330,19 +321,20 @@ abstract class AstWalker {
track(after(whileLoop, parent), whileLoop, parent)
}
fun visit(foreverLoop: ForeverLoop, parent: Node) {
track(before(foreverLoop, parent), foreverLoop, parent)
foreverLoop.body.accept(this, foreverLoop)
track(after(foreverLoop, parent), foreverLoop, parent)
}
fun visit(repeatLoop: RepeatLoop, parent: Node) {
track(before(repeatLoop, parent), repeatLoop, parent)
repeatLoop.untilCondition.accept(this, repeatLoop)
repeatLoop.iterations?.accept(this, repeatLoop)
repeatLoop.body.accept(this, repeatLoop)
track(after(repeatLoop, parent), repeatLoop, parent)
}
fun visit(untilLoop: UntilLoop, parent: Node) {
track(before(untilLoop, parent), untilLoop, parent)
untilLoop.condition.accept(this, untilLoop)
untilLoop.body.accept(this, untilLoop)
track(after(untilLoop, parent), untilLoop, parent)
}
fun visit(returnStmt: Return, parent: Node) {
track(before(returnStmt, parent), returnStmt, parent)
returnStmt.value?.accept(this, returnStmt)
@ -351,8 +343,8 @@ abstract class AstWalker {
fun visit(arrayIndexedExpression: ArrayIndexedExpression, parent: Node) {
track(before(arrayIndexedExpression, parent), arrayIndexedExpression, parent)
arrayIndexedExpression.identifier.accept(this, arrayIndexedExpression)
arrayIndexedExpression.arrayspec.accept(this, arrayIndexedExpression)
arrayIndexedExpression.arrayvar.accept(this, arrayIndexedExpression)
arrayIndexedExpression.indexer.accept(this, arrayIndexedExpression)
track(after(arrayIndexedExpression, parent), arrayIndexedExpression, parent)
}
@ -399,11 +391,6 @@ abstract class AstWalker {
track(after(inlineAssembly, parent), inlineAssembly, parent)
}
fun visit(registerExpr: RegisterExpr, parent: Node) {
track(before(registerExpr, parent), registerExpr, parent)
track(after(registerExpr, parent), registerExpr, parent)
}
fun visit(builtinFunctionStatementPlaceholder: BuiltinFunctionStatementPlaceholder, parent: Node) {
track(before(builtinFunctionStatementPlaceholder, parent), builtinFunctionStatementPlaceholder, parent)
track(after(builtinFunctionStatementPlaceholder, parent), builtinFunctionStatementPlaceholder, parent)
@ -433,11 +420,5 @@ abstract class AstWalker {
structDecl.statements.forEach { it.accept(this, structDecl) }
track(after(structDecl, parent), structDecl, parent)
}
fun visit(structLv: StructLiteralValue, parent: Node) {
track(before(structLv, parent), structLv, parent)
structLv.values.forEach { it.accept(this, structLv) }
track(after(structLv, parent), structLv, parent)
}
}

View File

@ -1,28 +0,0 @@
package prog8.ast.processing
import prog8.ast.Node
import prog8.ast.expressions.NumericLiteralValue
import prog8.ast.statements.ForeverLoop
import prog8.ast.statements.RepeatLoop
import prog8.ast.statements.WhileLoop
internal class ForeverLoopsMaker: AstWalker() {
override fun before(repeatLoop: RepeatLoop, parent: Node): Iterable<IAstModification> {
val numeric = repeatLoop.untilCondition as? NumericLiteralValue
if(numeric!=null && numeric.number.toInt() == 0) {
val forever = ForeverLoop(repeatLoop.body, repeatLoop.position)
return listOf(IAstModification.ReplaceNode(repeatLoop, forever, parent))
}
return emptyList()
}
override fun before(whileLoop: WhileLoop, parent: Node): Iterable<IAstModification> {
val numeric = whileLoop.condition as? NumericLiteralValue
if(numeric!=null && numeric.number.toInt() != 0) {
val forever = ForeverLoop(whileLoop.body, whileLoop.position)
return listOf(IAstModification.ReplaceNode(whileLoop, forever, parent))
}
return emptyList()
}
}

View File

@ -1,267 +0,0 @@
package prog8.ast.processing
import prog8.ast.Module
import prog8.ast.Program
import prog8.ast.base.FatalAstException
import prog8.ast.expressions.*
import prog8.ast.statements.*
interface IAstModifyingVisitor {
fun visit(program: Program) {
program.modules.forEach { it.accept(this) }
}
fun visit(module: Module) {
module.statements = module.statements.map { it.accept(this) }.toMutableList()
}
fun visit(expr: PrefixExpression): Expression {
expr.expression = expr.expression.accept(this)
return expr
}
fun visit(expr: BinaryExpression): Expression {
expr.left = expr.left.accept(this)
expr.right = expr.right.accept(this)
return expr
}
fun visit(directive: Directive): Statement {
return directive
}
fun visit(block: Block): Statement {
block.statements = block.statements.map { it.accept(this) }.toMutableList()
return block
}
fun visit(decl: VarDecl): Statement {
decl.value = decl.value?.accept(this)
decl.arraysize?.accept(this)
return decl
}
fun visit(subroutine: Subroutine): Statement {
subroutine.statements = subroutine.statements.map { it.accept(this) }.toMutableList()
return subroutine
}
fun visit(functionCall: FunctionCall): Expression {
val newtarget = functionCall.target.accept(this)
if(newtarget is IdentifierReference)
functionCall.target = newtarget
else
throw FatalAstException("cannot change class of function call target")
functionCall.args = functionCall.args.map { it.accept(this) }.toMutableList()
return functionCall
}
fun visit(functionCallStatement: FunctionCallStatement): Statement {
val newtarget = functionCallStatement.target.accept(this)
if(newtarget is IdentifierReference)
functionCallStatement.target = newtarget
else
throw FatalAstException("cannot change class of function call target")
functionCallStatement.args = functionCallStatement.args.map { it.accept(this) }.toMutableList()
return functionCallStatement
}
fun visit(identifier: IdentifierReference): Expression {
// note: this is an identifier that is used in an expression.
// other identifiers are simply part of the other statements (such as jumps, subroutine defs etc)
return identifier
}
fun visit(jump: Jump): Statement {
if(jump.identifier!=null) {
val ident = jump.identifier.accept(this)
if(ident is IdentifierReference && ident!==jump.identifier) {
return Jump(null, ident, null, jump.position)
}
}
return jump
}
fun visit(ifStatement: IfStatement): Statement {
ifStatement.condition = ifStatement.condition.accept(this)
ifStatement.truepart = ifStatement.truepart.accept(this) as AnonymousScope
ifStatement.elsepart = ifStatement.elsepart.accept(this) as AnonymousScope
return ifStatement
}
fun visit(branchStatement: BranchStatement): Statement {
branchStatement.truepart = branchStatement.truepart.accept(this) as AnonymousScope
branchStatement.elsepart = branchStatement.elsepart.accept(this) as AnonymousScope
return branchStatement
}
fun visit(range: RangeExpr): Expression {
range.from = range.from.accept(this)
range.to = range.to.accept(this)
range.step = range.step.accept(this)
return range
}
fun visit(label: Label): Statement {
return label
}
fun visit(literalValue: NumericLiteralValue): NumericLiteralValue {
return literalValue
}
fun visit(stringLiteral: StringLiteralValue): Expression {
return stringLiteral
}
fun visit(arrayLiteral: ArrayLiteralValue): Expression {
for(av in arrayLiteral.value.withIndex()) {
val newvalue = av.value.accept(this)
arrayLiteral.value[av.index] = newvalue
}
return arrayLiteral
}
fun visit(assignment: Assignment): Statement {
assignment.target = assignment.target.accept(this)
assignment.value = assignment.value.accept(this)
return assignment
}
fun visit(postIncrDecr: PostIncrDecr): Statement {
postIncrDecr.target = postIncrDecr.target.accept(this)
return postIncrDecr
}
fun visit(contStmt: Continue): Statement {
return contStmt
}
fun visit(breakStmt: Break): Statement {
return breakStmt
}
fun visit(forLoop: ForLoop): Statement {
when(val newloopvar = forLoop.loopVar?.accept(this)) {
is IdentifierReference -> forLoop.loopVar = newloopvar
null -> forLoop.loopVar = null
else -> throw FatalAstException("can't change class of loopvar")
}
forLoop.iterable = forLoop.iterable.accept(this)
forLoop.body = forLoop.body.accept(this) as AnonymousScope
return forLoop
}
fun visit(whileLoop: WhileLoop): Statement {
whileLoop.condition = whileLoop.condition.accept(this)
whileLoop.body = whileLoop.body.accept(this) as AnonymousScope
return whileLoop
}
fun visit(foreverLoop: ForeverLoop): Statement {
foreverLoop.body = foreverLoop.body.accept(this) as AnonymousScope
return foreverLoop
}
fun visit(repeatLoop: RepeatLoop): Statement {
repeatLoop.untilCondition = repeatLoop.untilCondition.accept(this)
repeatLoop.body = repeatLoop.body.accept(this) as AnonymousScope
return repeatLoop
}
fun visit(returnStmt: Return): Statement {
returnStmt.value = returnStmt.value?.accept(this)
return returnStmt
}
fun visit(arrayIndexedExpression: ArrayIndexedExpression): ArrayIndexedExpression {
val ident = arrayIndexedExpression.identifier.accept(this)
if(ident is IdentifierReference)
arrayIndexedExpression.identifier = ident
arrayIndexedExpression.arrayspec.accept(this)
return arrayIndexedExpression
}
fun visit(assignTarget: AssignTarget): AssignTarget {
when (val ident = assignTarget.identifier?.accept(this)) {
is IdentifierReference -> assignTarget.identifier = ident
null -> assignTarget.identifier = null
else -> throw FatalAstException("can't change class of assign target identifier")
}
assignTarget.arrayindexed = assignTarget.arrayindexed?.accept(this)
assignTarget.memoryAddress?.let { visit(it) }
return assignTarget
}
fun visit(scope: AnonymousScope): Statement {
scope.statements = scope.statements.map { it.accept(this) }.toMutableList()
return scope
}
fun visit(typecast: TypecastExpression): Expression {
typecast.expression = typecast.expression.accept(this)
return typecast
}
fun visit(memread: DirectMemoryRead): Expression {
memread.addressExpression = memread.addressExpression.accept(this)
return memread
}
fun visit(memwrite: DirectMemoryWrite) {
memwrite.addressExpression = memwrite.addressExpression.accept(this)
}
fun visit(addressOf: AddressOf): Expression {
val ident = addressOf.identifier.accept(this)
if(ident is IdentifierReference)
addressOf.identifier = ident
else
throw FatalAstException("can't change class of addressof identifier")
return addressOf
}
fun visit(inlineAssembly: InlineAssembly): Statement {
return inlineAssembly
}
fun visit(registerExpr: RegisterExpr): Expression {
return registerExpr
}
fun visit(builtinFunctionStatementPlaceholder: BuiltinFunctionStatementPlaceholder): Statement {
return builtinFunctionStatementPlaceholder
}
fun visit(nopStatement: NopStatement): Statement {
return nopStatement
}
fun visit(whenStatement: WhenStatement): Statement {
whenStatement.condition = whenStatement.condition.accept(this)
whenStatement.choices.forEach { it.accept(this) }
return whenStatement
}
fun visit(whenChoice: WhenChoice) {
whenChoice.values = whenChoice.values?.map { it.accept(this) }
val stmt = whenChoice.statements.accept(this)
if(stmt is AnonymousScope)
whenChoice.statements = stmt
else {
whenChoice.statements = AnonymousScope(mutableListOf(stmt), stmt.position)
whenChoice.statements.linkParents(whenChoice)
}
}
fun visit(structDecl: StructDecl): Statement {
structDecl.statements = structDecl.statements.map{ it.accept(this) }.toMutableList()
return structDecl
}
fun visit(structLv: StructLiteralValue): Expression {
structLv.values = structLv.values.map { it.accept(this) }
return structLv
}
}

View File

@ -33,6 +33,7 @@ interface IAstVisitor {
fun visit(decl: VarDecl) {
decl.value?.accept(this)
decl.arraysize?.accept(this)
decl.struct?.accept(this)
}
fun visit(subroutine: Subroutine) {
@ -95,14 +96,11 @@ interface IAstVisitor {
postIncrDecr.target.accept(this)
}
fun visit(contStmt: Continue) {
}
fun visit(breakStmt: Break) {
}
fun visit(forLoop: ForLoop) {
forLoop.loopVar?.accept(this)
forLoop.loopVar.accept(this)
forLoop.iterable.accept(this)
forLoop.body.accept(this)
}
@ -112,13 +110,14 @@ interface IAstVisitor {
whileLoop.body.accept(this)
}
fun visit(foreverLoop: ForeverLoop) {
foreverLoop.body.accept(this)
fun visit(repeatLoop: RepeatLoop) {
repeatLoop.iterations?.accept(this)
repeatLoop.body.accept(this)
}
fun visit(repeatLoop: RepeatLoop) {
repeatLoop.untilCondition.accept(this)
repeatLoop.body.accept(this)
fun visit(untilLoop: UntilLoop) {
untilLoop.condition.accept(this)
untilLoop.body.accept(this)
}
fun visit(returnStmt: Return) {
@ -126,8 +125,8 @@ interface IAstVisitor {
}
fun visit(arrayIndexedExpression: ArrayIndexedExpression) {
arrayIndexedExpression.identifier.accept(this)
arrayIndexedExpression.arrayspec.accept(this)
arrayIndexedExpression.arrayvar.accept(this)
arrayIndexedExpression.indexer.accept(this)
}
fun visit(assignTarget: AssignTarget) {
@ -159,9 +158,6 @@ interface IAstVisitor {
fun visit(inlineAssembly: InlineAssembly) {
}
fun visit(registerExpr: RegisterExpr) {
}
fun visit(builtinFunctionStatementPlaceholder: BuiltinFunctionStatementPlaceholder) {
}
@ -181,8 +177,4 @@ interface IAstVisitor {
fun visit(structDecl: StructDecl) {
structDecl.statements.forEach { it.accept(this) }
}
fun visit(structLv: StructLiteralValue) {
structLv.values.forEach { it.accept(this) }
}
}

View File

@ -1,5 +1,6 @@
package prog8.ast.processing
import prog8.ast.INameScope
import prog8.ast.Node
import prog8.ast.statements.Directive
@ -10,11 +11,12 @@ internal class ImportedModuleDirectiveRemover: AstWalker() {
*/
private val moduleLevelDirectives = listOf("%output", "%launcher", "%zeropage", "%zpreserved", "%address")
private val noModifications = emptyList<IAstModification>()
override fun before(directive: Directive, parent: Node): Iterable<IAstModification> {
if(directive.directive in moduleLevelDirectives) {
return listOf(IAstModification.Remove(directive, parent))
return listOf(IAstModification.Remove(directive, parent as INameScope))
}
return emptyList()
return noModifications
}
}

View File

@ -0,0 +1,53 @@
package prog8.ast.processing
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.*
internal class LiteralsToAutoVars(private val program: Program) : AstWalker() {
private val noModifications = emptyList<IAstModification>()
override fun after(string: StringLiteralValue, parent: Node): Iterable<IAstModification> {
if(string.parent !is VarDecl && string.parent !is WhenChoice) {
// replace the literal string by a identifier reference to a new local vardecl
val vardecl = VarDecl.createAuto(string)
val identifier = IdentifierReference(listOf(vardecl.name), vardecl.position)
return listOf(
IAstModification.ReplaceNode(string, identifier, parent),
IAstModification.InsertFirst(vardecl, string.definingScope())
)
}
return noModifications
}
override fun after(array: ArrayLiteralValue, parent: Node): Iterable<IAstModification> {
val vardecl = array.parent as? VarDecl
if(vardecl!=null) {
// adjust the datatype of the array (to an educated guess)
val arrayDt = array.type
if(!arrayDt.istype(vardecl.datatype)) {
val cast = array.cast(vardecl.datatype)
if (cast != null && cast !== array)
return listOf(IAstModification.ReplaceNode(vardecl.value!!, cast, vardecl))
}
} else {
val arrayDt = array.guessDatatype(program)
if(arrayDt.isKnown) {
// this array literal is part of an expression, turn it into an identifier reference
val litval2 = array.cast(arrayDt.typeOrElse(DataType.STRUCT))
if(litval2!=null) {
val vardecl2 = VarDecl.createAuto(litval2)
val identifier = IdentifierReference(listOf(vardecl2.name), vardecl2.position)
return listOf(
IAstModification.ReplaceNode(array, identifier, parent),
IAstModification.InsertFirst(vardecl2, array.definingScope())
)
}
}
}
return noModifications
}
}

View File

@ -1,219 +1,309 @@
package prog8.ast.processing
import prog8.ast.*
import prog8.ast.base.DataType
import prog8.ast.base.FatalAstException
import prog8.ast.base.NumericDatatypes
import prog8.ast.base.VarDeclType
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.*
internal class StatementReorderer(private val program: Program): IAstModifyingVisitor {
internal class StatementReorderer(val program: Program, val errors: ErrorReporter) : AstWalker() {
// Reorders the statements in a way the compiler needs.
// - 'main' block must be the very first statement UNLESS it has an address set.
// - blocks are ordered by address, where blocks without address are put at the end.
// - in every scope:
// -- the directives '%output', '%launcher', '%zeropage', '%zpreserved', '%address' and '%option' will come first.
// -- all vardecls then follow.
// -- the remaining statements then follow in their original order.
//
// - the 'start' subroutine in the 'main' block will be moved to the top immediately following the directives.
// - all other subroutines will be moved to the end of their block.
// - library blocks are put last.
// - blocks are ordered by address, where blocks without address are placed last.
// - in every block and module, most directives and vardecls are moved to the top. (not in subroutines!)
// - the 'start' subroutine is moved to the top.
// - (syntax desugaring) a vardecl with a non-const initializer value is split into a regular vardecl and an assignment statement.
// - (syntax desugaring) struct value assignment is expanded into several struct member assignments.
// - in-place assignments are reordered a bit so that they are mostly of the form A = A <operator> <rest>
// - sorts the choices in when statement.
// - a vardecl with a non-const initializer value is split into a regular vardecl and an assignment statement.
// - insert AddressOf (&) expression where required (string params to a UWORD function param etc).
private val noModifications = emptyList<IAstModification>()
private val directivesToMove = setOf("%output", "%launcher", "%zeropage", "%zpreserved", "%address", "%option")
private val addVardecls = mutableMapOf<INameScope, MutableList<VarDecl>>()
override fun visit(module: Module) {
addVardecls.clear()
super.visit(module)
override fun after(module: Module, parent: Node): Iterable<IAstModification> {
val (blocks, other) = module.statements.partition { it is Block }
module.statements = other.asSequence().plus(blocks.sortedBy { (it as Block).address ?: Int.MAX_VALUE }).toMutableList()
// make sure user-defined blocks come BEFORE library blocks, and move the "main" block to the top of everything
val nonLibraryBlocks = module.statements.withIndex()
.filter { it.value is Block && !(it.value as Block).isInLibrary }
.map { it.index to it.value }
.reversed()
for(nonLibBlock in nonLibraryBlocks)
module.statements.removeAt(nonLibBlock.first)
for(nonLibBlock in nonLibraryBlocks)
module.statements.add(0, nonLibBlock.second)
val mainBlock = module.statements.singleOrNull { it is Block && it.name=="main" }
if(mainBlock!=null && (mainBlock as Block).address==null) {
module.remove(mainBlock)
val mainBlock = module.statements.filterIsInstance<Block>().firstOrNull { it.name=="main" }
if(mainBlock!=null && mainBlock.address==null) {
module.statements.remove(mainBlock)
module.statements.add(0, mainBlock)
}
val varDecls = module.statements.filterIsInstance<VarDecl>()
module.statements.removeAll(varDecls)
module.statements.addAll(0, varDecls)
val directives = module.statements.filter {it is Directive && it.directive in directivesToMove}
module.statements.removeAll(directives)
module.statements.addAll(0, directives)
for((where, decls) in addVardecls) {
where.statements.addAll(0, decls)
decls.forEach { it.linkParents(where as Node) }
}
reorderVardeclsAndDirectives(module.statements)
return noModifications
}
override fun visit(block: Block): Statement {
private fun reorderVardeclsAndDirectives(statements: MutableList<Statement>) {
val varDecls = statements.filterIsInstance<VarDecl>()
statements.removeAll(varDecls)
statements.addAll(0, varDecls)
val subroutines = block.statements.filterIsInstance<Subroutine>()
var numSubroutinesAtEnd = 0
// move all subroutines to the end of the block
for (subroutine in subroutines) {
if(subroutine.name!="start" || block.name!="main") {
block.remove(subroutine)
block.statements.add(subroutine)
}
numSubroutinesAtEnd++
val directives = statements.filterIsInstance<Directive>().filter {it.directive in directivesToMove}
statements.removeAll(directives)
statements.addAll(0, directives)
}
override fun before(block: Block, parent: Node): Iterable<IAstModification> {
parent as Module
if(block.isInLibrary) {
return listOf(
IAstModification.Remove(block, parent),
IAstModification.InsertLast(block, parent)
)
}
// move the "start" subroutine to the top
if(block.name=="main") {
block.statements.singleOrNull { it is Subroutine && it.name == "start" } ?.let {
block.remove(it)
block.statements.add(0, it)
numSubroutinesAtEnd--
reorderVardeclsAndDirectives(block.statements)
return noModifications
}
override fun before(subroutine: Subroutine, parent: Node): Iterable<IAstModification> {
if(subroutine.name=="start" && parent is Block) {
if(parent.statements.filterIsInstance<Subroutine>().first().name!="start") {
return listOf(
IAstModification.Remove(subroutine, parent),
IAstModification.InsertFirst(subroutine, parent)
)
}
}
val varDecls = block.statements.filterIsInstance<VarDecl>()
block.statements.removeAll(varDecls)
block.statements.addAll(0, varDecls)
val directives = block.statements.filter {it is Directive && it.directive in directivesToMove}
block.statements.removeAll(directives)
block.statements.addAll(0, directives)
block.linkParents(block.parent)
return super.visit(block)
return noModifications
}
override fun visit(subroutine: Subroutine): Statement {
super.visit(subroutine)
val varDecls = subroutine.statements.filterIsInstance<VarDecl>()
subroutine.statements.removeAll(varDecls)
subroutine.statements.addAll(0, varDecls)
val directives = subroutine.statements.filter {it is Directive && it.directive in directivesToMove}
subroutine.statements.removeAll(directives)
subroutine.statements.addAll(0, directives)
return subroutine
}
private fun addVarDecl(scope: INameScope, variable: VarDecl): VarDecl {
if(scope !in addVardecls)
addVardecls[scope] = mutableListOf()
val declList = addVardecls.getValue(scope)
val existing = declList.singleOrNull { it.name==variable.name }
return if(existing!=null) {
existing
} else {
declList.add(variable)
variable
override fun after(arrayIndexedExpression: ArrayIndexedExpression, parent: Node): Iterable<IAstModification> {
when (val expr2 = arrayIndexedExpression.indexer.origExpression) {
is NumericLiteralValue -> {
arrayIndexedExpression.indexer.indexNum = expr2
arrayIndexedExpression.indexer.origExpression = null
return noModifications
}
is IdentifierReference -> {
arrayIndexedExpression.indexer.indexVar = expr2
arrayIndexedExpression.indexer.origExpression = null
return noModifications
}
is Expression -> {
// replace complex indexing with a temp variable
return getAutoIndexerVarFor(arrayIndexedExpression)
}
else -> return noModifications
}
}
override fun visit(decl: VarDecl): Statement {
private fun getAutoIndexerVarFor(expr: ArrayIndexedExpression): MutableList<IAstModification> {
val modifications = mutableListOf<IAstModification>()
val subroutine = expr.definingSubroutine()!!
val statement = expr.containingStatement()
val indexerVarPrefix = "prog8_autovar_index_"
val repo = subroutine.asmGenInfo.usedAutoArrayIndexerForStatements
// TODO make this even smarter so that an indexerVar can be reused for a different following statement... requires updating the partOfStatement?
var indexerVar = repo.firstOrNull { it.replaces isSameAs expr.indexer }
if(indexerVar==null) {
// add another loop index var to be used for this expression
val indexerVarName = "$indexerVarPrefix${expr.indexer.hashCode()}"
indexerVar = AsmGenInfo.ArrayIndexerInfo(indexerVarName, expr.indexer, statement)
repo.add(indexerVar)
// create the indexer var at block level scope
val vardecl = VarDecl(VarDeclType.VAR, DataType.UBYTE, ZeropageWish.PREFER_ZEROPAGE,
null, indexerVarName, null, null, isArray = false, autogeneratedDontRemove = true, position = expr.position)
modifications.add(IAstModification.InsertFirst(vardecl, subroutine))
}
indexerVar.used++ // keep track of how many times it it used, to avoid assigning it multiple times
// replace the indexer with just the variable
// assign the indexing expression to the helper variable, but only if that hasn't been done already
val indexerExpression = expr.indexer.origExpression!!
val target = AssignTarget(IdentifierReference(listOf(indexerVar.name), indexerExpression.position), null, null, indexerExpression.position)
if(indexerVar.used==1) {
val assign = Assignment(target, indexerExpression, indexerExpression.position)
modifications.add(IAstModification.InsertBefore(statement, assign, statement.definingScope()))
}
modifications.add(IAstModification.SetExpression( {
expr.indexer.indexVar = it as IdentifierReference
expr.indexer.indexNum = null
expr.indexer.origExpression = null
}, target.identifier!!.copy(), expr.indexer))
return modifications
}
override fun after(whenStatement: WhenStatement, parent: Node): Iterable<IAstModification> {
val choices = whenStatement.choiceValues(program).sortedBy {
it.first?.first() ?: Int.MAX_VALUE
}
whenStatement.choices.clear()
choices.mapTo(whenStatement.choices) { it.second }
return noModifications
}
override fun after(decl: VarDecl, parent: Node): Iterable<IAstModification> {
val declValue = decl.value
if(declValue!=null && decl.type== VarDeclType.VAR && decl.datatype in NumericDatatypes) {
val declConstValue = declValue.constValue(program)
if(declConstValue==null) {
// move the vardecl (without value) to the scope and replace this with a regular assignment
val target = AssignTarget(null, IdentifierReference(listOf(decl.name), decl.position), null, null, decl.position)
val assign = Assignment(target, null, declValue, decl.position)
assign.linkParents(decl.parent)
decl.value = null
addVarDecl(decl.definingScope(), decl)
return assign
// Unless we're dealing with a floating point variable because that will actually make things less efficient at the moment (because floats are mostly calcualated via the stack)
if(decl.datatype!=DataType.FLOAT) {
decl.value = null
decl.allowInitializeWithZero = false
val target = AssignTarget(IdentifierReference(listOf(decl.name), decl.position), null, null, decl.position)
val assign = Assignment(target, declValue, decl.position)
return listOf(
IAstModification.ReplaceNode(decl, assign, parent),
IAstModification.InsertFirst(decl, decl.definingScope())
)
}
}
}
return super.visit(decl)
return noModifications
}
override fun visit(assignment: Assignment): Statement {
val assg = super.visit(assignment)
if(assg !is Assignment)
return assg
override fun before(assignment: Assignment, parent: Node): Iterable<IAstModification> {
val valueType = assignment.value.inferType(program)
val targetType = assignment.target.inferType(program)
var assignments = emptyList<Assignment>()
// see if a typecast is needed to convert the value's type into the proper target type
val valueItype = assg.value.inferType(program)
val targetItype = assg.target.inferType(program, assg)
if(targetItype.isKnown && valueItype.isKnown) {
val targettype = targetItype.typeOrElse(DataType.STRUCT)
val valuetype = valueItype.typeOrElse(DataType.STRUCT)
// struct assignments will be flattened (if it's not a struct literal)
if (valuetype == DataType.STRUCT && targettype == DataType.STRUCT) {
val assignments = if (assg.value is StructLiteralValue) {
flattenStructAssignmentFromStructLiteral(assg, program) // 'structvar = { ..... } '
} else {
flattenStructAssignmentFromIdentifier(assg, program) // 'structvar1 = structvar2'
}
return if (assignments.isEmpty()) {
// something went wrong (probably incompatible struct types)
// we'll get an error later from the AstChecker
assg
} else {
val scope = AnonymousScope(assignments.toMutableList(), assg.position)
scope.linkParents(assg.parent)
scope
}
if(targetType.istype(DataType.STRUCT) && (valueType.istype(DataType.STRUCT) || valueType.typeOrElse(DataType.STRUCT) in ArrayDatatypes )) {
assignments = if (assignment.value is ArrayLiteralValue) {
flattenStructAssignmentFromStructLiteral(assignment) // 'structvar = [ ..... ] '
} else {
flattenStructAssignmentFromIdentifier(assignment) // 'structvar1 = structvar2'
}
}
if(assg.aug_op!=null) {
// transform augmented assg into normal assg so we have one case less to deal with later
val newTarget: Expression =
when {
assg.target.register != null -> RegisterExpr(assg.target.register!!, assg.target.position)
assg.target.identifier != null -> assg.target.identifier!!
assg.target.arrayindexed != null -> assg.target.arrayindexed!!
assg.target.memoryAddress != null -> DirectMemoryRead(assg.target.memoryAddress!!.addressExpression, assg.value.position)
else -> throw FatalAstException("strange assg")
if(targetType.typeOrElse(DataType.STRUCT) in ArrayDatatypes && valueType.typeOrElse(DataType.STRUCT) in ArrayDatatypes ) {
assignments = if (assignment.value is ArrayLiteralValue) {
flattenArrayAssignmentFromArrayLiteral(assignment) // 'arrayvar = [ ..... ] '
} else {
flattenArrayAssignmentFromIdentifier(assignment) // 'arrayvar1 = arrayvar2'
}
}
if(assignments.isNotEmpty()) {
val modifications = mutableListOf<IAstModification>()
val scope = assignment.definingScope()
assignments.reversed().mapTo(modifications) { IAstModification.InsertAfter(assignment, it, scope) }
modifications.add(IAstModification.Remove(assignment, scope))
return modifications
}
return noModifications
}
override fun after(assignment: Assignment, parent: Node): Iterable<IAstModification> {
// rewrite in-place assignment expressions a bit so that the assignment target usually is the leftmost operand
val binExpr = assignment.value as? BinaryExpression
if(binExpr!=null) {
if(binExpr.left isSameAs assignment.target) {
// A = A <operator> 5, unchanged
return noModifications
}
if(binExpr.operator in associativeOperators) {
if (binExpr.right isSameAs assignment.target) {
// A = v <associative-operator> A ==> A = A <associative-operator> v
return listOf(IAstModification.SwapOperands(binExpr))
}
val leftBinExpr = binExpr.left as? BinaryExpression
if(leftBinExpr?.operator == binExpr.operator) {
return if(leftBinExpr.left isSameAs assignment.target) {
// A = (A <associative-operator> x) <same-operator> y ==> A = A <associative-operator> (x <same-operator> y)
val newRight = BinaryExpression(leftBinExpr.right, binExpr.operator, binExpr.right, binExpr.position)
val newValue = BinaryExpression(leftBinExpr.left, binExpr.operator, newRight, binExpr.position)
listOf(IAstModification.ReplaceNode(binExpr, newValue, assignment))
} else {
// A = (x <associative-operator> A) <same-operator> y ==> A = A <associative-operator> (x <same-operator> y)
val newRight = BinaryExpression(leftBinExpr.left, binExpr.operator, binExpr.right, binExpr.position)
val newValue = BinaryExpression(leftBinExpr.right, binExpr.operator, newRight, binExpr.position)
listOf(IAstModification.ReplaceNode(binExpr, newValue, assignment))
}
val expression = BinaryExpression(newTarget, assg.aug_op.substringBeforeLast('='), assg.value, assg.position)
expression.linkParents(assg.parent)
val convertedAssignment = Assignment(assg.target, null, expression, assg.position)
convertedAssignment.linkParents(assg.parent)
return super.visit(convertedAssignment)
}
val rightBinExpr = binExpr.right as? BinaryExpression
if(rightBinExpr?.operator == binExpr.operator) {
return if(rightBinExpr.left isSameAs assignment.target) {
// A = x <associative-operator> (A <same-operator> y) ==> A = A <associative-operator> (x <same-operator> y)
val newRight = BinaryExpression(binExpr.left, binExpr.operator, rightBinExpr.right, binExpr.position)
val newValue = BinaryExpression(rightBinExpr.left, binExpr.operator, newRight, binExpr.position)
listOf(IAstModification.ReplaceNode(binExpr, newValue, assignment))
} else {
// A = x <associative-operator> (y <same-operator> A) ==> A = A <associative-operator> (x <same-operator> y)
val newRight = BinaryExpression(binExpr.left, binExpr.operator, rightBinExpr.left, binExpr.position)
val newValue = BinaryExpression(rightBinExpr.right, binExpr.operator, newRight, binExpr.position)
listOf(IAstModification.ReplaceNode(binExpr, newValue, assignment))
}
}
}
}
return assg
return noModifications
}
private fun flattenStructAssignmentFromStructLiteral(structAssignment: Assignment, program: Program): List<Assignment> {
private fun flattenArrayAssignmentFromArrayLiteral(assign: Assignment): List<Assignment> {
val identifier = assign.target.identifier!!
val targetVar = identifier.targetVarDecl(program.namespace)!!
val alv = assign.value as? ArrayLiteralValue
return flattenArrayAssign(targetVar, alv, identifier, assign.position)
}
private fun flattenArrayAssignmentFromIdentifier(assign: Assignment): List<Assignment> {
val identifier = assign.target.identifier!!
val targetVar = identifier.targetVarDecl(program.namespace)!!
val sourceIdent = assign.value as IdentifierReference
val sourceVar = sourceIdent.targetVarDecl(program.namespace)!!
if(!sourceVar.isArray) {
errors.err("value must be an array", sourceIdent.position)
return emptyList()
}
val alv = sourceVar.value as? ArrayLiteralValue
return flattenArrayAssign(targetVar, alv, identifier, assign.position)
}
private fun flattenArrayAssign(targetVar: VarDecl, alv: ArrayLiteralValue?, identifier: IdentifierReference, position: Position): List<Assignment> {
if(targetVar.arraysize==null) {
errors.err("array has no defined size", identifier.position)
return emptyList()
}
if(alv==null || alv.value.size != targetVar.arraysize!!.constIndex()) {
errors.err("element count mismatch", position)
return emptyList()
}
// TODO use a pointer loop instead of individual assignments
return alv.value.mapIndexed { index, value ->
val idx = ArrayIndexedExpression(identifier, ArrayIndex(NumericLiteralValue(DataType.UBYTE, index, position), position), position)
Assignment(AssignTarget(null, idx, null, position), value, value.position)
}
}
private fun flattenStructAssignmentFromStructLiteral(structAssignment: Assignment): List<Assignment> {
val identifier = structAssignment.target.identifier!!
val identifierName = identifier.nameInSource.single()
val targetVar = identifier.targetVarDecl(program.namespace)!!
val struct = targetVar.struct!!
val slv = structAssignment.value as? StructLiteralValue
if(slv==null || slv.values.size != struct.numberOfElements)
throw FatalAstException("element count mismatch")
val slv = structAssignment.value as? ArrayLiteralValue
if(slv==null || slv.value.size != struct.numberOfElements) {
errors.err("element count mismatch", structAssignment.position)
return emptyList()
}
return struct.statements.zip(slv.values).map { (targetDecl, sourceValue) ->
return struct.statements.zip(slv.value).map { (targetDecl, sourceValue) ->
targetDecl as VarDecl
val mangled = mangledStructMemberName(identifierName, targetDecl.name)
val idref = IdentifierReference(listOf(mangled), structAssignment.position)
val assign = Assignment(AssignTarget(null, idref, null, null, structAssignment.position),
null, sourceValue, sourceValue.position)
val assign = Assignment(AssignTarget(idref, null, null, structAssignment.position),
sourceValue, sourceValue.position)
assign.linkParents(structAssignment)
assign
}
}
private fun flattenStructAssignmentFromIdentifier(structAssignment: Assignment, program: Program): List<Assignment> {
private fun flattenStructAssignmentFromIdentifier(structAssignment: Assignment): List<Assignment> {
// TODO use memcopy beyond a certain number of elements
val identifier = structAssignment.target.identifier!!
val identifierName = identifier.nameInSource.single()
val targetVar = identifier.targetVarDecl(program.namespace)!!
@ -221,30 +311,50 @@ internal class StatementReorderer(private val program: Program): IAstModifyingVi
when (structAssignment.value) {
is IdentifierReference -> {
val sourceVar = (structAssignment.value as IdentifierReference).targetVarDecl(program.namespace)!!
if (sourceVar.struct == null)
throw FatalAstException("can only assign arrays or structs to structs")
// struct memberwise copy
val sourceStruct = sourceVar.struct!!
if(sourceStruct!==targetVar.struct) {
// structs are not the same in assignment
return listOf() // error will be printed elsewhere
}
return struct.statements.zip(sourceStruct.statements).map { member ->
val targetDecl = member.first as VarDecl
val sourceDecl = member.second as VarDecl
if(targetDecl.name != sourceDecl.name)
throw FatalAstException("struct member mismatch")
val mangled = mangledStructMemberName(identifierName, targetDecl.name)
val idref = IdentifierReference(listOf(mangled), structAssignment.position)
val sourcemangled = mangledStructMemberName(sourceVar.name, sourceDecl.name)
val sourceIdref = IdentifierReference(listOf(sourcemangled), structAssignment.position)
val assign = Assignment(AssignTarget(null, idref, null, null, structAssignment.position),
null, sourceIdref, member.second.position)
assign.linkParents(structAssignment)
assign
when {
sourceVar.struct!=null -> {
// struct memberwise copy
val sourceStruct = sourceVar.struct!!
if(sourceStruct!==targetVar.struct) {
// structs are not the same in assignment
return listOf() // error will be printed elsewhere
}
if(struct.statements.size!=sourceStruct.statements.size)
return listOf() // error will be printed elsewhere
return struct.statements.zip(sourceStruct.statements).map { member ->
val targetDecl = member.first as VarDecl
val sourceDecl = member.second as VarDecl
if(targetDecl.name != sourceDecl.name)
throw FatalAstException("struct member mismatch")
val mangled = mangledStructMemberName(identifierName, targetDecl.name)
val idref = IdentifierReference(listOf(mangled), structAssignment.position)
val sourcemangled = mangledStructMemberName(sourceVar.name, sourceDecl.name)
val sourceIdref = IdentifierReference(listOf(sourcemangled), structAssignment.position)
val assign = Assignment(AssignTarget(idref, null, null, structAssignment.position), sourceIdref, member.second.position)
assign.linkParents(structAssignment)
assign
}
}
sourceVar.isArray -> {
val array = (sourceVar.value as ArrayLiteralValue).value
if(struct.statements.size!=array.size)
return listOf() // error will be printed elsewhere
return struct.statements.zip(array).map {
val decl = it.first as VarDecl
val mangled = mangledStructMemberName(identifierName, decl.name)
val targetName = IdentifierReference(listOf(mangled), structAssignment.position)
val target = AssignTarget(targetName, null, null, structAssignment.position)
val assign = Assignment(target, it.second, structAssignment.position)
assign.linkParents(structAssignment)
assign
}
}
else -> {
throw FatalAstException("can only assign arrays or structs to structs")
}
}
}
is StructLiteralValue -> {
is ArrayLiteralValue -> {
throw IllegalArgumentException("not going to flatten a structLv assignment here")
}
else -> throw FatalAstException("strange struct value")

View File

@ -4,9 +4,7 @@ import prog8.ast.IFunctionCall
import prog8.ast.INameScope
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.DataType
import prog8.ast.base.ErrorReporter
import prog8.ast.base.FatalAstException
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.*
import prog8.functions.BuiltinFunctions
@ -18,6 +16,28 @@ class TypecastsAdder(val program: Program, val errors: ErrorReporter) : AstWalke
* (this includes function call arguments)
*/
private val noModifications = emptyList<IAstModification>()
override fun after(decl: VarDecl, parent: Node): Iterable<IAstModification> {
val declValue = decl.value
if(decl.type==VarDeclType.VAR && declValue!=null && decl.struct==null) {
val valueDt = declValue.inferType(program)
if(!valueDt.istype(decl.datatype)) {
// don't add a typecast on an array initializer value
if(valueDt.typeOrElse(DataType.STRUCT) in IntegerDatatypes && decl.datatype in ArrayDatatypes)
return noModifications
return listOf(IAstModification.ReplaceNode(
declValue,
TypecastExpression(declValue, decl.datatype, true, declValue.position),
decl
))
}
}
return noModifications
}
override fun after(expr: BinaryExpression, parent: Node): Iterable<IAstModification> {
val leftDt = expr.left.inferType(program)
val rightDt = expr.right.inferType(program)
@ -34,24 +54,55 @@ class TypecastsAdder(val program: Program, val errors: ErrorReporter) : AstWalke
}
}
}
return emptyList()
return noModifications
}
override fun after(assignment: Assignment, parent: Node): Iterable<IAstModification> {
// see if a typecast is needed to convert the value's type into the proper target type
val valueItype = assignment.value.inferType(program)
val targetItype = assignment.target.inferType(program, assignment)
val targetItype = assignment.target.inferType(program)
if(targetItype.isKnown && valueItype.isKnown) {
val targettype = targetItype.typeOrElse(DataType.STRUCT)
val valuetype = valueItype.typeOrElse(DataType.STRUCT)
if (valuetype != targettype) {
return listOf(IAstModification.ReplaceNode(
assignment.value,
TypecastExpression(assignment.value, targettype, true, assignment.value.position),
assignment))
if (valuetype isAssignableTo targettype) {
if(valuetype in IterableDatatypes && targettype==DataType.UWORD)
// special case, don't typecast STR/arrays to UWORD, we support those assignments "directly"
return noModifications
return listOf(IAstModification.ReplaceNode(
assignment.value,
TypecastExpression(assignment.value, targettype, true, assignment.value.position),
assignment))
} else {
fun castLiteral(cvalue: NumericLiteralValue): List<IAstModification.ReplaceNode> {
val cast = cvalue.cast(targettype)
return if(cast.isValid)
listOf(IAstModification.ReplaceNode(cvalue, cast.valueOrZero(), cvalue.parent))
else
emptyList()
}
val cvalue = assignment.value.constValue(program)
if(cvalue!=null) {
val number = cvalue.number.toDouble()
// more complex comparisons if the type is different, but the constant value is compatible
if (valuetype == DataType.BYTE && targettype == DataType.UBYTE) {
if(number>0)
return castLiteral(cvalue)
} else if (valuetype == DataType.WORD && targettype == DataType.UWORD) {
if(number>0)
return castLiteral(cvalue)
} else if (valuetype == DataType.UBYTE && targettype == DataType.BYTE) {
if(number<0x80)
return castLiteral(cvalue)
} else if (valuetype == DataType.UWORD && targettype == DataType.WORD) {
if(number<0x8000)
return castLiteral(cvalue)
}
}
}
}
}
return emptyList()
return noModifications
}
override fun after(functionCallStatement: FunctionCallStatement, parent: Node): Iterable<IAstModification> {
@ -64,126 +115,95 @@ class TypecastsAdder(val program: Program, val errors: ErrorReporter) : AstWalke
private fun afterFunctionCallArgs(call: IFunctionCall, scope: INameScope): Iterable<IAstModification> {
// see if a typecast is needed to convert the arguments into the required parameter's type
return when(val sub = call.target.targetStatement(scope)) {
val modifications = mutableListOf<IAstModification>()
when(val sub = call.target.targetStatement(scope)) {
is Subroutine -> {
for(arg in sub.parameters.zip(call.args.withIndex())) {
val argItype = arg.second.value.inferType(program)
sub.parameters.zip(call.args).forEachIndexed { index, pair ->
val argItype = pair.second.inferType(program)
if(argItype.isKnown) {
val argtype = argItype.typeOrElse(DataType.STRUCT)
val requiredType = arg.first.type
val requiredType = pair.first.type
if (requiredType != argtype) {
if (argtype isAssignableTo requiredType) {
return listOf(IAstModification.ReplaceNode(
call.args[arg.second.index],
TypecastExpression(arg.second.value, requiredType, true, arg.second.value.position),
call as Node))
modifications += IAstModification.ReplaceNode(
call.args[index],
TypecastExpression(pair.second, requiredType, true, pair.second.position),
call as Node)
} else if(requiredType == DataType.UWORD && argtype in PassByReferenceDatatypes) {
// we allow STR/ARRAY values in place of UWORD parameters. Take their address instead.
if(pair.second is IdentifierReference) {
modifications += IAstModification.ReplaceNode(
call.args[index],
AddressOf(pair.second as IdentifierReference, pair.second.position),
call as Node)
}
} else if(pair.second is NumericLiteralValue) {
val cast = (pair.second as NumericLiteralValue).cast(requiredType)
if(cast.isValid)
modifications += IAstModification.ReplaceNode(
call.args[index],
cast.valueOrZero(),
call as Node)
}
}
}
}
emptyList()
}
is BuiltinFunctionStatementPlaceholder -> {
val func = BuiltinFunctions.getValue(sub.name)
if(func.pure) {
// non-pure functions don't get automatic typecasts because sometimes they act directly on their parameters
for (arg in func.parameters.zip(call.args.withIndex())) {
val argItype = arg.second.value.inferType(program)
if (argItype.isKnown) {
val argtype = argItype.typeOrElse(DataType.STRUCT)
if (arg.first.possibleDatatypes.any { argtype == it })
continue
for (possibleType in arg.first.possibleDatatypes) {
func.parameters.zip(call.args).forEachIndexed { index, pair ->
val argItype = pair.second.inferType(program)
if (argItype.isKnown) {
val argtype = argItype.typeOrElse(DataType.STRUCT)
if (pair.first.possibleDatatypes.all { argtype != it }) {
for (possibleType in pair.first.possibleDatatypes) {
if (argtype isAssignableTo possibleType) {
return listOf(IAstModification.ReplaceNode(
call.args[arg.second.index],
TypecastExpression(arg.second.value, possibleType, true, arg.second.value.position),
call as Node))
modifications += IAstModification.ReplaceNode(
call.args[index],
TypecastExpression(pair.second, possibleType, true, pair.second.position),
call as Node)
break
}
}
}
}
}
emptyList()
}
null -> emptyList()
else -> throw FatalAstException("call to something weird $sub ${call.target}")
else -> { }
}
return modifications
}
override fun after(typecast: TypecastExpression, parent: Node): Iterable<IAstModification> {
// warn about any implicit type casts to Float, because that may not be intended
if(typecast.implicit && typecast.type in setOf(DataType.FLOAT, DataType.ARRAY_F)) {
errors.warn("byte or word value implicitly converted to float. Suggestion: use explicit cast as float, a float number, or revert to integer arithmetic", typecast.position)
errors.warn("integer implicitly converted to float. Suggestion: use float literals, add an explicit cast, or revert to integer arithmetic", typecast.position)
}
return emptyList()
return noModifications
}
override fun after(memread: DirectMemoryRead, parent: Node): Iterable<IAstModification> {
// make sure the memory address is an uword
val dt = memread.addressExpression.inferType(program)
if(dt.isKnown && dt.typeOrElse(DataType.UWORD)!=DataType.UWORD) {
val typecast = (memread.addressExpression as? NumericLiteralValue)?.cast(DataType.UWORD)
val typecast = (memread.addressExpression as? NumericLiteralValue)?.cast(DataType.UWORD)?.valueOrZero()
?: TypecastExpression(memread.addressExpression, DataType.UWORD, true, memread.addressExpression.position)
return listOf(IAstModification.ReplaceNode(memread.addressExpression, typecast, memread))
}
return emptyList()
return noModifications
}
override fun after(memwrite: DirectMemoryWrite, parent: Node): Iterable<IAstModification> {
// make sure the memory address is an uword
val dt = memwrite.addressExpression.inferType(program)
if(dt.isKnown && dt.typeOrElse(DataType.UWORD)!=DataType.UWORD) {
val typecast = (memwrite.addressExpression as? NumericLiteralValue)?.cast(DataType.UWORD)
val typecast = (memwrite.addressExpression as? NumericLiteralValue)?.cast(DataType.UWORD)?.valueOrZero()
?: TypecastExpression(memwrite.addressExpression, DataType.UWORD, true, memwrite.addressExpression.position)
return listOf(IAstModification.ReplaceNode(memwrite.addressExpression, typecast, memwrite))
}
return emptyList()
}
override fun after(structLv: StructLiteralValue, parent: Node): Iterable<IAstModification> {
// assignment of a struct literal value, some member values may need proper typecast
fun addTypecastsIfNeeded(struct: StructDecl): Iterable<IAstModification> {
val newValues = struct.statements.zip(structLv.values).map { (structMemberDecl, memberValue) ->
val memberDt = (structMemberDecl as VarDecl).datatype
val valueDt = memberValue.inferType(program)
if (valueDt.typeOrElse(memberDt) != memberDt)
TypecastExpression(memberValue, memberDt, true, memberValue.position)
else
memberValue
}
class StructLvValueReplacer(val targetStructLv: StructLiteralValue, val typecastValues: List<Expression>) : IAstModification {
override fun perform() {
targetStructLv.values = typecastValues
typecastValues.forEach { it.linkParents(targetStructLv) }
}
}
return if(structLv.values.zip(newValues).any { (v1, v2) -> v1 !== v2})
listOf(StructLvValueReplacer(structLv, newValues))
else
emptyList()
}
val decl = structLv.parent as? VarDecl
if(decl != null) {
val struct = decl.struct
if(struct != null)
return addTypecastsIfNeeded(struct)
} else {
val assign = structLv.parent as? Assignment
if (assign != null) {
val decl2 = assign.target.identifier?.targetVarDecl(program.namespace)
if(decl2 != null) {
val struct = decl2.struct
if(struct != null)
return addTypecastsIfNeeded(struct)
}
}
}
return emptyList()
return noModifications
}
override fun after(returnStmt: Return, parent: Node): Iterable<IAstModification> {
@ -194,9 +214,11 @@ class TypecastsAdder(val program: Program, val errors: ErrorReporter) : AstWalke
if(subroutine.returntypes.size==1) {
val subReturnType = subroutine.returntypes.first()
if (returnValue.inferType(program).istype(subReturnType))
return emptyList()
return noModifications
if (returnValue is NumericLiteralValue) {
returnStmt.value = returnValue.cast(subroutine.returntypes.single())
val cast = returnValue.cast(subroutine.returntypes.single())
if(cast.isValid)
returnStmt.value = cast.valueOrZero()
} else {
return listOf(IAstModification.ReplaceNode(
returnValue,
@ -205,6 +227,6 @@ class TypecastsAdder(val program: Program, val errors: ErrorReporter) : AstWalke
}
}
}
return emptyList()
return noModifications
}
}

View File

@ -0,0 +1,44 @@
package prog8.ast.processing
import prog8.ast.INameScope
import prog8.ast.Node
import prog8.ast.expressions.NumericLiteralValue
import prog8.ast.expressions.TypecastExpression
import prog8.ast.statements.AnonymousScope
import prog8.ast.statements.NopStatement
internal class VariousCleanups: AstWalker() {
private val noModifications = emptyList<IAstModification>()
override fun before(nopStatement: NopStatement, parent: Node): Iterable<IAstModification> {
return listOf(IAstModification.Remove(nopStatement, parent as INameScope))
}
override fun before(scope: AnonymousScope, parent: Node): Iterable<IAstModification> {
return if(parent is INameScope)
listOf(ScopeFlatten(scope, parent as INameScope))
else
noModifications
}
class ScopeFlatten(val scope: AnonymousScope, val into: INameScope) : IAstModification {
override fun perform() {
val idx = into.statements.indexOf(scope)
if(idx>=0) {
into.statements.addAll(idx+1, scope.statements)
into.statements.remove(scope)
}
}
}
override fun before(typecast: TypecastExpression, parent: Node): Iterable<IAstModification> {
if(typecast.expression is NumericLiteralValue) {
val value = (typecast.expression as NumericLiteralValue).cast(typecast.type)
if(value.isValid)
return listOf(IAstModification.ReplaceNode(typecast, value.valueOrZero(), parent))
}
return noModifications
}
}

View File

@ -0,0 +1,87 @@
package prog8.ast.processing
import prog8.ast.IFunctionCall
import prog8.ast.INameScope
import prog8.ast.Program
import prog8.ast.base.DataType
import prog8.ast.base.FatalAstException
import prog8.ast.expressions.Expression
import prog8.ast.expressions.FunctionCall
import prog8.ast.statements.*
import prog8.compiler.CompilerException
import prog8.functions.BuiltinFunctions
class VerifyFunctionArgTypes(val program: Program) : IAstVisitor {
override fun visit(functionCall: FunctionCall) {
val error = checkTypes(functionCall as IFunctionCall, functionCall.definingScope(), program)
if(error!=null)
throw CompilerException(error)
}
override fun visit(functionCallStatement: FunctionCallStatement) {
val error = checkTypes(functionCallStatement as IFunctionCall, functionCallStatement.definingScope(), program)
if (error!=null)
throw CompilerException(error)
}
companion object {
private fun argTypeCompatible(argDt: DataType, paramDt: DataType): Boolean {
if(argDt==paramDt)
return true
// there are some exceptions that are considered compatible, such as STR <> UWORD
if(argDt==DataType.STR && paramDt==DataType.UWORD ||
argDt==DataType.UWORD && paramDt==DataType.STR)
return true
return false
}
fun checkTypes(call: IFunctionCall, scope: INameScope, program: Program): String? {
val argITypes = call.args.map { it.inferType(program) }
if(argITypes.any { !it.isKnown })
throw FatalAstException("unknown dt")
val argtypes = argITypes.map { it.typeOrElse(DataType.STRUCT) }
val target = call.target.targetStatement(scope)
if (target is Subroutine) {
if(call.args.size != target.parameters.size)
return "invalid number of arguments"
val paramtypes = target.parameters.map { it.type }
val mismatch = argtypes.zip(paramtypes).indexOfFirst { !argTypeCompatible(it.first, it.second) }
if(mismatch>=0) {
val actual = argtypes[mismatch].toString()
val expected = paramtypes[mismatch].toString()
return "argument ${mismatch + 1} type mismatch, was: $actual expected: $expected"
}
if(target.isAsmSubroutine) {
if(target.asmReturnvaluesRegisters.size>1) {
// multiple return values will NOT work inside an expression.
// they MIGHT work in a regular assignment or just a function call statement.
val parent = if(call is Statement) call.parent else if(call is Expression) call.parent else null
if(call !is FunctionCallStatement && parent !is Assignment && parent !is VarDecl) {
return "can't use subroutine call that returns multiple return values here (try moving it into a separate assignment)"
}
}
}
}
else if (target is BuiltinFunctionStatementPlaceholder) {
val func = BuiltinFunctions.getValue(target.name)
if(call.args.size != func.parameters.size)
return "invalid number of arguments"
val paramtypes = func.parameters.map { it.possibleDatatypes }
argtypes.zip(paramtypes).forEachIndexed { index, pair ->
val anyCompatible = pair.second.any { argTypeCompatible(pair.first, it) }
if (!anyCompatible) {
val actual = pair.first.toString()
val expected = pair.second.toString()
return "argument ${index + 1} type mismatch, was: $actual expected: $expected"
}
}
}
return null
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,217 @@
package prog8.compiler
import prog8.ast.IFunctionCall
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.processing.AstWalker
import prog8.ast.processing.IAstModification
import prog8.ast.statements.*
internal class BeforeAsmGenerationAstChanger(val program: Program, val errors: ErrorReporter) : AstWalker() {
private val noModifications = emptyList<IAstModification>()
override fun after(decl: VarDecl, parent: Node): Iterable<IAstModification> {
subroutineVariables.add(decl.name to decl)
if (decl.value == null && !decl.autogeneratedDontRemove && decl.type == VarDeclType.VAR && decl.datatype in NumericDatatypes) {
// a numeric vardecl without an initial value is initialized with zero,
// unless there's already an assignment below, that initializes the value
if(decl.allowInitializeWithZero)
{
val nextAssign = decl.definingScope().nextSibling(decl) as? Assignment
if (nextAssign != null && nextAssign.target.isSameAs(IdentifierReference(listOf(decl.name), Position.DUMMY)))
decl.value = null
else
decl.value = decl.zeroElementValue()
}
}
return noModifications
}
override fun after(assignment: Assignment, parent: Node): Iterable<IAstModification> {
// Try to replace A = B <operator> Something by A= B, A = A <operator> Something
// this triggers the more efficent augmented assignment code generation more often.
// But it can only be done if the target variable IS NOT OCCURRING AS AN OPERAND ITSELF.
if(!assignment.isAugmentable
&& assignment.target.identifier != null
&& assignment.target.isInRegularRAM(program.namespace)) {
val binExpr = assignment.value as? BinaryExpression
if (binExpr != null && binExpr.operator !in comparisonOperators) {
if (binExpr.left !is BinaryExpression) {
if (binExpr.right.referencesIdentifier(*assignment.target.identifier!!.nameInSource.toTypedArray())) {
// the right part of the expression contains the target variable itself.
// we can't 'split' it trivially because the variable will be changed halfway through.
if(binExpr.operator in associativeOperators) {
// A = <something-without-A> <associativeoperator> <otherthing-with-A>
// use the other part of the expression to split.
val assignRight = Assignment(assignment.target, binExpr.right, assignment.position)
return listOf(
IAstModification.InsertBefore(assignment, assignRight, assignment.definingScope()),
IAstModification.ReplaceNode(binExpr.right, binExpr.left, binExpr),
IAstModification.ReplaceNode(binExpr.left, assignment.target.toExpression(), binExpr))
}
} else {
val assignLeft = Assignment(assignment.target, binExpr.left, assignment.position)
return listOf(
IAstModification.InsertBefore(assignment, assignLeft, assignment.definingScope()),
IAstModification.ReplaceNode(binExpr.left, assignment.target.toExpression(), binExpr))
}
}
}
}
return noModifications
}
private val subroutineVariables = mutableListOf<Pair<String, VarDecl>>()
override fun before(subroutine: Subroutine, parent: Node): Iterable<IAstModification> {
subroutineVariables.clear()
return noModifications
}
override fun after(scope: AnonymousScope, parent: Node): Iterable<IAstModification> {
val decls = scope.statements.filterIsInstance<VarDecl>()
subroutineVariables.addAll(decls.map { it.name to it })
val sub = scope.definingSubroutine()
if (sub != null) {
// move vardecls of the scope into the upper scope. Make sure the position remains the same!
val numericVarsWithValue = decls.filter { it.value != null && it.datatype in NumericDatatypes }
val replaceVardecls =numericVarsWithValue.map {
val initValue = it.value!! // assume here that value has always been set by now
it.value = null // make sure no value init assignment for this vardecl will be created later (would be superfluous)
val target = AssignTarget(IdentifierReference(listOf(it.name), it.position), null, null, it.position)
val assign = Assignment(target, initValue, it.position)
initValue.parent = assign
IAstModification.ReplaceNode(it, assign, scope)
}
val moveVardeclsUp = decls.map { IAstModification.InsertFirst(it, sub) }
return replaceVardecls + moveVardeclsUp
}
return noModifications
}
override fun after(subroutine: Subroutine, parent: Node): Iterable<IAstModification> {
val firstDeclarations = mutableMapOf<String, VarDecl>()
for(decl in subroutineVariables) {
val existing = firstDeclarations[decl.first]
if(existing!=null && existing !== decl.second) {
errors.err("variable ${decl.first} already defined in subroutine ${subroutine.name} at ${existing.position}", decl.second.position)
} else {
firstDeclarations[decl.first] = decl.second
}
}
// add the implicit return statement at the end (if it's not there yet), but only if it's not a kernel routine.
// and if an assembly block doesn't contain a rts/rti, and some other situations.
val mods = mutableListOf<IAstModification>()
val returnStmt = Return(null, subroutine.position)
if (subroutine.asmAddress == null
&& subroutine.statements.isNotEmpty()
&& subroutine.amountOfRtsInAsm() == 0
&& subroutine.statements.lastOrNull { it !is VarDecl } !is Return
&& subroutine.statements.last() !is Subroutine) {
mods += IAstModification.InsertLast(returnStmt, subroutine)
}
// precede a subroutine with a return to avoid falling through into the subroutine from code above it
val outerScope = subroutine.definingScope()
val outerStatements = outerScope.statements
val subroutineStmtIdx = outerStatements.indexOf(subroutine)
if (subroutineStmtIdx > 0
&& outerStatements[subroutineStmtIdx - 1] !is Jump
&& outerStatements[subroutineStmtIdx - 1] !is Subroutine
&& outerStatements[subroutineStmtIdx - 1] !is Return
&& outerScope !is Block) {
mods += IAstModification.InsertAfter(outerStatements[subroutineStmtIdx - 1], returnStmt, outerScope)
}
return mods
}
override fun after(typecast: TypecastExpression, parent: Node): Iterable<IAstModification> {
// see if we can remove superfluous typecasts (outside of expressions)
// such as casting byte<->ubyte, word<->uword
// Also the special typecast of a reference type (str, array) to an UWORD will be changed into address-of.
val sourceDt = typecast.expression.inferType(program).typeOrElse(DataType.STRUCT)
if (typecast.type in ByteDatatypes && sourceDt in ByteDatatypes
|| typecast.type in WordDatatypes && sourceDt in WordDatatypes) {
if(typecast.parent !is Expression) {
return listOf(IAstModification.ReplaceNode(typecast, typecast.expression, parent))
}
}
// Note: for various reasons (most importantly, code simplicity), the code generator assumes/requires
// that the types of assignment values and their target are the same,
// and that the types of both operands of a binaryexpression node are the same.
// So, it is not easily possible to remove the typecasts that are there to make these conditions true.
// The only place for now where we can do this is for:
// asmsub register pair parameter.
if(typecast.type in WordDatatypes) {
val fcall = typecast.parent as? IFunctionCall
if (fcall != null) {
val sub = fcall.target.targetStatement(program.namespace) as? Subroutine
if (sub != null && sub.isAsmSubroutine) {
return listOf(IAstModification.ReplaceNode(typecast, typecast.expression, parent))
}
}
}
if(sourceDt in PassByReferenceDatatypes) {
if(typecast.type==DataType.UWORD) {
if(typecast.expression is IdentifierReference) {
return listOf(IAstModification.ReplaceNode(
typecast,
AddressOf(typecast.expression as IdentifierReference, typecast.position),
parent
))
} else if(typecast.expression is IFunctionCall) {
return listOf(IAstModification.ReplaceNode(
typecast,
typecast.expression,
parent
))
}
} else {
errors.err("cannot cast pass-by-reference value to type ${typecast.type} (only to UWORD)", typecast.position)
}
}
return noModifications
}
override fun after(ifStatement: IfStatement, parent: Node): Iterable<IAstModification> {
val binExpr = ifStatement.condition as? BinaryExpression
if(binExpr==null || binExpr.operator !in comparisonOperators) {
// if x -> if x!=0, if x+5 -> if x+5 != 0
val booleanExpr = BinaryExpression(ifStatement.condition, "!=", NumericLiteralValue.optimalInteger(0, ifStatement.condition.position), ifStatement.condition.position)
return listOf(IAstModification.ReplaceNode(ifStatement.condition, booleanExpr, ifStatement))
}
return noModifications
}
override fun after(untilLoop: UntilLoop, parent: Node): Iterable<IAstModification> {
val binExpr = untilLoop.condition as? BinaryExpression
if(binExpr==null || binExpr.operator !in comparisonOperators) {
// until x -> until x!=0, until x+5 -> until x+5 != 0
val booleanExpr = BinaryExpression(untilLoop.condition, "!=", NumericLiteralValue.optimalInteger(0, untilLoop.condition.position), untilLoop.condition.position)
return listOf(IAstModification.ReplaceNode(untilLoop.condition, booleanExpr, untilLoop))
}
return noModifications
}
override fun after(whileLoop: WhileLoop, parent: Node): Iterable<IAstModification> {
val binExpr = whileLoop.condition as? BinaryExpression
if(binExpr==null || binExpr.operator !in comparisonOperators) {
// while x -> while x!=0, while x+5 -> while x+5 != 0
val booleanExpr = BinaryExpression(whileLoop.condition, "!=", NumericLiteralValue.optimalInteger(0, whileLoop.condition.position), whileLoop.condition.position)
return listOf(IAstModification.ReplaceNode(whileLoop.condition, booleanExpr, whileLoop))
}
return noModifications
}
}

View File

@ -27,7 +27,10 @@ data class CompilationOptions(val output: OutputType,
val launcher: LauncherType,
val zeropage: ZeropageType,
val zpReserved: List<IntRange>,
val floats: Boolean)
val floats: Boolean,
val noSysInit: Boolean) {
var slowCodegenWarnings = false
}
class CompilerException(message: String?) : Exception(message)

View File

@ -4,7 +4,11 @@ import prog8.ast.AstToSourceCode
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.statements.Directive
import prog8.compiler.target.C64Target
import prog8.compiler.target.CompilationTarget
import prog8.compiler.target.Cx16Target
import prog8.optimizer.*
import prog8.optimizer.UnusedCodeRemover
import prog8.optimizer.constantFold
import prog8.optimizer.optimizeStatements
import prog8.optimizer.simplifyExpressions
@ -12,6 +16,7 @@ import prog8.parser.ModuleImporter
import prog8.parser.ParsingFailedError
import prog8.parser.moduleName
import java.nio.file.Path
import kotlin.system.exitProcess
import kotlin.system.measureTimeMillis
@ -24,16 +29,28 @@ class CompilationResult(val success: Boolean,
fun compileProgram(filepath: Path,
optimize: Boolean,
writeAssembly: Boolean,
slowCodegenWarnings: Boolean,
compilationTarget: String,
outputDir: Path): CompilationResult {
var programName = ""
lateinit var programAst: Program
lateinit var importedFiles: List<Path>
val errors = ErrorReporter()
when(compilationTarget) {
C64Target.name -> CompilationTarget.instance = C64Target
Cx16Target.name -> CompilationTarget.instance = Cx16Target
else -> {
System.err.println("invalid compilation target")
exitProcess(1)
}
}
try {
val totalTime = measureTimeMillis {
// import main module and everything it needs
val (ast, compilationOptions, imported) = parseImports(filepath, errors)
compilationOptions.slowCodegenWarnings = slowCodegenWarnings
programAst = ast
importedFiles = imported
processAst(programAst, errors, compilationOptions)
@ -46,6 +63,8 @@ fun compileProgram(filepath: Path,
if(writeAssembly)
programName = writeAssembly(programAst, errors, outputDir, optimize, compilationOptions)
}
System.out.flush()
System.err.flush()
println("\nTotal compilation+assemble time: ${totalTime / 1000.0} sec.")
return CompilationResult(true, programAst, programName, importedFiles)
@ -75,8 +94,8 @@ fun compileProgram(filepath: Path,
}
private fun parseImports(filepath: Path, errors: ErrorReporter): Triple<Program, CompilationOptions, List<Path>> {
println("Parsing...")
val importer = ModuleImporter(errors)
println("Compiler target: ${CompilationTarget.instance.name}. Parsing...")
val importer = ModuleImporter()
val programAst = Program(moduleName(filepath.fileName), mutableListOf())
importer.importModule(programAst, filepath)
errors.handle()
@ -87,15 +106,12 @@ private fun parseImports(filepath: Path, errors: ErrorReporter): Triple<Program,
if (compilerOptions.launcher == LauncherType.BASIC && compilerOptions.output != OutputType.PRG)
throw ParsingFailedError("${programAst.modules.first().position} BASIC launcher requires output type PRG.")
// if we're producing a PRG or BASIC program, include the c64utils and c64lib libraries
if (compilerOptions.launcher == LauncherType.BASIC || compilerOptions.output == OutputType.PRG) {
importer.importLibraryModule(programAst, "c64lib")
importer.importLibraryModule(programAst, "c64utils")
}
// depending on the machine and compiler options we may have to include some libraries
CompilationTarget.instance.machine.importLibs(compilerOptions, importer, programAst)
// always import prog8lib and math
// always import prog8_lib and math
importer.importLibraryModule(programAst, "math")
importer.importLibraryModule(programAst, "prog8lib")
importer.importLibraryModule(programAst, "prog8_lib")
errors.handle()
return Triple(programAst, compilerOptions, importedFiles)
}
@ -106,13 +122,12 @@ private fun determineCompilationOptions(program: Program): CompilationOptions {
as? Directive)?.args?.single()?.name?.toUpperCase()
val launcherType = (mainModule.statements.singleOrNull { it is Directive && it.directive == "%launcher" }
as? Directive)?.args?.single()?.name?.toUpperCase()
mainModule.loadAddress = (mainModule.statements.singleOrNull { it is Directive && it.directive == "%address" }
as? Directive)?.args?.single()?.int ?: 0
val zpoption: String? = (mainModule.statements.singleOrNull { it is Directive && it.directive == "%zeropage" }
as? Directive)?.args?.single()?.name?.toUpperCase()
val allOptions = program.modules.flatMap { it.statements }.filter { it is Directive && it.directive == "%option" }.flatMap { (it as Directive).args }.toSet()
val floatsEnabled = allOptions.any { it.name == "enable_floats" }
val zpType: ZeropageType =
val noSysInit = allOptions.any { it.name == "no_sysinit" }
var zpType: ZeropageType =
if (zpoption == null)
if(floatsEnabled) ZeropageType.FLOATSAFE else ZeropageType.KERNALSAFE
else
@ -122,6 +137,12 @@ private fun determineCompilationOptions(program: Program): CompilationOptions {
ZeropageType.KERNALSAFE
// error will be printed by the astchecker
}
if (zpType==ZeropageType.FLOATSAFE && CompilationTarget.instance.name == Cx16Target.name) {
System.err.println("Warning: Cx16 target must use zp option basicsafe instead of floatsafe")
zpType = ZeropageType.BASICSAFE
}
val zpReserved = mainModule.statements
.asSequence()
.filter { it is Directive && it.directive == "%zpreserved" }
@ -129,25 +150,34 @@ private fun determineCompilationOptions(program: Program): CompilationOptions {
.map { it[0].int!!..it[1].int!! }
.toList()
if(outputType!=null && !OutputType.values().any {it.name==outputType}) {
System.err.println("invalid output type $outputType")
exitProcess(1)
}
if(launcherType!=null && !LauncherType.values().any {it.name==launcherType}) {
System.err.println("invalid launcher type $launcherType")
exitProcess(1)
}
return CompilationOptions(
if (outputType == null) OutputType.PRG else OutputType.valueOf(outputType),
if (launcherType == null) LauncherType.BASIC else LauncherType.valueOf(launcherType),
zpType, zpReserved, floatsEnabled
zpType, zpReserved, floatsEnabled, noSysInit
)
}
private fun processAst(programAst: Program, errors: ErrorReporter, compilerOptions: CompilationOptions) {
// perform initial syntax checks and processings
println("Processing...")
println("Processing for target ${CompilationTarget.instance.name}...")
programAst.checkIdentifiers(errors)
errors.handle()
programAst.makeForeverLoops()
programAst.constantFold(errors)
errors.handle()
programAst.removeNopsFlattenAnonScopes()
programAst.reorderStatements()
programAst.reorderStatements(errors)
errors.handle()
programAst.addTypecasts(errors)
errors.handle()
programAst.variousCleanups()
programAst.checkValid(compilerOptions, errors)
errors.handle()
programAst.checkIdentifiers(errors)
@ -160,35 +190,50 @@ private fun optimizeAst(programAst: Program, errors: ErrorReporter) {
while (true) {
// keep optimizing expressions and statements until no more steps remain
val optsDone1 = programAst.simplifyExpressions()
val optsDone2 = programAst.optimizeStatements(errors)
val optsDone2 = programAst.splitBinaryExpressions()
val optsDone3 = programAst.optimizeStatements(errors)
programAst.constantFold(errors) // because simplified statements and expressions can result in more constants that can be folded away
errors.handle()
if (optsDone1 + optsDone2 == 0)
if (optsDone1 + optsDone2 + optsDone3 == 0)
break
}
val remover = UnusedCodeRemover(programAst, errors)
remover.visit(programAst)
remover.applyModifications()
errors.handle()
}
private fun postprocessAst(programAst: Program, errors: ErrorReporter, compilerOptions: CompilationOptions) {
programAst.addTypecasts(errors)
errors.handle()
programAst.removeNopsFlattenAnonScopes()
programAst.variousCleanups()
programAst.checkValid(compilerOptions, errors) // check if final tree is still valid
errors.handle()
programAst.checkRecursion(errors) // check if there are recursive subroutine calls
val callGraph = CallGraph(programAst)
callGraph.checkRecursiveCalls(errors)
errors.handle()
programAst.verifyFunctionArgTypes()
programAst.moveMainAndStartToFirst()
}
private fun writeAssembly(programAst: Program, errors: ErrorReporter, outputDir: Path,
optimize: Boolean, compilerOptions: CompilationOptions): String {
// asm generation directly from the Ast,
val zeropage = CompilationTarget.machine.getZeropage(compilerOptions)
programAst.prepareAsmVariablesAndReturns(errors)
programAst.processAstBeforeAsmGeneration(errors)
errors.handle()
val assembly = CompilationTarget.asmGenerator(
// printAst(programAst)
CompilationTarget.instance.machine.initializeZeropage(compilerOptions)
val assembly = CompilationTarget.instance.asmGenerator(
programAst,
zeropage,
errors,
CompilationTarget.instance.machine.zeropage,
compilerOptions,
outputDir).compileToAssembly(optimize)
assembly.assemble(compilerOptions)
errors.handle()
return assembly.name
}

View File

@ -8,6 +8,12 @@ class ZeropageDepletedError(message: String) : Exception(message)
abstract class Zeropage(protected val options: CompilationOptions) {
abstract val SCRATCH_B1 : Int // temp storage for a single byte
abstract val SCRATCH_REG : Int // temp storage for a register
abstract val SCRATCH_W1 : Int // temp storage 1 for a word $fb+$fc
abstract val SCRATCH_W2 : Int // temp storage 2 for a word $fb+$fc
private val allocations = mutableMapOf<Int, Pair<String, DataType>>()
val free = mutableListOf<Int>() // subclasses must set this to the appropriate free locations.
@ -16,7 +22,7 @@ abstract class Zeropage(protected val options: CompilationOptions) {
fun available() = if(options.zeropage==ZeropageType.DONTUSE) 0 else free.size
fun allocate(scopedname: String, datatype: DataType, position: Position?, errors: ErrorReporter): Int {
assert(scopedname.isEmpty() || !allocations.values.any { it.first==scopedname } ) {"isSameAs scopedname can't be allocated twice"}
assert(scopedname.isEmpty() || !allocations.values.any { it.first==scopedname } ) {"scopedname can't be allocated twice"}
if(options.zeropage==ZeropageType.DONTUSE)
throw CompilerException("zero page usage has been disabled")
@ -39,13 +45,13 @@ abstract class Zeropage(protected val options: CompilationOptions) {
if(free.size > 0) {
if(size==1) {
for(candidate in free.min()!! .. free.max()!!+1) {
for(candidate in free.minOrNull()!! .. free.maxOrNull()!!+1) {
if(loneByte(candidate))
return makeAllocation(candidate, 1, datatype, scopedname)
}
return makeAllocation(free[0], 1, datatype, scopedname)
}
for(candidate in free.min()!! .. free.max()!!+1) {
for(candidate in free.minOrNull()!! .. free.maxOrNull()!!+1) {
if (sequentialFree(candidate, size))
return makeAllocation(candidate, size, datatype, scopedname)
}
@ -58,18 +64,10 @@ abstract class Zeropage(protected val options: CompilationOptions) {
private fun makeAllocation(address: Int, size: Int, datatype: DataType, name: String?): Int {
free.removeAll(address until address+size)
allocations[address] = Pair(name ?: "<unnamed>", datatype)
allocations[address] = (name ?: "<unnamed>") to datatype
return address
}
private fun loneByte(address: Int) = address in free && address-1 !in free && address+1 !in free
private fun sequentialFree(address: Int, size: Int) = free.containsAll((address until address+size).toList())
enum class ExitProgramStrategy {
CLEAN_EXIT,
SYSTEM_RESET
}
abstract val exitProgramStrategy: ExitProgramStrategy
}

View File

@ -1,80 +0,0 @@
package prog8.compiler.target
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.ErrorReporter
import prog8.ast.base.NumericDatatypes
import prog8.ast.base.VarDeclType
import prog8.ast.expressions.IdentifierReference
import prog8.ast.processing.AstWalker
import prog8.ast.processing.IAstModification
import prog8.ast.statements.*
class AsmVariableAndReturnsPreparer(val program: Program, val errors: ErrorReporter): AstWalker() {
override fun after(decl: VarDecl, parent: Node): Iterable<IAstModification> {
if(decl.value==null && decl.type==VarDeclType.VAR && decl.datatype in NumericDatatypes) {
// a numeric vardecl without an initial value is initialized with zero.
decl.value = decl.zeroElementValue()
}
return emptyList()
}
override fun after(scope: AnonymousScope, parent: Node): Iterable<IAstModification> {
val decls = scope.statements.filterIsInstance<VarDecl>()
val sub = scope.definingSubroutine()
if(sub!=null) {
val existingVariables = sub.statements.filterIsInstance<VarDecl>().associateBy { it.name }
var conflicts = false
decls.forEach {
val existing = existingVariables[it.name]
if (existing!=null) {
errors.err("variable ${it.name} already defined in subroutine ${sub.name} at ${existing.position}", it.position)
conflicts = true
}
}
if(!conflicts) {
val numericVarsWithValue = decls.filter { it.value!=null && it.datatype in NumericDatatypes }
return numericVarsWithValue.map {
val initValue = it.value!! // assume here that value has always been set by now
it.value = null // make sure no value init assignment for this vardecl will be created later (would be superfluous)
val target = AssignTarget(null, IdentifierReference(listOf(it.name), it.position), null, null, it.position)
val assign = Assignment(target, null, initValue, it.position)
IAstModification.InsertFirst(assign, scope)
} +
decls.map { IAstModification.ReplaceNode(it, NopStatement(it.position), scope) } +
decls.map { IAstModification.InsertFirst(it, sub) } // move it up to the subroutine
}
}
return emptyList()
}
override fun after(subroutine: Subroutine, parent: Node): Iterable<IAstModification> {
// add the implicit return statement at the end (if it's not there yet), but only if it's not a kernel routine.
// and if an assembly block doesn't contain a rts/rti, and some other situations.
val mods = mutableListOf<IAstModification>()
val returnStmt = Return(null, subroutine.position)
if(subroutine.asmAddress==null
&& subroutine.statements.isNotEmpty()
&& subroutine.amountOfRtsInAsm()==0
&& subroutine.statements.lastOrNull {it !is VarDecl } !is Return
&& subroutine.statements.last() !is Subroutine) {
mods += IAstModification.InsertAfter(subroutine.statements.last(), returnStmt, subroutine)
}
// precede a subroutine with a return to avoid falling through into the subroutine from code above it
val outerScope = subroutine.definingScope()
val outerStatements = outerScope.statements
val subroutineStmtIdx = outerStatements.indexOf(subroutine)
if(subroutineStmtIdx>0
&& outerStatements[subroutineStmtIdx-1] !is Jump
&& outerStatements[subroutineStmtIdx-1] !is Subroutine
&& outerStatements[subroutineStmtIdx-1] !is Return
&& outerScope !is Block) {
mods += IAstModification.InsertAfter(outerStatements[subroutineStmtIdx-1], returnStmt, outerScope as Node)
}
return mods
}
}

View File

@ -1,17 +1,47 @@
package prog8.compiler.target
import prog8.ast.Program
import prog8.ast.base.ErrorReporter
import prog8.compiler.CompilationOptions
import prog8.compiler.Zeropage
import prog8.compiler.target.c64.C64MachineDefinition
import prog8.compiler.target.c64.Petscii
import prog8.compiler.target.c64.codegen.AsmGen
import prog8.compiler.target.cx16.CX16MachineDefinition
import java.nio.file.Path
internal interface CompilationTarget {
val name: String
val machine: IMachineDefinition
fun encodeString(str: String, altEncoding: Boolean): List<Short>
fun decodeString(bytes: List<Short>, altEncoding: Boolean): String
fun asmGenerator(program: Program, errors: ErrorReporter, zp: Zeropage, options: CompilationOptions, path: Path): IAssemblyGenerator
companion object {
lateinit var name: String
lateinit var machine: IMachineDefinition
lateinit var encodeString: (str: String, altEncoding: Boolean) -> List<Short>
lateinit var decodeString: (bytes: List<Short>, altEncoding: Boolean) -> String
lateinit var asmGenerator: (Program, Zeropage, CompilationOptions, Path) -> IAssemblyGenerator
lateinit var instance: CompilationTarget
}
}
internal object C64Target: CompilationTarget {
override val name = "c64"
override val machine = C64MachineDefinition
override fun encodeString(str: String, altEncoding: Boolean) =
if(altEncoding) Petscii.encodeScreencode(str, true) else Petscii.encodePetscii(str, true)
override fun decodeString(bytes: List<Short>, altEncoding: Boolean) =
if(altEncoding) Petscii.decodeScreencode(bytes, true) else Petscii.decodePetscii(bytes, true)
override fun asmGenerator(program: Program, errors: ErrorReporter, zp: Zeropage, options: CompilationOptions, path: Path) =
AsmGen(program, errors, zp, options, path)
}
internal object Cx16Target: CompilationTarget {
override val name = "cx16"
override val machine = CX16MachineDefinition
override fun encodeString(str: String, altEncoding: Boolean) =
if(altEncoding) Petscii.encodeScreencode(str, true) else Petscii.encodePetscii(str, true)
override fun decodeString(bytes: List<Short>, altEncoding: Boolean) =
if(altEncoding) Petscii.decodeScreencode(bytes, true) else Petscii.decodePetscii(bytes, true)
override fun asmGenerator(program: Program, errors: ErrorReporter, zp: Zeropage, options: CompilationOptions, path: Path) =
AsmGen(program, errors, zp, options, path)
}

View File

@ -7,6 +7,8 @@ internal interface IAssemblyGenerator {
}
internal const val generatedLabelPrefix = "_prog8_label_"
internal const val subroutineFloatEvalResultVar1 = "_prog8_float_eval_result1"
internal const val subroutineFloatEvalResultVar2 = "_prog8_float_eval_result2"
internal interface IAssemblyProgram {
val name: String

View File

@ -1,15 +1,39 @@
package prog8.compiler.target
import prog8.ast.Program
import prog8.compiler.CompilationOptions
import prog8.compiler.Zeropage
import prog8.parser.ModuleImporter
interface IMachineDefinition {
internal interface IMachineFloat {
fun toDouble(): Double
fun makeFloatFillAsm(): String
}
internal enum class CpuType {
CPU6502,
CPU65c02
}
internal interface IMachineDefinition {
val FLOAT_MAX_NEGATIVE: Double
val FLOAT_MAX_POSITIVE: Double
val FLOAT_MEM_SIZE: Int
val POINTER_MEM_SIZE: Int
val ESTACK_LO: Int
val ESTACK_HI: Int
val BASIC_LOAD_ADDRESS : Int
val RAW_LOAD_ADDRESS : Int
val opcodeNames: Set<String>
var zeropage: Zeropage
val cpu: CpuType
fun getZeropage(compilerOptions: CompilationOptions): Zeropage
fun initializeZeropage(compilerOptions: CompilationOptions)
fun getFloat(num: Number): IMachineFloat
fun getFloatRomConst(number: Double): String?
fun importLibs(compilerOptions: CompilationOptions, importer: ModuleImporter, program: Program)
fun launchEmulator(programName: String)
fun isRegularRAMaddress(address: Int): Boolean
}

View File

@ -2,6 +2,7 @@ package prog8.compiler.target.c64
import prog8.compiler.CompilationOptions
import prog8.compiler.OutputType
import prog8.compiler.target.CompilationTarget
import prog8.compiler.target.IAssemblyProgram
import prog8.compiler.target.generatedLabelPrefix
import java.nio.file.Path
@ -14,20 +15,20 @@ class AssemblyProgram(override val name: String, outputDir: Path) : IAssemblyPro
private val viceMonListFile = outputDir.resolve("$name.vice-mon-list")
override fun assemble(options: CompilationOptions) {
// add "-Wlong-branch" to see warnings about conversion of branch instructions to jumps
// add "-Wlong-branch" to see warnings about conversion of branch instructions to jumps (default = do this silently)
val command = mutableListOf("64tass", "--ascii", "--case-sensitive", "--long-branch",
"-Wall", "-Wno-strict-bool", "-Wno-shadow", "-Werror", "-Wno-error=long-branch",
"-Wall", "-Wno-strict-bool", "-Wno-shadow", // "-Werror",
"--dump-labels", "--vice-labels", "-l", viceMonListFile.toString(), "--no-monitor")
val outFile = when (options.output) {
OutputType.PRG -> {
command.add("--cbm-prg")
println("\nCreating C-64 prg.")
println("\nCreating prg for target ${CompilationTarget.instance.name}.")
prgFile
}
OutputType.RAW -> {
command.add("--nostart")
println("\nCreating raw binary.")
println("\nCreating raw binary for target ${CompilationTarget.instance.name}.")
binFile
}
}

View File

@ -1,37 +1,99 @@
package prog8.compiler.target.c64
import prog8.compiler.CompilationOptions
import prog8.compiler.CompilerException
import prog8.compiler.Zeropage
import prog8.compiler.ZeropageType
import prog8.ast.Program
import prog8.compiler.*
import prog8.compiler.target.CpuType
import prog8.compiler.target.IMachineDefinition
import java.awt.Color
import java.awt.image.BufferedImage
import javax.imageio.ImageIO
import prog8.compiler.target.IMachineFloat
import prog8.parser.ModuleImporter
import java.io.IOException
import java.math.RoundingMode
import kotlin.math.absoluteValue
import kotlin.math.pow
object C64MachineDefinition: IMachineDefinition {
internal object C64MachineDefinition: IMachineDefinition {
override val cpu = CpuType.CPU6502
// 5-byte cbm MFLPT format limitations:
override val FLOAT_MAX_POSITIVE = 1.7014118345e+38 // bytes: 255,127,255,255,255
override val FLOAT_MAX_NEGATIVE = -1.7014118345e+38 // bytes: 255,255,255,255,255
override val FLOAT_MEM_SIZE = 5
const val BASIC_LOAD_ADDRESS = 0x0801
const val RAW_LOAD_ADDRESS = 0xc000
override val POINTER_MEM_SIZE = 2
override val BASIC_LOAD_ADDRESS = 0x0801
override val RAW_LOAD_ADDRESS = 0xc000
// the 2*256 byte evaluation stack (on which bytes, words, and even floats are stored during calculations)
// and some heavily used string constants derived from the two values above
const val ESTACK_LO_VALUE = 0xce00 // $ce00-$ceff inclusive
const val ESTACK_HI_VALUE = 0xcf00 // $cf00-$cfff inclusive
const val ESTACK_LO_HEX = "\$ce00"
const val ESTACK_LO_PLUS1_HEX = "\$ce01"
const val ESTACK_LO_PLUS2_HEX = "\$ce02"
const val ESTACK_HI_HEX = "\$cf00"
const val ESTACK_HI_PLUS1_HEX = "\$cf01"
const val ESTACK_HI_PLUS2_HEX = "\$cf02"
override val ESTACK_LO = 0xce00 // $ce00-$ceff inclusive
override val ESTACK_HI = 0xcf00 // $ce00-$ceff inclusive
override fun getZeropage(compilerOptions: CompilationOptions) = C64Zeropage(compilerOptions)
override lateinit var zeropage: Zeropage
override fun getFloat(num: Number) = Mflpt5.fromNumber(num)
override fun getFloatRomConst(number: Double): String? {
// try to match the ROM float constants to save memory
val mflpt5 = Mflpt5.fromNumber(number)
val floatbytes = shortArrayOf(mflpt5.b0, mflpt5.b1, mflpt5.b2, mflpt5.b3, mflpt5.b4)
when {
floatbytes.contentEquals(shortArrayOf(0x00, 0x00, 0x00, 0x00, 0x00)) -> return "floats.FL_ZERO_const" // not a ROM const
floatbytes.contentEquals(shortArrayOf(0x81, 0x00, 0x00, 0x00, 0x00)) -> return "floats.FL_ONE_const" // not a ROM const
floatbytes.contentEquals(shortArrayOf(0x82, 0x49, 0x0f, 0xda, 0xa1)) -> return "floats.FL_PIVAL"
floatbytes.contentEquals(shortArrayOf(0x90, 0x80, 0x00, 0x00, 0x00)) -> return "floats.FL_N32768"
floatbytes.contentEquals(shortArrayOf(0x81, 0x00, 0x00, 0x00, 0x00)) -> return "floats.FL_FONE"
floatbytes.contentEquals(shortArrayOf(0x80, 0x35, 0x04, 0xf3, 0x34)) -> return "floats.FL_SQRHLF"
floatbytes.contentEquals(shortArrayOf(0x81, 0x35, 0x04, 0xf3, 0x34)) -> return "floats.FL_SQRTWO"
floatbytes.contentEquals(shortArrayOf(0x80, 0x80, 0x00, 0x00, 0x00)) -> return "floats.FL_NEGHLF"
floatbytes.contentEquals(shortArrayOf(0x80, 0x31, 0x72, 0x17, 0xf8)) -> return "floats.FL_LOG2"
floatbytes.contentEquals(shortArrayOf(0x84, 0x20, 0x00, 0x00, 0x00)) -> return "floats.FL_TENC"
floatbytes.contentEquals(shortArrayOf(0x9e, 0x6e, 0x6b, 0x28, 0x00)) -> return "floats.FL_NZMIL"
floatbytes.contentEquals(shortArrayOf(0x80, 0x00, 0x00, 0x00, 0x00)) -> return "floats.FL_FHALF"
floatbytes.contentEquals(shortArrayOf(0x81, 0x38, 0xaa, 0x3b, 0x29)) -> return "floats.FL_LOGEB2"
floatbytes.contentEquals(shortArrayOf(0x81, 0x49, 0x0f, 0xda, 0xa2)) -> return "floats.FL_PIHALF"
floatbytes.contentEquals(shortArrayOf(0x83, 0x49, 0x0f, 0xda, 0xa2)) -> return "floats.FL_TWOPI"
floatbytes.contentEquals(shortArrayOf(0x7f, 0x00, 0x00, 0x00, 0x00)) -> return "floats.FL_FR4"
else -> {
// attempt to correct for a few rounding issues
when (number.toBigDecimal().setScale(10, RoundingMode.HALF_DOWN).toDouble()) {
3.1415926536 -> return "floats.FL_PIVAL"
1.4142135624 -> return "floats.FL_SQRTWO"
0.7071067812 -> return "floats.FL_SQRHLF"
0.6931471806 -> return "floats.FL_LOG2"
else -> {}
}
}
}
return null
}
override fun importLibs(compilerOptions: CompilationOptions, importer: ModuleImporter, program: Program) {
if (compilerOptions.launcher == LauncherType.BASIC || compilerOptions.output == OutputType.PRG)
importer.importLibraryModule(program, "syslib")
}
override fun launchEmulator(programName: String) {
for(emulator in listOf("x64sc", "x64")) {
println("\nStarting C-64 emulator $emulator...")
val cmdline = listOf(emulator, "-silent", "-moncommands", "$programName.vice-mon-list",
"-autostartprgmode", "1", "-autostart-warp", "-autostart", programName + ".prg")
val processb = ProcessBuilder(cmdline).inheritIO()
val process: Process
try {
process=processb.start()
} catch(x: IOException) {
continue // try the next emulator executable
}
process.waitFor()
break
}
}
override fun isRegularRAMaddress(address: Int): Boolean = address<0xa000 || address in 0xc000..0xcfff
override fun initializeZeropage(compilerOptions: CompilationOptions) {
zeropage = C64Zeropage(compilerOptions)
}
// 6502 opcodes (including aliases and illegal opcodes), these cannot be used as variable or label names
override val opcodeNames = setOf("adc", "ahx", "alr", "anc", "and", "ane", "arr", "asl", "asr", "axs", "bcc", "bcs",
@ -45,20 +107,12 @@ object C64MachineDefinition: IMachineDefinition {
"sta", "stx", "sty", "tas", "tax", "tay", "tsx", "txa", "txs", "tya", "xaa")
class C64Zeropage(options: CompilationOptions) : Zeropage(options) {
internal class C64Zeropage(options: CompilationOptions) : Zeropage(options) {
companion object {
const val SCRATCH_B1 = 0x02
const val SCRATCH_REG = 0x03 // temp storage for a register
const val SCRATCH_REG_X = 0xfa // temp storage for register X (the evaluation stack pointer)
const val SCRATCH_W1 = 0xfb // $fb+$fc
const val SCRATCH_W2 = 0xfd // $fd+$fe
}
override val exitProgramStrategy: ExitProgramStrategy = when (options.zeropage) {
ZeropageType.BASICSAFE, ZeropageType.DONTUSE -> ExitProgramStrategy.CLEAN_EXIT
ZeropageType.FLOATSAFE, ZeropageType.KERNALSAFE, ZeropageType.FULL -> ExitProgramStrategy.SYSTEM_RESET
}
override val SCRATCH_B1 = 0x02 // temp storage for a single byte
override val SCRATCH_REG = 0x03 // temp storage for a register, must be B1+1
override val SCRATCH_W1 = 0xfb // temp storage 1 for a word $fb+$fc
override val SCRATCH_W2 = 0xfd // temp storage 2 for a word $fb+$fc
init {
@ -68,12 +122,14 @@ object C64MachineDefinition: IMachineDefinition {
if (options.zeropage == ZeropageType.FULL) {
free.addAll(0x04..0xf9)
free.add(0xff)
free.removeAll(listOf(SCRATCH_B1, SCRATCH_REG, SCRATCH_REG_X, SCRATCH_W1, SCRATCH_W1 + 1, SCRATCH_W2, SCRATCH_W2 + 1))
free.removeAll(listOf(SCRATCH_B1, SCRATCH_REG, SCRATCH_W1, SCRATCH_W1 + 1, SCRATCH_W2, SCRATCH_W2 + 1))
free.removeAll(listOf(0xa0, 0xa1, 0xa2, 0x91, 0xc0, 0xc5, 0xcb, 0xf5, 0xf6)) // these are updated by IRQ
} else {
if (options.zeropage == ZeropageType.KERNALSAFE || options.zeropage == ZeropageType.FLOATSAFE) {
free.addAll(listOf(0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21,
free.addAll(listOf(
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11,
0x16, 0x17, 0x18, 0x19, 0x1a,
0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21,
0x22, 0x23, 0x24, 0x25,
0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46,
0x47, 0x48, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x51, 0x52, 0x53,
@ -90,38 +146,36 @@ object C64MachineDefinition: IMachineDefinition {
if (options.zeropage == ZeropageType.FLOATSAFE) {
// remove the zero page locations used for floating point operations from the free list
free.removeAll(listOf(
0x12, 0x26, 0x27, 0x28, 0x29, 0x2a,
0x10, 0x11, 0x12, 0x26, 0x27, 0x28, 0x29, 0x2a,
0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60,
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72,
0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0xf
0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0xff
))
}
if(options.zeropage!=ZeropageType.DONTUSE) {
// add the other free Zp addresses,
// these are valid for the C-64 (when no RS232 I/O is performed) but to keep BASIC running fully:
// add the free Zp addresses
// these are valid for the C-64 but allow BASIC to keep running fully *as long as you don't use tape I/O*
free.addAll(listOf(0x04, 0x05, 0x06, 0x0a, 0x0e,
0x94, 0x95, 0xa7, 0xa8, 0xa9, 0xaa,
0xb5, 0xb6, 0xf7, 0xf8, 0xf9))
0x92, 0x96, 0x9b, 0x9c, 0x9e, 0x9f, 0xa5, 0xa6,
0xb0, 0xb1, 0xbe, 0xbf, 0xf9))
} else {
// don't use the zeropage at all
free.clear()
}
}
assert(SCRATCH_B1 !in free)
assert(SCRATCH_REG !in free)
assert(SCRATCH_REG_X !in free)
assert(SCRATCH_W1 !in free)
assert(SCRATCH_W2 !in free)
require(SCRATCH_B1 !in free)
require(SCRATCH_REG !in free)
require(SCRATCH_W1 !in free)
require(SCRATCH_W2 !in free)
for (reserved in options.zpReserved)
reserve(reserved)
}
}
data class Mflpt5(val b0: Short, val b1: Short, val b2: Short, val b3: Short, val b4: Short) {
internal data class Mflpt5(val b0: Short, val b1: Short, val b2: Short, val b3: Short, val b4: Short): IMachineFloat {
companion object {
val zero = Mflpt5(0, 0, 0, 0, 0)
@ -168,7 +222,7 @@ object C64MachineDefinition: IMachineDefinition {
}
}
fun toDouble(): Double {
override fun toDouble(): Double {
if (this == zero) return 0.0
val exp = b0 - 128
val sign = (b1.toInt() and 0x80) > 0
@ -176,91 +230,14 @@ object C64MachineDefinition: IMachineDefinition {
val result = number.toDouble() * (2.0).pow(exp) / 0x100000000
return if (sign) -result else result
}
}
object Charset {
private val normalImg = ImageIO.read(javaClass.getResource("/charset/c64/charset-normal.png"))
private val shiftedImg = ImageIO.read(javaClass.getResource("/charset/c64/charset-shifted.png"))
private fun scanChars(img: BufferedImage): Array<BufferedImage> {
val transparent = BufferedImage(img.width, img.height, BufferedImage.TYPE_INT_ARGB)
transparent.createGraphics().drawImage(img, 0, 0, null)
val black = Color(0, 0, 0).rgb
val nopixel = Color(0, 0, 0, 0).rgb
for (y in 0 until transparent.height) {
for (x in 0 until transparent.width) {
val col = transparent.getRGB(x, y)
if (col == black)
transparent.setRGB(x, y, nopixel)
}
}
val numColumns = transparent.width / 8
val charImages = (0..255).map {
val charX = it % numColumns
val charY = it / numColumns
transparent.getSubimage(charX * 8, charY * 8, 8, 8)
}
return charImages.toTypedArray()
override fun makeFloatFillAsm(): String {
val b0 = "$" + b0.toString(16).padStart(2, '0')
val b1 = "$" + b1.toString(16).padStart(2, '0')
val b2 = "$" + b2.toString(16).padStart(2, '0')
val b3 = "$" + b3.toString(16).padStart(2, '0')
val b4 = "$" + b4.toString(16).padStart(2, '0')
return "$b0, $b1, $b2, $b3, $b4"
}
val normalChars = scanChars(normalImg)
val shiftedChars = scanChars(shiftedImg)
private val coloredNormalChars = mutableMapOf<Short, Array<BufferedImage>>()
fun getColoredChar(screenCode: Short, color: Short): BufferedImage {
val colorIdx = (color % colorPalette.size).toShort()
val chars = coloredNormalChars[colorIdx]
if (chars != null)
return chars[screenCode.toInt()]
val coloredChars = mutableListOf<BufferedImage>()
val transparent = Color(0, 0, 0, 0).rgb
val rgb = colorPalette[colorIdx.toInt()].rgb
for (c in normalChars) {
val colored = c.copy()
for (y in 0 until colored.height)
for (x in 0 until colored.width) {
if (colored.getRGB(x, y) != transparent) {
colored.setRGB(x, y, rgb)
}
}
coloredChars.add(colored)
}
coloredNormalChars[colorIdx] = coloredChars.toTypedArray()
return coloredNormalChars.getValue(colorIdx)[screenCode.toInt()]
}
}
private fun BufferedImage.copy(): BufferedImage {
val bcopy = BufferedImage(this.width, this.height, this.type)
val g = bcopy.graphics
g.drawImage(this, 0, 0, null)
g.dispose()
return bcopy
}
val colorPalette = listOf( // this is Pepto's Commodore-64 palette http://www.pepto.de/projects/colorvic/
Color(0x000000), // 0 = black
Color(0xFFFFFF), // 1 = white
Color(0x813338), // 2 = red
Color(0x75cec8), // 3 = cyan
Color(0x8e3c97), // 4 = purple
Color(0x56ac4d), // 5 = green
Color(0x2e2c9b), // 6 = blue
Color(0xedf171), // 7 = yellow
Color(0x8e5029), // 8 = orange
Color(0x553800), // 9 = brown
Color(0xc46c71), // 10 = light red
Color(0x4a4a4a), // 11 = dark grey
Color(0x7b7b7b), // 12 = medium grey
Color(0xa9ff9f), // 13 = light green
Color(0x706deb), // 14 = light blue
Color(0xb2b2b2) // 15 = light grey
)
}

View File

@ -1054,11 +1054,16 @@ object Petscii {
val lookup = if(lowercase) encodingPetsciiLowercase else encodingPetsciiUppercase
return text.map {
val petscii = lookup[it]
petscii?.toShort() ?: if(it=='\u0000')
0.toShort()
else {
val case = if (lowercase) "lower" else "upper"
throw CharConversionException("no ${case}case Petscii character for '$it' (${it.toShort()})")
petscii?.toShort() ?: when (it) {
'\u0000' -> 0.toShort()
in '\u8000'..'\u80ff' -> {
// special case: take the lower 8 bit hex value directly
(it.toInt() - 0x8000).toShort()
}
else -> {
val case = if (lowercase) "lower" else "upper"
throw CharConversionException("no ${case}case Petscii character for '$it' (${it.toShort()})")
}
}
}
}
@ -1072,11 +1077,16 @@ object Petscii {
val lookup = if(lowercase) encodingScreencodeLowercase else encodingScreencodeUppercase
return text.map{
val screencode = lookup[it]
screencode?.toShort() ?: if(it=='\u0000')
0.toShort()
else {
val case = if (lowercase) "lower" else "upper"
throw CharConversionException("no ${case}Screencode character for '$it' (${it.toShort()})")
screencode?.toShort() ?: when (it) {
'\u0000' -> 0.toShort()
in '\u8000'..'\u80ff' -> {
// special case: take the lower 8 bit hex value directly
(it.toInt() - 0x8000).toShort()
}
else -> {
val case = if (lowercase) "lower" else "upper"
throw CharConversionException("no ${case}Screencode character for '$it' (${it.toShort()})")
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,5 @@
package prog8.compiler.target.c64.codegen
import prog8.compiler.target.c64.C64MachineDefinition.ESTACK_LO_HEX
import prog8.compiler.target.c64.C64MachineDefinition.ESTACK_LO_PLUS1_HEX
// note: see https://wiki.nesdev.com/w/index.php/6502_assembly_optimisations
@ -87,10 +84,10 @@ private fun optimizeCmpSequence(linesByFour: List<List<IndexedValue<String>>>):
// the repeated lda can be removed
val mods = mutableListOf<Modification>()
for(lines in linesByFour) {
if(lines[0].value.trim()=="lda $ESTACK_LO_PLUS1_HEX,x" &&
if(lines[0].value.trim()=="lda P8ESTACK_LO+1,x" &&
lines[1].value.trim().startsWith("cmp ") &&
lines[2].value.trim().startsWith("beq ") &&
lines[3].value.trim()=="lda $ESTACK_LO_PLUS1_HEX,x") {
lines[3].value.trim()=="lda P8ESTACK_LO+1,x") {
mods.add(Modification(lines[3].index, true, null)) // remove the second lda
}
}
@ -102,10 +99,10 @@ private fun optimizeUselessStackByteWrites(linesByFour: List<List<IndexedValue<S
// this is a lot harder for word values because the instruction sequence varies.
val mods = mutableListOf<Modification>()
for(lines in linesByFour) {
if(lines[0].value.trim()=="sta $ESTACK_LO_HEX,x" &&
if(lines[0].value.trim()=="sta P8ESTACK_LO,x" &&
lines[1].value.trim()=="dex" &&
lines[2].value.trim()=="inx" &&
lines[3].value.trim()=="lda $ESTACK_LO_HEX,x") {
lines[3].value.trim()=="lda P8ESTACK_LO,x") {
mods.add(Modification(lines[1].index, true, null))
mods.add(Modification(lines[2].index, true, null))
mods.add(Modification(lines[3].index, true, null))
@ -154,7 +151,8 @@ private fun optimizeSameAssignments(linesByFourteen: List<List<IndexedValue<Stri
}
if(first.startsWith("lda") && second.startsWith("ldy") && third.startsWith("sta") && fourth.startsWith("sty") &&
fifth.startsWith("lda") && sixth.startsWith("ldy") && seventh.startsWith("jsr c64flt.copy_float")) {
fifth.startsWith("lda") && sixth.startsWith("ldy") &&
(seventh.startsWith("jsr floats.copy_float") || seventh.startsWith("jsr cx16flt.copy_float"))) {
val nineth = pair[8].value.trimStart()
val tenth = pair[9].value.trimStart()
@ -164,7 +162,8 @@ private fun optimizeSameAssignments(linesByFourteen: List<List<IndexedValue<Stri
val fourteenth = pair[13].value.trimStart()
if(eighth.startsWith("lda") && nineth.startsWith("ldy") && tenth.startsWith("sta") && eleventh.startsWith("sty") &&
twelveth.startsWith("lda") && thirteenth.startsWith("ldy") && fourteenth.startsWith("jsr c64flt.copy_float")) {
twelveth.startsWith("lda") && thirteenth.startsWith("ldy") &&
(fourteenth.startsWith("jsr floats.copy_float") || fourteenth.startsWith("jsr cx16flt.copy_float"))) {
if(first.substring(4) == eighth.substring(4) && second.substring(4)==nineth.substring(4)) {
// identical float init
@ -181,6 +180,7 @@ private fun optimizeSameAssignments(linesByFourteen: List<List<IndexedValue<Stri
private fun optimizeStoreLoadSame(linesByFour: List<List<IndexedValue<String>>>): List<Modification> {
// sta X + lda X, sty X + ldy X, stx X + ldx X -> the second instruction can be eliminated
// TODO this is not true if X is not a regular RAM memory address (but instead mapped I/O or ROM)
val mods = mutableListOf<Modification>()
for (pair in linesByFour) {
val first = pair[0].value.trimStart()
@ -196,8 +196,8 @@ private fun optimizeStoreLoadSame(linesByFour: List<List<IndexedValue<String>>>)
(first.startsWith("sty ") && second.startsWith("ldy ")) ||
(first.startsWith("stx ") && second.startsWith("ldx "))
) {
val firstLoc = first.substring(4)
val secondLoc = second.substring(4)
val firstLoc = first.substring(4).trimStart()
val secondLoc = second.substring(4).trimStart()
if (firstLoc == secondLoc) {
mods.add(Modification(pair[1].index, true, null))
}

View File

@ -1,744 +0,0 @@
package prog8.compiler.target.c64.codegen
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.AssignTarget
import prog8.ast.statements.Assignment
import prog8.ast.statements.DirectMemoryWrite
import prog8.ast.statements.VarDecl
import prog8.compiler.AssemblyError
import prog8.compiler.target.c64.C64MachineDefinition
import prog8.compiler.target.c64.C64MachineDefinition.C64Zeropage
import prog8.compiler.target.c64.C64MachineDefinition.ESTACK_HI_HEX
import prog8.compiler.target.c64.C64MachineDefinition.ESTACK_LO_HEX
import prog8.compiler.toHex
internal class AssignmentAsmGen(private val program: Program, private val asmgen: AsmGen) {
internal fun translate(assign: Assignment) {
if(assign.aug_op!=null)
throw AssemblyError("aug-op assignments should have been transformed to normal ones")
when(assign.value) {
is NumericLiteralValue -> {
val numVal = assign.value as NumericLiteralValue
when(numVal.type) {
DataType.UBYTE, DataType.BYTE -> assignFromByteConstant(assign.target, numVal.number.toShort())
DataType.UWORD, DataType.WORD -> assignFromWordConstant(assign.target, numVal.number.toInt())
DataType.FLOAT -> assignFromFloatConstant(assign.target, numVal.number.toDouble())
else -> throw AssemblyError("weird numval type")
}
}
is RegisterExpr -> {
assignFromRegister(assign.target, (assign.value as RegisterExpr).register)
}
is IdentifierReference -> {
val type = assign.target.inferType(program, assign).typeOrElse(DataType.STRUCT)
when(type) {
DataType.UBYTE, DataType.BYTE -> assignFromByteVariable(assign.target, assign.value as IdentifierReference)
DataType.UWORD, DataType.WORD -> assignFromWordVariable(assign.target, assign.value as IdentifierReference)
DataType.FLOAT -> assignFromFloatVariable(assign.target, assign.value as IdentifierReference)
else -> throw AssemblyError("unsupported assignment target type $type")
}
}
is AddressOf -> {
val identifier = (assign.value as AddressOf).identifier
assignFromAddressOf(assign.target, identifier)
}
is DirectMemoryRead -> {
val read = (assign.value as DirectMemoryRead)
when(read.addressExpression) {
is NumericLiteralValue -> {
val address = (read.addressExpression as NumericLiteralValue).number.toInt()
assignFromMemoryByte(assign.target, address, null)
}
is IdentifierReference -> {
assignFromMemoryByte(assign.target, null, read.addressExpression as IdentifierReference)
}
else -> {
throw AssemblyError("missing asm gen for memread assignment into ${assign.target}")
}
}
}
is PrefixExpression -> {
// TODO optimize common cases
asmgen.translateExpression(assign.value as PrefixExpression)
assignFromEvalResult(assign.target)
}
is BinaryExpression -> {
// TODO optimize common cases
asmgen.translateExpression(assign.value as BinaryExpression)
assignFromEvalResult(assign.target)
}
is ArrayIndexedExpression -> {
// TODO optimize common cases
val arrayExpr = assign.value as ArrayIndexedExpression
val arrayDt = arrayExpr.identifier.targetVarDecl(program.namespace)!!.datatype
val index = arrayExpr.arrayspec.index
if(index is NumericLiteralValue) {
// constant array index value
val arrayVarName = asmgen.asmIdentifierName(arrayExpr.identifier)
val indexValue = index.number.toInt() * ArrayElementTypes.getValue(arrayDt).memorySize()
when (arrayDt) {
DataType.STR, DataType.ARRAY_UB, DataType.ARRAY_B ->
asmgen.out(" lda $arrayVarName+$indexValue | sta $ESTACK_LO_HEX,x | dex")
DataType.ARRAY_UW, DataType.ARRAY_W ->
asmgen.out(" lda $arrayVarName+$indexValue | sta $ESTACK_LO_HEX,x | lda $arrayVarName+$indexValue+1 | sta $ESTACK_HI_HEX,x | dex")
DataType.ARRAY_F ->
asmgen.out(" lda #<$arrayVarName+$indexValue | ldy #>$arrayVarName+$indexValue | jsr c64flt.push_float")
else ->
throw AssemblyError("weird array type")
}
} else {
asmgen.translateArrayIndexIntoA(arrayExpr)
asmgen.readAndPushArrayvalueWithIndexA(arrayDt, arrayExpr.identifier)
}
assignFromEvalResult(assign.target)
}
is TypecastExpression -> {
val cast = assign.value as TypecastExpression
val sourceType = cast.expression.inferType(program)
val targetType = assign.target.inferType(program, assign)
if(sourceType.isKnown && targetType.isKnown &&
(sourceType.typeOrElse(DataType.STRUCT) in ByteDatatypes && targetType.typeOrElse(DataType.STRUCT) in ByteDatatypes) ||
(sourceType.typeOrElse(DataType.STRUCT) in WordDatatypes && targetType.typeOrElse(DataType.STRUCT) in WordDatatypes)) {
// no need for a type cast
assign.value = cast.expression
translate(assign)
} else {
asmgen.translateExpression(assign.value as TypecastExpression)
assignFromEvalResult(assign.target)
}
}
is FunctionCall -> {
asmgen.translateExpression(assign.value as FunctionCall)
assignFromEvalResult(assign.target)
}
is ArrayLiteralValue, is StringLiteralValue -> throw AssemblyError("no asm gen for string/array assignment $assign")
is StructLiteralValue -> throw AssemblyError("struct literal value assignment should have been flattened ${assign.value.position}")
is RangeExpr -> throw AssemblyError("range expression should have been changed into array values ${assign.value.position}")
}
}
internal fun assignFromEvalResult(target: AssignTarget) {
val targetIdent = target.identifier
when {
target.register!=null -> {
if(target.register== Register.X)
throw AssemblyError("can't pop into X register - use variable instead")
asmgen.out(" inx | ld${target.register.name.toLowerCase()} $ESTACK_LO_HEX,x ")
}
targetIdent!=null -> {
val targetName = asmgen.asmIdentifierName(targetIdent)
val targetDt = targetIdent.inferType(program).typeOrElse(DataType.STRUCT)
when(targetDt) {
DataType.UBYTE, DataType.BYTE -> {
asmgen.out(" inx | lda $ESTACK_LO_HEX,x | sta $targetName")
}
DataType.UWORD, DataType.WORD -> {
asmgen.out("""
inx
lda $ESTACK_LO_HEX,x
sta $targetName
lda $ESTACK_HI_HEX,x
sta $targetName+1
""")
}
DataType.FLOAT -> {
asmgen.out("""
lda #<$targetName
ldy #>$targetName
jsr c64flt.pop_float
""")
}
else -> throw AssemblyError("weird target variable type $targetDt")
}
}
target.memoryAddress!=null -> {
asmgen.out(" inx | ldy $ESTACK_LO_HEX,x")
storeRegisterInMemoryAddress(Register.Y, target.memoryAddress)
}
target.arrayindexed!=null -> {
val arrayDt = target.arrayindexed!!.identifier.targetVarDecl(program.namespace)!!.datatype
val arrayVarName = asmgen.asmIdentifierName(target.arrayindexed!!.identifier)
asmgen.translateExpression(target.arrayindexed!!.arrayspec.index)
asmgen.out(" inx | lda $ESTACK_LO_HEX,x")
popAndWriteArrayvalueWithIndexA(arrayDt, arrayVarName)
}
else -> throw AssemblyError("weird assignment target $target")
}
}
internal fun assignFromAddressOf(target: AssignTarget, name: IdentifierReference) {
val targetIdent = target.identifier
val targetArrayIdx = target.arrayindexed
val struct = name.memberOfStruct(program.namespace)
val sourceName = if(struct!=null) {
// take the address of the first struct member instead
val decl = name.targetVarDecl(program.namespace)!!
val firstStructMember = struct.nameOfFirstMember()
// find the flattened var that belongs to this first struct member
val firstVarName = listOf(decl.name, firstStructMember)
val firstVar = name.definingScope().lookup(firstVarName, name) as VarDecl
firstVar.name
} else {
asmgen.fixNameSymbols(name.nameInSource.joinToString ("."))
}
when {
targetIdent!=null -> {
val targetName = asmgen.asmIdentifierName(targetIdent)
asmgen.out("""
lda #<$sourceName
ldy #>$sourceName
sta $targetName
sty $targetName+1
""")
}
target.memoryAddress!=null -> {
throw AssemblyError("no asm gen for assign address $sourceName to memory word $target")
}
targetArrayIdx!=null -> {
val index = targetArrayIdx.arrayspec.index
val targetName = asmgen.asmIdentifierName(targetArrayIdx.identifier)
throw AssemblyError("no asm gen for assign address $sourceName to array $targetName [ $index ]")
}
else -> throw AssemblyError("no asm gen for assign address $sourceName to $target")
}
}
internal fun assignFromWordVariable(target: AssignTarget, variable: IdentifierReference) {
val sourceName = asmgen.asmIdentifierName(variable)
val targetIdent = target.identifier
val targetArrayIdx = target.arrayindexed
when {
targetIdent!=null -> {
val targetName = asmgen.asmIdentifierName(targetIdent)
asmgen.out("""
lda $sourceName
ldy $sourceName+1
sta $targetName
sty $targetName+1
""")
}
target.memoryAddress!=null -> {
throw AssemblyError("no asm gen for assign wordvar $sourceName to memory ${target.memoryAddress}")
}
targetArrayIdx!=null -> {
val index = targetArrayIdx.arrayspec.index
val targetName = asmgen.asmIdentifierName(targetArrayIdx.identifier)
asmgen.out(" lda $sourceName | sta $ESTACK_LO_HEX,x | lda $sourceName+1 | sta $ESTACK_HI_HEX,x | dex")
asmgen.translateExpression(index)
asmgen.out(" inx | lda $ESTACK_LO_HEX,x")
val arrayDt = targetArrayIdx.identifier.inferType(program).typeOrElse(DataType.STRUCT)
popAndWriteArrayvalueWithIndexA(arrayDt, targetName)
}
else -> throw AssemblyError("no asm gen for assign wordvar to $target")
}
}
internal fun assignFromFloatVariable(target: AssignTarget, variable: IdentifierReference) {
val sourceName = asmgen.asmIdentifierName(variable)
val targetIdent = target.identifier
val targetArrayIdx = target.arrayindexed
when {
targetIdent!=null -> {
val targetName = asmgen.asmIdentifierName(targetIdent)
asmgen.out("""
lda $sourceName
sta $targetName
lda $sourceName+1
sta $targetName+1
lda $sourceName+2
sta $targetName+2
lda $sourceName+3
sta $targetName+3
lda $sourceName+4
sta $targetName+4
""")
}
targetArrayIdx!=null -> {
val index = targetArrayIdx.arrayspec.index
val targetName = asmgen.asmIdentifierName(targetArrayIdx.identifier)
asmgen.out(" lda #<$sourceName | ldy #>$sourceName | jsr c64flt.push_float")
asmgen.translateExpression(index)
asmgen.out(" lda #<$targetName | ldy #>$targetName | jsr c64flt.pop_float_to_indexed_var")
}
else -> throw AssemblyError("no asm gen for assign floatvar to $target")
}
}
internal fun assignFromByteVariable(target: AssignTarget, variable: IdentifierReference) {
val sourceName = asmgen.asmIdentifierName(variable)
val targetIdent = target.identifier
val targetArrayIdx = target.arrayindexed
when {
target.register!=null -> {
asmgen.out(" ld${target.register.name.toLowerCase()} $sourceName")
}
targetIdent!=null -> {
val targetName = asmgen.asmIdentifierName(targetIdent)
asmgen.out("""
lda $sourceName
sta $targetName
""")
}
targetArrayIdx!=null -> {
val index = targetArrayIdx.arrayspec.index
val targetName = asmgen.asmIdentifierName(targetArrayIdx.identifier)
val arrayDt = targetArrayIdx.identifier.inferType(program).typeOrElse(DataType.STRUCT)
asmgen.out(" lda $sourceName | sta $ESTACK_LO_HEX,x | dex")
asmgen.translateExpression(index)
asmgen.out(" inx | lda $ESTACK_LO_HEX,x")
popAndWriteArrayvalueWithIndexA(arrayDt, targetName)
}
target.memoryAddress != null -> {
val addressExpr = target.memoryAddress.addressExpression
val addressLv = addressExpr as? NumericLiteralValue
when {
addressLv != null -> asmgen.out(" lda $sourceName | sta ${addressLv.number.toHex()}")
addressExpr is IdentifierReference -> {
val targetName = asmgen.asmIdentifierName(addressExpr)
asmgen.out(" lda $sourceName | sta $targetName")
}
else -> {
asmgen.translateExpression(addressExpr)
asmgen.out("""
inx
lda $ESTACK_LO_HEX,x
ldy $ESTACK_HI_HEX,x
sta (+) +1
sty (+) +2
lda $sourceName
+ sta ${'$'}ffff ; modified
""")
}
}
}
else -> throw AssemblyError("no asm gen for assign bytevar to $target")
}
}
internal fun assignFromRegister(target: AssignTarget, register: Register) {
val targetIdent = target.identifier
val targetArrayIdx = target.arrayindexed
when {
targetIdent!=null -> {
val targetName = asmgen.asmIdentifierName(targetIdent)
asmgen.out(" st${register.name.toLowerCase()} $targetName")
}
target.register!=null -> {
when(register) {
Register.A -> when(target.register) {
Register.A -> {}
Register.X -> asmgen.out(" tax")
Register.Y -> asmgen.out(" tay")
}
Register.X -> when(target.register) {
Register.A -> asmgen.out(" txa")
Register.X -> {}
Register.Y -> asmgen.out(" txy")
}
Register.Y -> when(target.register) {
Register.A -> asmgen.out(" tya")
Register.X -> asmgen.out(" tyx")
Register.Y -> {}
}
}
}
target.memoryAddress!=null -> {
storeRegisterInMemoryAddress(register, target.memoryAddress)
}
targetArrayIdx!=null -> {
val index = targetArrayIdx.arrayspec.index
val targetName = asmgen.asmIdentifierName(targetArrayIdx.identifier)
when (index) {
is NumericLiteralValue -> {
val memindex = index.number.toInt()
when(register) {
Register.A -> asmgen.out(" sta $targetName+$memindex")
Register.X -> asmgen.out(" stx $targetName+$memindex")
Register.Y -> asmgen.out(" sty $targetName+$memindex")
}
}
is RegisterExpr -> {
when(register) {
Register.A -> asmgen.out(" sta ${C64Zeropage.SCRATCH_B1}")
Register.X -> asmgen.out(" stx ${C64Zeropage.SCRATCH_B1}")
Register.Y -> asmgen.out(" sty ${C64Zeropage.SCRATCH_B1}")
}
when(index.register) {
Register.A -> {}
Register.X -> asmgen.out(" txa")
Register.Y -> asmgen.out(" tya")
}
asmgen.out("""
tay
lda ${C64Zeropage.SCRATCH_B1}
sta $targetName,y
""")
}
is IdentifierReference -> {
when(register) {
Register.A -> asmgen.out(" sta ${C64Zeropage.SCRATCH_B1}")
Register.X -> asmgen.out(" stx ${C64Zeropage.SCRATCH_B1}")
Register.Y -> asmgen.out(" sty ${C64Zeropage.SCRATCH_B1}")
}
asmgen.out("""
lda ${asmgen.asmIdentifierName(index)}
tay
lda ${C64Zeropage.SCRATCH_B1}
sta $targetName,y
""")
}
else -> {
asmgen.saveRegister(register)
asmgen.translateExpression(index)
asmgen.restoreRegister(register)
when(register) {
Register.A -> asmgen.out(" sta ${C64Zeropage.SCRATCH_B1}")
Register.X -> asmgen.out(" stx ${C64Zeropage.SCRATCH_B1}")
Register.Y -> asmgen.out(" sty ${C64Zeropage.SCRATCH_B1}")
}
asmgen.out("""
inx
lda $ESTACK_LO_HEX,x
tay
lda ${C64Zeropage.SCRATCH_B1}
sta $targetName,y
""")
}
}
}
else -> throw AssemblyError("no asm gen for assign register $register to $target")
}
}
private fun storeRegisterInMemoryAddress(register: Register, memoryAddress: DirectMemoryWrite) {
val addressExpr = memoryAddress.addressExpression
val addressLv = addressExpr as? NumericLiteralValue
val registerName = register.name.toLowerCase()
when {
addressLv != null -> asmgen.out(" st$registerName ${addressLv.number.toHex()}")
addressExpr is IdentifierReference -> {
val targetName = asmgen.asmIdentifierName(addressExpr)
when(register) {
Register.A -> asmgen.out("""
ldy $targetName
sty (+) +1
ldy $targetName+1
sty (+) +2
+ sta ${'$'}ffff ; modified""")
Register.X -> asmgen.out("""
ldy $targetName
sty (+) +1
ldy $targetName+1
sty (+) +2
+ stx ${'$'}ffff ; modified""")
Register.Y -> asmgen.out("""
lda $targetName
sta (+) +1
lda $targetName+1
sta (+) +2
+ sty ${'$'}ffff ; modified""")
}
}
else -> {
asmgen.saveRegister(register)
asmgen.translateExpression(addressExpr)
asmgen.restoreRegister(register)
when (register) {
Register.A -> asmgen.out(" tay")
Register.X -> throw AssemblyError("can't use X register here")
Register.Y -> {}
}
asmgen.out("""
inx
lda $ESTACK_LO_HEX,x
sta (+) +1
lda $ESTACK_HI_HEX,x
sta (+) +2
+ sty ${'$'}ffff ; modified
""")
}
}
}
internal fun assignFromWordConstant(target: AssignTarget, word: Int) {
val targetIdent = target.identifier
val targetArrayIdx = target.arrayindexed
when {
targetIdent!=null -> {
val targetName = asmgen.asmIdentifierName(targetIdent)
if(word ushr 8 == word and 255) {
// lsb=msb
asmgen.out("""
lda #${(word and 255).toHex()}
sta $targetName
sta $targetName+1
""")
} else {
asmgen.out("""
lda #<${word.toHex()}
ldy #>${word.toHex()}
sta $targetName
sty $targetName+1
""")
}
}
target.memoryAddress!=null -> {
throw AssemblyError("no asm gen for assign word $word to memory ${target.memoryAddress}")
}
targetArrayIdx!=null -> {
val index = targetArrayIdx.arrayspec.index
val targetName = asmgen.asmIdentifierName(targetArrayIdx.identifier)
// TODO optimize common cases
asmgen.translateExpression(index)
asmgen.out("""
inx
lda $ESTACK_LO_HEX,x
asl a
tay
lda #<${word.toHex()}
sta $targetName,y
lda #>${word.toHex()}
sta $targetName+1,y
""")
}
else -> throw AssemblyError("no asm gen for assign word $word to $target")
}
}
internal fun assignFromByteConstant(target: AssignTarget, byte: Short) {
val targetIdent = target.identifier
val targetArrayIdx = target.arrayindexed
when {
target.register!=null -> {
asmgen.out(" ld${target.register.name.toLowerCase()} #${byte.toHex()}")
}
targetIdent!=null -> {
val targetName = asmgen.asmIdentifierName(targetIdent)
asmgen.out(" lda #${byte.toHex()} | sta $targetName ")
}
target.memoryAddress!=null -> {
asmgen.out(" ldy #${byte.toHex()}")
storeRegisterInMemoryAddress(Register.Y, target.memoryAddress)
}
targetArrayIdx!=null -> {
val index = targetArrayIdx.arrayspec.index
val targetName = asmgen.asmIdentifierName(targetArrayIdx.identifier)
// TODO optimize common cases
asmgen.translateExpression(index)
asmgen.out("""
inx
ldy $ESTACK_LO_HEX,x
lda #${byte.toHex()}
sta $targetName,y
""")
}
else -> throw AssemblyError("no asm gen for assign byte $byte to $target")
}
}
internal fun assignFromFloatConstant(target: AssignTarget, float: Double) {
val targetIdent = target.identifier
val targetArrayIdx = target.arrayindexed
if(float==0.0) {
// optimized case for float zero
when {
targetIdent != null -> {
val targetName = asmgen.asmIdentifierName(targetIdent)
asmgen.out("""
lda #0
sta $targetName
sta $targetName+1
sta $targetName+2
sta $targetName+3
sta $targetName+4
""")
}
targetArrayIdx!=null -> {
val index = targetArrayIdx.arrayspec.index
val targetName = asmgen.asmIdentifierName(targetArrayIdx.identifier)
if(index is NumericLiteralValue) {
val indexValue = index.number.toInt() * C64MachineDefinition.FLOAT_MEM_SIZE
asmgen.out("""
lda #0
sta $targetName+$indexValue
sta $targetName+$indexValue+1
sta $targetName+$indexValue+2
sta $targetName+$indexValue+3
sta $targetName+$indexValue+4
""")
} else {
asmgen.translateExpression(index)
asmgen.out("""
inx
lda $ESTACK_LO_HEX,x
asl a
asl a
clc
adc $ESTACK_LO_HEX,x
tay
lda #0
sta $targetName,y
sta $targetName+1,y
sta $targetName+2,y
sta $targetName+3,y
sta $targetName+4,y
""") // TODO use a subroutine for this
}
}
else -> throw AssemblyError("no asm gen for assign float 0.0 to $target")
}
} else {
// non-zero value
val constFloat = asmgen.getFloatConst(float)
when {
targetIdent != null -> {
val targetName = asmgen.asmIdentifierName(targetIdent)
asmgen.out("""
lda $constFloat
sta $targetName
lda $constFloat+1
sta $targetName+1
lda $constFloat+2
sta $targetName+2
lda $constFloat+3
sta $targetName+3
lda $constFloat+4
sta $targetName+4
""")
}
targetArrayIdx!=null -> {
val index = targetArrayIdx.arrayspec.index
val arrayVarName = asmgen.asmIdentifierName(targetArrayIdx.identifier)
if(index is NumericLiteralValue) {
val indexValue = index.number.toInt() * C64MachineDefinition.FLOAT_MEM_SIZE
asmgen.out("""
lda $constFloat
sta $arrayVarName+$indexValue
lda $constFloat+1
sta $arrayVarName+$indexValue+1
lda $constFloat+2
sta $arrayVarName+$indexValue+2
lda $constFloat+3
sta $arrayVarName+$indexValue+3
lda $constFloat+4
sta $arrayVarName+$indexValue+4
""")
} else {
asmgen.translateArrayIndexIntoA(targetArrayIdx)
asmgen.out("""
sta ${C64Zeropage.SCRATCH_REG}
asl a
asl a
clc
adc ${C64Zeropage.SCRATCH_REG}
tay
lda $constFloat
sta $arrayVarName,y
lda $constFloat+1
sta $arrayVarName+1,y
lda $constFloat+2
sta $arrayVarName+2,y
lda $constFloat+3
sta $arrayVarName+3,y
lda $constFloat+4
sta $arrayVarName+4,y
""") // TODO use a subroutine for this
}
}
else -> throw AssemblyError("no asm gen for assign float $float to $target")
}
}
}
internal fun assignFromMemoryByte(target: AssignTarget, address: Int?, identifier: IdentifierReference?) {
val targetIdent = target.identifier
val targetArrayIdx = target.arrayindexed
if(address!=null) {
when {
target.register!=null -> {
asmgen.out(" ld${target.register.name.toLowerCase()} ${address.toHex()}")
}
targetIdent!=null -> {
val targetName = asmgen.asmIdentifierName(targetIdent)
asmgen.out("""
lda ${address.toHex()}
sta $targetName
""")
}
target.memoryAddress!=null -> {
asmgen.out(" ldy ${address.toHex()}")
storeRegisterInMemoryAddress(Register.Y, target.memoryAddress)
}
targetArrayIdx!=null -> {
val index = targetArrayIdx.arrayspec.index
val targetName = asmgen.asmIdentifierName(targetArrayIdx.identifier)
throw AssemblyError("no asm gen for assign memory byte at $address to array $targetName [ $index ]")
}
else -> throw AssemblyError("no asm gen for assign memory byte $target")
}
}
else if(identifier!=null) {
val sourceName = asmgen.asmIdentifierName(identifier)
when {
target.register!=null -> {
asmgen.out("""
lda $sourceName
sta (+) + 1
lda $sourceName+1
sta (+) + 2""")
when(target.register){
Register.A -> asmgen.out("+ lda ${'$'}ffff\t; modified")
Register.X -> asmgen.out("+ ldx ${'$'}ffff\t; modified")
Register.Y -> asmgen.out("+ ldy ${'$'}ffff\t; modified")
}
}
targetIdent!=null -> {
val targetName = asmgen.asmIdentifierName(targetIdent)
asmgen.out("""
lda $sourceName
sta (+) + 1
lda $sourceName+1
sta (+) + 2
+ lda ${'$'}ffff\t; modified
sta $targetName""")
}
target.memoryAddress!=null -> {
asmgen.out(" ldy $sourceName")
storeRegisterInMemoryAddress(Register.Y, target.memoryAddress)
}
targetArrayIdx!=null -> {
val index = targetArrayIdx.arrayspec.index
val targetName = asmgen.asmIdentifierName(targetArrayIdx.identifier)
throw AssemblyError("no asm gen for assign memory byte $sourceName to array $targetName [ $index ]")
}
else -> throw AssemblyError("no asm gen for assign memory byte $target")
}
}
}
private fun popAndWriteArrayvalueWithIndexA(arrayDt: DataType, variablename: String) {
when (arrayDt) {
DataType.STR, DataType.ARRAY_UB, DataType.ARRAY_B ->
asmgen.out(" tay | inx | lda $ESTACK_LO_HEX,x | sta $variablename,y")
DataType.ARRAY_UW, DataType.ARRAY_W ->
asmgen.out(" asl a | tay | inx | lda $ESTACK_LO_HEX,x | sta $variablename,y | lda $ESTACK_HI_HEX,x | sta $variablename+1,y")
DataType.ARRAY_F ->
// index * 5 is done in the subroutine that's called
asmgen.out("""
sta $ESTACK_LO_HEX,x
dex
lda #<$variablename
ldy #>$variablename
jsr c64flt.pop_float_to_indexed_var
""")
else ->
throw AssemblyError("weird array type")
}
}
}

View File

@ -1,230 +1,262 @@
package prog8.compiler.target.c64.codegen
import prog8.ast.IFunctionCall
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.AssignTarget
import prog8.ast.statements.RegisterOrStatusflag
import prog8.ast.statements.Subroutine
import prog8.ast.statements.SubroutineParameter
import prog8.compiler.AssemblyError
import prog8.compiler.target.c64.C64MachineDefinition.ESTACK_HI_HEX
import prog8.compiler.target.c64.C64MachineDefinition.ESTACK_LO_HEX
import prog8.compiler.toHex
import prog8.compiler.target.c64.codegen.assignment.*
internal class FunctionCallAsmGen(private val program: Program, private val asmgen: AsmGen) {
internal fun translateFunctionCall(stmt: IFunctionCall) {
internal fun translateFunctionCallStatement(stmt: IFunctionCall) {
val sub = stmt.target.targetSubroutine(program.namespace)!!
val preserveStatusRegisterAfterCall = sub.asmReturnvaluesRegisters.any {it.statusflag!=null}
translateFunctionCall(stmt, preserveStatusRegisterAfterCall)
// functioncalls no longer return results on the stack, so simply ignore the results in the registers
if(preserveStatusRegisterAfterCall)
asmgen.out(" plp\t; restore status flags from call")
}
internal fun translateFunctionCall(stmt: IFunctionCall, preserveStatusRegisterAfterCall: Boolean) {
// output the code to setup the parameters and perform the actual call
// does NOT output the code to deal with the result values!
val sub = stmt.target.targetSubroutine(program.namespace) ?: throw AssemblyError("undefined subroutine ${stmt.target}")
if(Register.X in sub.asmClobbers)
asmgen.out(" stx c64.SCRATCH_ZPREGX") // we only save X for now (required! is the eval stack pointer), screw A and Y...
val saveX = CpuRegister.X in sub.asmClobbers || sub.regXasResult() || sub.regXasParam()
if(saveX)
asmgen.saveRegister(CpuRegister.X, preserveStatusRegisterAfterCall, (stmt as Node).definingSubroutine()!!)
val subName = asmgen.asmIdentifierName(stmt.target)
val subName = asmgen.asmSymbolName(stmt.target)
if(stmt.args.isNotEmpty()) {
for(arg in sub.parameters.withIndex().zip(stmt.args)) {
translateFuncArguments(arg.first, arg.second, sub)
if(sub.asmParameterRegisters.isEmpty()) {
// via variables
for(arg in sub.parameters.withIndex().zip(stmt.args)) {
argumentViaVariable(sub, arg.first, arg.second)
}
} else {
// via registers
if(sub.parameters.size==1) {
// just a single parameter, no risk of clobbering registers
argumentViaRegister(sub, IndexedValue(0, sub.parameters.single()), stmt.args[0])
} else {
// multiple register arguments, risk of register clobbering.
// evaluate arguments onto the stack, and load the registers from the evaluated values on the stack.
when {
stmt.args.all {it is AddressOf ||
it is NumericLiteralValue ||
it is StringLiteralValue ||
it is ArrayLiteralValue ||
it is IdentifierReference} -> {
// no risk of clobbering for these simple argument types. Optimize the register loading.
for(arg in sub.parameters.withIndex().zip(stmt.args)) {
argumentViaRegister(sub, arg.first, arg.second)
}
}
else -> {
// Risk of clobbering due to complex expression args. Work via the stack.
registerArgsViaStackEvaluation(stmt, sub)
}
}
}
}
}
asmgen.out(" jsr $subName")
if(Register.X in sub.asmClobbers)
asmgen.out(" ldx c64.SCRATCH_ZPREGX") // restore X again
if(preserveStatusRegisterAfterCall) {
asmgen.out(" php\t; save status flags from call")
// note: the containing statement (such as the FunctionCallStatement or the Assignment or the Expression)
// must take care of popping this value again at the end!
}
if(saveX)
asmgen.restoreRegister(CpuRegister.X, preserveStatusRegisterAfterCall)
}
private fun translateFuncArguments(parameter: IndexedValue<SubroutineParameter>, value: Expression, sub: Subroutine) {
val sourceIDt = value.inferType(program)
if(!sourceIDt.isKnown)
throw AssemblyError("arg type unknown")
val sourceDt = sourceIDt.typeOrElse(DataType.STRUCT)
if(!argumentTypeCompatible(sourceDt, parameter.value.type))
private fun registerArgsViaStackEvaluation(stmt: IFunctionCall, sub: Subroutine) {
// this is called when one or more of the arguments are 'complex' and
// cannot be assigned to a register easily or risk clobbering other registers.
if(sub.parameters.isEmpty())
return
// 1. load all arguments reversed onto the stack: first arg goes last (is on top).
for (arg in stmt.args.reversed())
asmgen.translateExpression(arg)
var argForCarry: IndexedValue<Pair<Expression, RegisterOrStatusflag>>? = null
var argForXregister: IndexedValue<Pair<Expression, RegisterOrStatusflag>>? = null
var argForAregister: IndexedValue<Pair<Expression, RegisterOrStatusflag>>? = null
asmgen.out(" inx") // align estack pointer
for(argi in stmt.args.zip(sub.asmParameterRegisters).withIndex()) {
when {
argi.value.second.statusflag == Statusflag.Pc -> {
require(argForCarry == null)
argForCarry = argi
}
argi.value.second.statusflag != null -> throw AssemblyError("can only use Carry as status flag parameter")
argi.value.second.registerOrPair in setOf(RegisterOrPair.X, RegisterOrPair.AX, RegisterOrPair.XY) -> {
require(argForXregister==null)
argForXregister = argi
}
argi.value.second.registerOrPair in setOf(RegisterOrPair.A, RegisterOrPair.AY) -> {
require(argForAregister == null)
argForAregister = argi
}
argi.value.second.registerOrPair == RegisterOrPair.Y -> {
asmgen.out(" ldy P8ESTACK_LO+${argi.index},x")
}
else -> throw AssemblyError("weird argument")
}
}
if(argForCarry!=null) {
asmgen.out("""
lda P8ESTACK_LO+${argForCarry.index},x
beq +
sec
bcs ++
+ clc
+ php""") // push the status flags
}
if(argForAregister!=null) {
when(argForAregister.value.second.registerOrPair) {
RegisterOrPair.A -> asmgen.out(" lda P8ESTACK_LO+${argForAregister.index},x")
RegisterOrPair.AY -> asmgen.out(" lda P8ESTACK_LO+${argForAregister.index},x | ldy P8ESTACK_HI+${argForAregister.index},x")
else -> throw AssemblyError("weird arg")
}
}
if(argForXregister!=null) {
if(argForAregister!=null)
asmgen.out(" pha")
when(argForXregister.value.second.registerOrPair) {
RegisterOrPair.X -> asmgen.out(" lda P8ESTACK_LO+${argForXregister.index},x | tax")
RegisterOrPair.AX -> asmgen.out(" ldy P8ESTACK_LO+${argForXregister.index},x | lda P8ESTACK_HI+${argForXregister.index},x | tax | tya")
RegisterOrPair.XY -> asmgen.out(" ldy P8ESTACK_HI+${argForXregister.index},x | lda P8ESTACK_LO+${argForXregister.index},x | tax")
else -> throw AssemblyError("weird arg")
}
if(argForAregister!=null)
asmgen.out(" pla")
} else {
repeat(sub.parameters.size - 1) { asmgen.out(" inx") } // unwind stack
}
if(argForCarry!=null)
asmgen.out(" plp") // set the carry flag back to correct value
}
private fun argumentViaVariable(sub: Subroutine, parameter: IndexedValue<SubroutineParameter>, value: Expression) {
// pass parameter via a regular variable (not via registers)
val valueIDt = value.inferType(program)
if(!valueIDt.isKnown)
throw AssemblyError("unknown dt")
val valueDt = valueIDt.typeOrElse(DataType.STRUCT)
if(!isArgumentTypeCompatible(valueDt, parameter.value.type))
throw AssemblyError("argument type incompatible")
if(sub.asmParameterRegisters.isEmpty()) {
// pass parameter via a variable
val paramVar = parameter.value
val scopedParamVar = (sub.scopedname+"."+paramVar.name).split(".")
val target = AssignTarget(null, IdentifierReference(scopedParamVar, sub.position), null, null, sub.position)
target.linkParents(value.parent)
when (value) {
is NumericLiteralValue -> {
// optimize when the argument is a constant literal
when(parameter.value.type) {
in ByteDatatypes -> asmgen.assignFromByteConstant(target, value.number.toShort())
in WordDatatypes -> asmgen.assignFromWordConstant(target, value.number.toInt())
DataType.FLOAT -> asmgen.assignFromFloatConstant(target, value.number.toDouble())
in PassByReferenceDatatypes -> throw AssemblyError("can't pass string/array as arguments?")
else -> throw AssemblyError("weird parameter datatype")
}
}
is IdentifierReference -> {
// optimize when the argument is a variable
when (parameter.value.type) {
in ByteDatatypes -> asmgen.assignFromByteVariable(target, value)
in WordDatatypes -> asmgen.assignFromWordVariable(target, value)
DataType.FLOAT -> asmgen.assignFromFloatVariable(target, value)
in PassByReferenceDatatypes -> throw AssemblyError("can't pass string/array as arguments?")
else -> throw AssemblyError("weird parameter datatype")
}
}
is RegisterExpr -> {
asmgen.assignFromRegister(target, value.register)
}
is DirectMemoryRead -> {
when(value.addressExpression) {
val varName = asmgen.asmVariableName(sub.scopedname+"."+parameter.value.name)
asmgen.assignExpressionToVariable(value, varName, parameter.value.type, sub)
}
private fun argumentViaRegister(sub: Subroutine, parameter: IndexedValue<SubroutineParameter>, value: Expression) {
// pass argument via a register parameter
val valueIDt = value.inferType(program)
if(!valueIDt.isKnown)
throw AssemblyError("unknown dt")
val valueDt = valueIDt.typeOrElse(DataType.STRUCT)
if(!isArgumentTypeCompatible(valueDt, parameter.value.type))
throw AssemblyError("argument type incompatible")
val paramRegister = sub.asmParameterRegisters[parameter.index]
val statusflag = paramRegister.statusflag
val register = paramRegister.registerOrPair
val requiredDt = parameter.value.type
if(requiredDt!=valueDt) {
if(valueDt largerThan requiredDt)
throw AssemblyError("can only convert byte values to word param types")
}
when {
statusflag!=null -> {
if(requiredDt!=valueDt)
throw AssemblyError("for statusflag, byte value is required")
if (statusflag == Statusflag.Pc) {
// this param needs to be set last, right before the jsr
// for now, this is already enforced on the subroutine definition by the Ast Checker
when(value) {
is NumericLiteralValue -> {
val address = (value.addressExpression as NumericLiteralValue).number.toInt()
asmgen.assignFromMemoryByte(target, address, null)
val carrySet = value.number.toInt() != 0
asmgen.out(if(carrySet) " sec" else " clc")
}
is IdentifierReference -> {
asmgen.assignFromMemoryByte(target, null, value.addressExpression as IdentifierReference)
}
else -> {
asmgen.translateExpression(value.addressExpression)
asmgen.out(" jsr prog8_lib.read_byte_from_address | inx")
asmgen.assignFromRegister(target, Register.A)
}
}
}
else -> {
asmgen.translateExpression(value)
asmgen.assignFromEvalResult(target)
}
}
} else {
// pass parameter via a register parameter
val paramRegister = sub.asmParameterRegisters[parameter.index]
val statusflag = paramRegister.statusflag
val register = paramRegister.registerOrPair
val stack = paramRegister.stack
when {
stack -> {
// push arg onto the stack
// note: argument order is reversed (first argument will be deepest on the stack)
asmgen.translateExpression(value)
}
statusflag!=null -> {
if (statusflag == Statusflag.Pc) {
// this param needs to be set last, right before the jsr
// for now, this is already enforced on the subroutine definition by the Ast Checker
when(value) {
is NumericLiteralValue -> {
val carrySet = value.number.toInt() != 0
asmgen.out(if(carrySet) " sec" else " clc")
}
is IdentifierReference -> {
val sourceName = asmgen.asmIdentifierName(value)
asmgen.out("""
val sourceName = asmgen.asmVariableName(value)
asmgen.out("""
pha
lda $sourceName
beq +
sec
bcs ++
+ clc
+
+ pla
""")
}
is RegisterExpr -> {
when(value.register) {
Register.A -> asmgen.out(" cmp #0")
Register.X -> asmgen.out(" txa")
Register.Y -> asmgen.out(" tya")
}
asmgen.out("""
beq +
sec
bcs ++
+ clc
+
""")
}
else -> {
asmgen.translateExpression(value)
asmgen.out("""
inx
lda $ESTACK_LO_HEX,x
beq +
sec
bcs ++
+ clc
+
""")
}
}
}
else throw AssemblyError("can only use Carry as status flag parameter")
}
register!=null && register.name.length==1 -> {
when (value) {
is NumericLiteralValue -> {
val target = AssignTarget(Register.valueOf(register.name), null, null, null, sub.position)
target.linkParents(value.parent)
asmgen.assignFromByteConstant(target, value.number.toShort())
}
is IdentifierReference -> {
val target = AssignTarget(Register.valueOf(register.name), null, null, null, sub.position)
target.linkParents(value.parent)
asmgen.assignFromByteVariable(target, value)
}
else -> {
asmgen.translateExpression(value)
when(register) {
RegisterOrPair.A -> asmgen.out(" inx | lda $ESTACK_LO_HEX,x")
RegisterOrPair.X -> throw AssemblyError("can't pop into X register - use a variable instead")
RegisterOrPair.Y -> asmgen.out(" inx | ldy $ESTACK_LO_HEX,x")
else -> throw AssemblyError("cannot assign to register pair")
}
asmgen.assignExpressionToRegister(value, RegisterOrPair.A)
asmgen.out("""
beq +
sec
bcs ++
+ clc
+""")
}
}
}
register!=null && register.name.length==2 -> {
// register pair as a 16-bit value (only possible for subroutine parameters)
when (value) {
is NumericLiteralValue -> {
// optimize when the argument is a constant literal
val hex = value.number.toHex()
when (register) {
RegisterOrPair.AX -> asmgen.out(" lda #<$hex | ldx #>$hex")
RegisterOrPair.AY -> asmgen.out(" lda #<$hex | ldy #>$hex")
RegisterOrPair.XY -> asmgen.out(" ldx #<$hex | ldy #>$hex")
else -> {}
}
}
is AddressOf -> {
// optimize when the argument is an address of something
val sourceName = asmgen.asmIdentifierName(value.identifier)
when (register) {
RegisterOrPair.AX -> asmgen.out(" lda #<$sourceName | ldx #>$sourceName")
RegisterOrPair.AY -> asmgen.out(" lda #<$sourceName | ldy #>$sourceName")
RegisterOrPair.XY -> asmgen.out(" ldx #<$sourceName | ldy #>$sourceName")
else -> {}
}
}
is IdentifierReference -> {
val sourceName = asmgen.asmIdentifierName(value)
when (register) {
RegisterOrPair.AX -> asmgen.out(" lda $sourceName | ldx $sourceName+1")
RegisterOrPair.AY -> asmgen.out(" lda $sourceName | ldy $sourceName+1")
RegisterOrPair.XY -> asmgen.out(" ldx $sourceName | ldy $sourceName+1")
else -> {}
}
}
else -> {
asmgen.translateExpression(value)
if (register == RegisterOrPair.AX || register == RegisterOrPair.XY)
throw AssemblyError("can't use X register here - use a variable")
else if (register == RegisterOrPair.AY)
asmgen.out(" inx | lda $ESTACK_LO_HEX,x | ldy $ESTACK_HI_HEX,x")
else throw AssemblyError("can only use Carry as status flag parameter")
}
else -> {
// via register or register pair
register!!
if(requiredDt largerThan valueDt) {
// we need to sign extend the source, do this via temporary word variable
val scratchVar = asmgen.asmVariableName("P8ZP_SCRATCH_W1")
asmgen.assignExpressionToVariable(value, scratchVar, DataType.UBYTE, sub)
asmgen.signExtendVariableLsb(scratchVar, valueDt)
asmgen.assignVariableToRegister(scratchVar, register)
}
else {
val target = AsmAssignTarget.fromRegisters(register, sub, program, asmgen)
val src = if(valueDt in PassByReferenceDatatypes) {
if(value is IdentifierReference) {
val addr = AddressOf(value, Position.DUMMY)
AsmAssignSource.fromAstSource(addr, program, asmgen).adjustSignedUnsigned(target)
} else {
AsmAssignSource.fromAstSource(value, program, asmgen).adjustSignedUnsigned(target)
}
} else {
AsmAssignSource.fromAstSource(value, program, asmgen).adjustSignedUnsigned(target)
}
asmgen.translateNormalAssignment(AsmAssignment(src, target, false, Position.DUMMY))
}
}
}
}
private fun argumentTypeCompatible(argType: DataType, paramType: DataType): Boolean {
private fun isArgumentTypeCompatible(argType: DataType, paramType: DataType): Boolean {
if(argType isAssignableTo paramType)
return true
if(argType in ByteDatatypes && paramType in ByteDatatypes)
return true
if(argType in WordDatatypes && paramType in WordDatatypes)
return true
// we have a special rule for some types.
// strings are assignable to UWORD, for example, and vice versa

View File

@ -4,10 +4,8 @@ import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.IdentifierReference
import prog8.ast.expressions.NumericLiteralValue
import prog8.ast.expressions.RegisterExpr
import prog8.ast.statements.PostIncrDecr
import prog8.compiler.AssemblyError
import prog8.compiler.target.c64.C64MachineDefinition.C64Zeropage
import prog8.compiler.toHex
@ -17,28 +15,11 @@ internal class PostIncrDecrAsmGen(private val program: Program, private val asmg
val targetIdent = stmt.target.identifier
val targetMemory = stmt.target.memoryAddress
val targetArrayIdx = stmt.target.arrayindexed
val targetRegister = stmt.target.register
val scope = stmt.definingSubroutine()
when {
targetRegister!=null -> {
when(targetRegister) {
Register.A -> {
if(incr)
asmgen.out(" clc | adc #1 ")
else
asmgen.out(" sec | sbc #1 ")
}
Register.X -> {
if(incr) asmgen.out(" inx") else asmgen.out(" dex")
}
Register.Y -> {
if(incr) asmgen.out(" iny") else asmgen.out(" dey")
}
}
}
targetIdent!=null -> {
val what = asmgen.asmIdentifierName(targetIdent)
val dt = stmt.target.inferType(program, stmt).typeOrElse(DataType.STRUCT)
when (dt) {
val what = asmgen.asmVariableName(targetIdent)
when (stmt.target.inferType(program).typeOrElse(DataType.STRUCT)) {
in ByteDatatypes -> asmgen.out(if (incr) " inc $what" else " dec $what")
in WordDatatypes -> {
if(incr)
@ -53,7 +34,7 @@ internal class PostIncrDecrAsmGen(private val program: Program, private val asmg
}
DataType.FLOAT -> {
asmgen.out(" lda #<$what | ldy #>$what")
asmgen.out(if(incr) " jsr c64flt.inc_var_f" else " jsr c64flt.dec_var_f")
asmgen.out(if(incr) " jsr floats.inc_var_f" else " jsr floats.dec_var_f")
}
else -> throw AssemblyError("need numeric type")
}
@ -65,90 +46,82 @@ internal class PostIncrDecrAsmGen(private val program: Program, private val asmg
asmgen.out(if(incr) " inc $what" else " dec $what")
}
is IdentifierReference -> {
val what = asmgen.asmIdentifierName(addressExpr)
val what = asmgen.asmVariableName(addressExpr)
asmgen.out(" lda $what | sta (+) +1 | lda $what+1 | sta (+) +2")
if(incr)
asmgen.out("+\tinc ${'$'}ffff\t; modified")
else
asmgen.out("+\tdec ${'$'}ffff\t; modified")
}
else -> throw AssemblyError("weird target type $targetMemory")
else -> {
asmgen.assignExpressionToRegister(addressExpr, RegisterOrPair.AY)
asmgen.out(" sta (+) + 1 | sty (+) + 2")
if(incr)
asmgen.out("+\tinc ${'$'}ffff\t; modified")
else
asmgen.out("+\tdec ${'$'}ffff\t; modified")
}
}
}
targetArrayIdx!=null -> {
val index = targetArrayIdx.arrayspec.index
val what = asmgen.asmIdentifierName(targetArrayIdx.identifier)
val arrayDt = targetArrayIdx.identifier.inferType(program).typeOrElse(DataType.STRUCT)
val elementDt = ArrayElementTypes.getValue(arrayDt)
when(index) {
is NumericLiteralValue -> {
val indexValue = index.number.toInt() * elementDt.memorySize()
when(elementDt) {
in ByteDatatypes -> asmgen.out(if (incr) " inc $what+$indexValue" else " dec $what+$indexValue")
in WordDatatypes -> {
if(incr)
asmgen.out(" inc $what+$indexValue | bne + | inc $what+$indexValue+1 |+")
else
asmgen.out("""
lda $what+$indexValue
bne +
dec $what+$indexValue+1
+ dec $what+$indexValue
val asmArrayvarname = asmgen.asmVariableName(targetArrayIdx.arrayvar)
val elementDt = targetArrayIdx.inferType(program).typeOrElse(DataType.STRUCT)
if(targetArrayIdx.indexer.indexNum!=null) {
val indexValue = targetArrayIdx.indexer.constIndex()!! * elementDt.memorySize()
when(elementDt) {
in ByteDatatypes -> asmgen.out(if (incr) " inc $asmArrayvarname+$indexValue" else " dec $asmArrayvarname+$indexValue")
in WordDatatypes -> {
if(incr)
asmgen.out(" inc $asmArrayvarname+$indexValue | bne + | inc $asmArrayvarname+$indexValue+1 |+")
else
asmgen.out("""
lda $asmArrayvarname+$indexValue
bne +
dec $asmArrayvarname+$indexValue+1
+ dec $asmArrayvarname+$indexValue
""")
}
DataType.FLOAT -> {
asmgen.out(" lda #<$what+$indexValue | ldy #>$what+$indexValue")
asmgen.out(if(incr) " jsr c64flt.inc_var_f" else " jsr c64flt.dec_var_f")
}
else -> throw AssemblyError("need numeric type")
}
}
is RegisterExpr -> {
// TODO optimize common cases
asmgen.translateArrayIndexIntoA(targetArrayIdx)
incrDecrArrayvalueWithIndexA(incr, arrayDt, what)
}
is IdentifierReference -> {
// TODO optimize common cases
asmgen.translateArrayIndexIntoA(targetArrayIdx)
incrDecrArrayvalueWithIndexA(incr, arrayDt, what)
}
else -> {
// TODO optimize common cases
asmgen.translateArrayIndexIntoA(targetArrayIdx)
incrDecrArrayvalueWithIndexA(incr, arrayDt, what)
DataType.FLOAT -> {
asmgen.out(" lda #<$asmArrayvarname+$indexValue | ldy #>$asmArrayvarname+$indexValue")
asmgen.out(if(incr) " jsr floats.inc_var_f" else " jsr floats.dec_var_f")
}
else -> throw AssemblyError("need numeric type")
}
}
}
else -> throw AssemblyError("weird target type ${stmt.target}")
}
}
private fun incrDecrArrayvalueWithIndexA(incr: Boolean, arrayDt: DataType, arrayVarName: String) {
asmgen.out(" stx ${C64Zeropage.SCRATCH_REG_X} | tax")
when(arrayDt) {
DataType.STR,
DataType.ARRAY_UB, DataType.ARRAY_B -> {
asmgen.out(if(incr) " inc $arrayVarName,x" else " dec $arrayVarName,x")
}
DataType.ARRAY_UW, DataType.ARRAY_W -> {
if(incr)
asmgen.out(" inc $arrayVarName,x | bne + | inc $arrayVarName+1,x |+")
else
asmgen.out("""
lda $arrayVarName,x
bne +
dec $arrayVarName+1,x
+ dec $arrayVarName
{
asmgen.loadScaledArrayIndexIntoRegister(targetArrayIdx, elementDt, CpuRegister.A)
asmgen.saveRegister(CpuRegister.X, false, scope!!)
asmgen.out(" tax")
when(elementDt) {
in ByteDatatypes -> {
asmgen.out(if(incr) " inc $asmArrayvarname,x" else " dec $asmArrayvarname,x")
}
in WordDatatypes -> {
if(incr)
asmgen.out(" inc $asmArrayvarname,x | bne + | inc $asmArrayvarname+1,x |+")
else
asmgen.out("""
lda $asmArrayvarname,x
bne +
dec $asmArrayvarname+1,x
+ dec $asmArrayvarname
""")
}
DataType.FLOAT -> {
asmgen.out("""
ldy #>$asmArrayvarname
clc
adc #<$asmArrayvarname
bcc +
iny
+ jsr floats.inc_var_f""")
}
else -> throw AssemblyError("weird array elt dt")
}
asmgen.restoreRegister(CpuRegister.X, false)
}
}
DataType.ARRAY_F -> {
asmgen.out(" lda #<$arrayVarName | ldy #>$arrayVarName")
asmgen.out(if(incr) " jsr c64flt.inc_indexed_var_f" else " jsr c64flt.dec_indexed_var_f")
}
else -> throw AssemblyError("weird array dt")
}
asmgen.out(" ldx ${C64Zeropage.SCRATCH_REG_X}")
}
}

View File

@ -0,0 +1,194 @@
package prog8.compiler.target.c64.codegen.assignment
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.*
import prog8.compiler.AssemblyError
import prog8.compiler.target.c64.codegen.AsmGen
internal enum class TargetStorageKind {
VARIABLE,
ARRAY,
MEMORY,
REGISTER,
STACK
}
internal enum class SourceStorageKind {
LITERALNUMBER,
VARIABLE,
ARRAY,
MEMORY,
REGISTER,
STACK, // value is already present on stack
EXPRESSION, // expression in ast-form, still to be evaluated
}
internal class AsmAssignTarget(val kind: TargetStorageKind,
private val program: Program,
private val asmgen: AsmGen,
val datatype: DataType,
val scope: Subroutine?,
private val variableAsmName: String? = null,
val array: ArrayIndexedExpression? = null,
val memory: DirectMemoryWrite? = null,
val register: RegisterOrPair? = null,
val origAstTarget: AssignTarget? = null
)
{
val constMemoryAddress by lazy { memory?.addressExpression?.constValue(program)?.number?.toInt() ?: 0}
val constArrayIndexValue by lazy { array?.indexer?.constIndex() }
val asmVarname: String
get() = if(array==null)
variableAsmName!!
else
asmgen.asmVariableName(array.arrayvar)
lateinit var origAssign: AsmAssignment
init {
if(register!=null && datatype !in NumericDatatypes)
throw AssemblyError("register must be integer or float type")
}
companion object {
fun fromAstAssignment(assign: Assignment, program: Program, asmgen: AsmGen): AsmAssignTarget = with(assign.target) {
val idt = inferType(program)
if(!idt.isKnown)
throw AssemblyError("unknown dt")
val dt = idt.typeOrElse(DataType.STRUCT)
when {
identifier != null -> AsmAssignTarget(TargetStorageKind.VARIABLE, program, asmgen, dt, assign.definingSubroutine(), variableAsmName = asmgen.asmVariableName(identifier!!), origAstTarget = this)
arrayindexed != null -> AsmAssignTarget(TargetStorageKind.ARRAY, program, asmgen, dt, assign.definingSubroutine(), array = arrayindexed, origAstTarget = this)
memoryAddress != null -> AsmAssignTarget(TargetStorageKind.MEMORY, program, asmgen, dt, assign.definingSubroutine(), memory = memoryAddress, origAstTarget = this)
else -> throw AssemblyError("weird target")
}
}
fun fromRegisters(registers: RegisterOrPair, scope: Subroutine?, program: Program, asmgen: AsmGen): AsmAssignTarget =
when(registers) {
RegisterOrPair.A,
RegisterOrPair.X,
RegisterOrPair.Y -> AsmAssignTarget(TargetStorageKind.REGISTER, program, asmgen, DataType.UBYTE, scope, register = registers)
RegisterOrPair.AX,
RegisterOrPair.AY,
RegisterOrPair.XY -> AsmAssignTarget(TargetStorageKind.REGISTER, program, asmgen, DataType.UWORD, scope, register = registers)
RegisterOrPair.FAC1,
RegisterOrPair.FAC2 -> AsmAssignTarget(TargetStorageKind.REGISTER, program, asmgen, DataType.FLOAT, scope, register = registers)
}
}
}
internal class AsmAssignSource(val kind: SourceStorageKind,
private val program: Program,
private val asmgen: AsmGen,
val datatype: DataType,
private val variableAsmName: String? = null,
val array: ArrayIndexedExpression? = null,
val memory: DirectMemoryRead? = null,
val register: CpuRegister? = null,
val number: NumericLiteralValue? = null,
val expression: Expression? = null
)
{
val constMemoryAddress by lazy { memory?.addressExpression?.constValue(program)?.number?.toInt() ?: 0}
val constArrayIndexValue by lazy { array?.indexer?.constIndex() }
val asmVarname: String
get() = if(array==null)
variableAsmName!!
else
asmgen.asmVariableName(array.arrayvar)
companion object {
fun fromAstSource(indexer: ArrayIndex, program: Program, asmgen: AsmGen): AsmAssignSource {
return when {
indexer.indexNum!=null -> fromAstSource(indexer.indexNum!!, program, asmgen)
indexer.indexVar!=null -> fromAstSource(indexer.indexVar!!, program, asmgen)
else -> throw AssemblyError("weird indexer")
}
}
fun fromAstSource(value: Expression, program: Program, asmgen: AsmGen): AsmAssignSource {
val cv = value.constValue(program)
if(cv!=null)
return AsmAssignSource(SourceStorageKind.LITERALNUMBER, program, asmgen, cv.type, number = cv)
return when(value) {
is NumericLiteralValue -> AsmAssignSource(SourceStorageKind.LITERALNUMBER, program, asmgen, value.type, number = cv)
is StringLiteralValue -> throw AssemblyError("string literal value should not occur anymore for asm generation")
is ArrayLiteralValue -> throw AssemblyError("array literal value should not occur anymore for asm generation")
is IdentifierReference -> {
val dt = value.inferType(program).typeOrElse(DataType.STRUCT)
AsmAssignSource(SourceStorageKind.VARIABLE, program, asmgen, dt, variableAsmName = asmgen.asmVariableName(value))
}
is DirectMemoryRead -> {
AsmAssignSource(SourceStorageKind.MEMORY, program, asmgen, DataType.UBYTE, memory = value)
}
is ArrayIndexedExpression -> {
val dt = value.inferType(program).typeOrElse(DataType.STRUCT)
AsmAssignSource(SourceStorageKind.ARRAY, program, asmgen, dt, array = value)
}
is FunctionCall -> {
when (val sub = value.target.targetStatement(program.namespace)) {
is Subroutine -> {
val returnType = sub.returntypes.zip(sub.asmReturnvaluesRegisters).firstOrNull { rr -> rr.second.registerOrPair != null }?.first
?: throw AssemblyError("can't translate zero return values in assignment")
AsmAssignSource(SourceStorageKind.EXPRESSION, program, asmgen, returnType, expression = value)
}
is BuiltinFunctionStatementPlaceholder -> {
val returnType = value.inferType(program)
if(!returnType.isKnown)
throw AssemblyError("unknown dt")
AsmAssignSource(SourceStorageKind.EXPRESSION, program, asmgen, returnType.typeOrElse(DataType.STRUCT), expression = value)
}
else -> {
throw AssemblyError("weird call")
}
}
}
else -> {
val dt = value.inferType(program)
if(!dt.isKnown)
throw AssemblyError("unknown dt")
AsmAssignSource(SourceStorageKind.EXPRESSION, program, asmgen, dt.typeOrElse(DataType.STRUCT), expression = value)
}
}
}
}
fun adjustSignedUnsigned(target: AsmAssignTarget): AsmAssignSource {
// allow some signed/unsigned relaxations
fun withAdjustedDt(newType: DataType) =
AsmAssignSource(kind, program, asmgen, newType, variableAsmName, array, memory, register, number, expression)
if(target.datatype!=datatype) {
if(target.datatype in ByteDatatypes && datatype in ByteDatatypes) {
return withAdjustedDt(target.datatype)
} else if(target.datatype in WordDatatypes && datatype in WordDatatypes) {
return withAdjustedDt(target.datatype)
}
}
return this
}
}
internal class AsmAssignment(val source: AsmAssignSource,
val target: AsmAssignTarget,
val isAugmentable: Boolean,
val position: Position) {
init {
if(target.register !in setOf(RegisterOrPair.XY, RegisterOrPair.AX, RegisterOrPair.AY))
require(source.datatype != DataType.STRUCT) { "must not be placeholder datatype" }
require(source.datatype.memorySize() <= target.datatype.memorySize()) {
"source storage size must be less or equal to target datatype storage size"
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,118 @@
package prog8.compiler.target.cx16
import prog8.ast.Program
import prog8.compiler.*
import prog8.compiler.target.CpuType
import prog8.compiler.target.IMachineDefinition
import prog8.compiler.target.c64.C64MachineDefinition
import prog8.parser.ModuleImporter
import java.io.IOException
internal object CX16MachineDefinition: IMachineDefinition {
override val cpu = CpuType.CPU65c02
// 5-byte cbm MFLPT format limitations:
override val FLOAT_MAX_POSITIVE = 1.7014118345e+38 // bytes: 255,127,255,255,255
override val FLOAT_MAX_NEGATIVE = -1.7014118345e+38 // bytes: 255,255,255,255,255
override val FLOAT_MEM_SIZE = 5
override val POINTER_MEM_SIZE = 2
override val BASIC_LOAD_ADDRESS = 0x0801
override val RAW_LOAD_ADDRESS = 0x8000
// the 2*256 byte evaluation stack (on which bytes, words, and even floats are stored during calculations)
// and some heavily used string constants derived from the two values above
override val ESTACK_LO = 0x0400 // $0400-$04ff inclusive
override val ESTACK_HI = 0x0500 // $0500-$05ff inclusive
override lateinit var zeropage: Zeropage
override fun getFloat(num: Number) = C64MachineDefinition.Mflpt5.fromNumber(num)
override fun getFloatRomConst(number: Double): String? = null // Cx16 has no pulblic ROM float locations
override fun importLibs(compilerOptions: CompilationOptions, importer: ModuleImporter, program: Program) {
if (compilerOptions.launcher == LauncherType.BASIC || compilerOptions.output == OutputType.PRG)
importer.importLibraryModule(program, "syslib")
}
override fun launchEmulator(programName: String) {
for(emulator in listOf("x16emu")) {
println("\nStarting Commander X16 emulator $emulator...")
val cmdline = listOf(emulator, "-rom", "/usr/share/x16-rom/rom.bin", "-scale", "2",
"-run", "-prg", programName + ".prg")
val processb = ProcessBuilder(cmdline).inheritIO()
val process: Process
try {
process=processb.start()
} catch(x: IOException) {
continue // try the next emulator executable
}
process.waitFor()
break
}
}
override fun isRegularRAMaddress(address: Int): Boolean = address < 0x9f00 || address in 0xa000..0xbfff
override fun initializeZeropage(compilerOptions: CompilationOptions) {
zeropage = CX16Zeropage(compilerOptions)
}
// 6502 opcodes (including aliases and illegal opcodes), these cannot be used as variable or label names
override val opcodeNames = setOf("adc", "and", "asl", "bcc", "bcs",
"beq", "bge", "bit", "blt", "bmi", "bne", "bpl", "brk", "bvc", "bvs", "clc",
"cld", "cli", "clv", "cmp", "cpx", "cpy", "dec", "dex", "dey",
"eor", "gcc", "gcs", "geq", "gge", "glt", "gmi", "gne", "gpl", "gvc", "gvs",
"inc", "inx", "iny", "jmp", "jsr",
"lda", "ldx", "ldy", "lsr", "nop", "ora", "pha", "php",
"pla", "plp", "rol", "ror", "rti", "rts", "sbc",
"sec", "sed", "sei",
"sta", "stx", "sty", "tax", "tay", "tsx", "txa", "txs", "tya",
"bra", "phx", "phy", "plx", "ply", "stz", "trb", "tsb", "bbr", "bbs",
"rmb", "smb", "stp", "wai")
internal class CX16Zeropage(options: CompilationOptions) : Zeropage(options) {
override val SCRATCH_B1 = 0x79 // temp storage for a single byte
override val SCRATCH_REG = 0x7a // temp storage for a register, must be B1+1
override val SCRATCH_W1 = 0x7c // temp storage 1 for a word $7c+$7d
override val SCRATCH_W2 = 0x7e // temp storage 2 for a word $7e+$7f
init {
if (options.floats && options.zeropage !in setOf(ZeropageType.BASICSAFE, ZeropageType.DONTUSE ))
throw CompilerException("when floats are enabled, zero page type should be 'basicsafe' or 'dontuse'")
// the addresses 0x02 to 0x21 (inclusive) are taken for sixteen virtual 16-bit api registers.
when (options.zeropage) {
ZeropageType.FULL -> {
free.addAll(0x22..0xff)
free.removeAll(listOf(SCRATCH_B1, SCRATCH_REG, SCRATCH_W1, SCRATCH_W1 + 1, SCRATCH_W2, SCRATCH_W2 + 1))
}
ZeropageType.KERNALSAFE -> {
free.addAll(0x22..0x7f)
free.addAll(0xa9..0xff)
free.removeAll(listOf(SCRATCH_B1, SCRATCH_REG, SCRATCH_W1, SCRATCH_W1 + 1, SCRATCH_W2, SCRATCH_W2 + 1))
}
ZeropageType.BASICSAFE -> {
free.addAll(0x22..0x7f)
free.removeAll(listOf(SCRATCH_B1, SCRATCH_REG, SCRATCH_W1, SCRATCH_W1 + 1, SCRATCH_W2, SCRATCH_W2 + 1))
}
ZeropageType.DONTUSE -> {
free.clear() // don't use zeropage at all
}
else -> throw CompilerException("for this machine target, zero page type 'floatsafe' is not available. ${options.zeropage}")
}
require(SCRATCH_B1 !in free)
require(SCRATCH_REG !in free)
require(SCRATCH_W1 !in free)
require(SCRATCH_W2 !in free)
for (reserved in options.zpReserved)
reserve(reserved)
}
}
}

View File

@ -3,6 +3,8 @@ package prog8.functions
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.StructDecl
import prog8.ast.statements.VarDecl
import prog8.compiler.CompilerException
import kotlin.math.*
@ -13,86 +15,168 @@ class FParam(val name: String, val possibleDatatypes: Set<DataType>)
typealias ConstExpressionCaller = (args: List<Expression>, position: Position, program: Program) -> NumericLiteralValue
class FSignature(val pure: Boolean, // does it have side effects?
class ReturnConvention(val dt: DataType, val reg: RegisterOrPair?, val floatFac1: Boolean)
class ParamConvention(val dt: DataType, val reg: RegisterOrPair?, val variable: Boolean)
class CallConvention(val params: List<ParamConvention>, val returns: ReturnConvention) {
override fun toString(): String {
val paramConvs = params.mapIndexed { index, it ->
when {
it.reg!=null -> "$index:${it.reg}"
it.variable -> "$index:variable"
else -> "$index:???"
}
}
val returnConv =
when {
returns.reg!=null -> returns.reg.toString()
returns.floatFac1 -> "floatFAC1"
else -> "<no returnvalue>"
}
return "CallConvention[" + paramConvs.joinToString() + " ; returns: $returnConv]"
}
}
class FSignature(val name: String,
val pure: Boolean, // does it have side effects?
val parameters: List<FParam>,
val returntype: DataType?,
val constExpressionFunc: ConstExpressionCaller? = null)
val known_returntype: DataType?, // specify return type if fixed, otherwise null if it depends on the arguments
val constExpressionFunc: ConstExpressionCaller? = null) {
fun callConvention(actualParamTypes: List<DataType>): CallConvention {
val returns = when(known_returntype) {
DataType.UBYTE, DataType.BYTE -> ReturnConvention(known_returntype, RegisterOrPair.A, false)
DataType.UWORD, DataType.WORD -> ReturnConvention(known_returntype, RegisterOrPair.AY, false)
DataType.FLOAT -> ReturnConvention(known_returntype, null, true)
in PassByReferenceDatatypes -> ReturnConvention(known_returntype!!, RegisterOrPair.AY, false)
else -> {
val paramType = actualParamTypes.first()
if(pure)
// return type depends on arg type
when(paramType) {
DataType.UBYTE, DataType.BYTE -> ReturnConvention(paramType, RegisterOrPair.A, false)
DataType.UWORD, DataType.WORD -> ReturnConvention(paramType, RegisterOrPair.AY, false)
DataType.FLOAT -> ReturnConvention(paramType, null, true)
in PassByReferenceDatatypes -> ReturnConvention(paramType, RegisterOrPair.AY, false)
else -> ReturnConvention(paramType, null, false)
}
else {
ReturnConvention(paramType, null, false)
}
}
}
return when {
actualParamTypes.isEmpty() -> CallConvention(emptyList(), returns)
actualParamTypes.size==1 -> {
// one parameter? via register/registerpair
val paramConv = when(val paramType = actualParamTypes[0]) {
DataType.UBYTE, DataType.BYTE -> ParamConvention(paramType, RegisterOrPair.A, false)
DataType.UWORD, DataType.WORD -> ParamConvention(paramType, RegisterOrPair.AY, false)
DataType.FLOAT -> ParamConvention(paramType, RegisterOrPair.AY, false)
in PassByReferenceDatatypes -> ParamConvention(paramType, RegisterOrPair.AY, false)
else -> ParamConvention(paramType, null, false)
}
CallConvention(listOf(paramConv), returns)
}
else -> {
// multiple parameters? via variables
val paramConvs = actualParamTypes.map { ParamConvention(it, null, true) }
CallConvention(paramConvs, returns)
}
}
}
}
val BuiltinFunctions = mapOf(
private val functionSignatures: List<FSignature> = listOf(
// this set of function have no return value and operate in-place:
"rol" to FSignature(false, listOf(FParam("item", setOf(DataType.UBYTE, DataType.UWORD))), null),
"ror" to FSignature(false, listOf(FParam("item", setOf(DataType.UBYTE, DataType.UWORD))), null),
"rol2" to FSignature(false, listOf(FParam("item", setOf(DataType.UBYTE, DataType.UWORD))), null),
"ror2" to FSignature(false, listOf(FParam("item", setOf(DataType.UBYTE, DataType.UWORD))), null),
"lsl" to FSignature(false, listOf(FParam("item", IntegerDatatypes)), null),
"lsr" to FSignature(false, listOf(FParam("item", IntegerDatatypes)), null),
"sort" to FSignature(false, listOf(FParam("array", ArrayDatatypes)), null),
"reverse" to FSignature(false, listOf(FParam("array", ArrayDatatypes)), null),
FSignature("rol" , false, listOf(FParam("item", setOf(DataType.UBYTE, DataType.UWORD))), null),
FSignature("ror" , false, listOf(FParam("item", setOf(DataType.UBYTE, DataType.UWORD))), null),
FSignature("rol2" , false, listOf(FParam("item", setOf(DataType.UBYTE, DataType.UWORD))), null),
FSignature("ror2" , false, listOf(FParam("item", setOf(DataType.UBYTE, DataType.UWORD))), null),
FSignature("sort" , false, listOf(FParam("array", ArrayDatatypes)), null),
FSignature("reverse" , false, listOf(FParam("array", ArrayDatatypes)), null),
// these few have a return value depending on the argument(s):
"max" to FSignature(true, listOf(FParam("values", ArrayDatatypes)), null) { a, p, prg -> collectionArg(a, p, prg, ::builtinMax) }, // type depends on args
"min" to FSignature(true, listOf(FParam("values", ArrayDatatypes)), null) { a, p, prg -> collectionArg(a, p, prg, ::builtinMin) }, // type depends on args
"sum" to FSignature(true, listOf(FParam("values", ArrayDatatypes)), null) { a, p, prg -> collectionArg(a, p, prg, ::builtinSum) }, // type depends on args
"abs" to FSignature(true, listOf(FParam("value", NumericDatatypes)), null, ::builtinAbs), // type depends on argument
"len" to FSignature(true, listOf(FParam("values", IterableDatatypes)), null, ::builtinLen), // type is UBYTE or UWORD depending on actual length
FSignature("max" , true, listOf(FParam("values", ArrayDatatypes)), null) { a, p, prg -> collectionArg(a, p, prg, ::builtinMax) }, // type depends on args
FSignature("min" , true, listOf(FParam("values", ArrayDatatypes)), null) { a, p, prg -> collectionArg(a, p, prg, ::builtinMin) }, // type depends on args
FSignature("sum" , true, listOf(FParam("values", ArrayDatatypes)), null) { a, p, prg -> collectionArg(a, p, prg, ::builtinSum) }, // type depends on args
FSignature("abs" , true, listOf(FParam("value", NumericDatatypes)), null, ::builtinAbs), // type depends on argument
FSignature("len" , true, listOf(FParam("values", IterableDatatypes)), null, ::builtinLen), // type is UBYTE or UWORD depending on actual length
FSignature("sizeof" , true, listOf(FParam("object", DataType.values().toSet())), DataType.UBYTE, ::builtinSizeof),
// normal functions follow:
"sgn" to FSignature(true, listOf(FParam("value", NumericDatatypes)), DataType.BYTE, ::builtinSgn ),
"sin" to FSignature(true, listOf(FParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::sin) },
"sin8" to FSignature(true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.BYTE, ::builtinSin8 ),
"sin8u" to FSignature(true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.UBYTE, ::builtinSin8u ),
"sin16" to FSignature(true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.WORD, ::builtinSin16 ),
"sin16u" to FSignature(true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.UWORD, ::builtinSin16u ),
"cos" to FSignature(true, listOf(FParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::cos) },
"cos8" to FSignature(true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.BYTE, ::builtinCos8 ),
"cos8u" to FSignature(true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.UBYTE, ::builtinCos8u ),
"cos16" to FSignature(true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.WORD, ::builtinCos16 ),
"cos16u" to FSignature(true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.UWORD, ::builtinCos16u ),
"tan" to FSignature(true, listOf(FParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::tan) },
"atan" to FSignature(true, listOf(FParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::atan) },
"ln" to FSignature(true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::log) },
"log2" to FSignature(true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, ::log2) },
"sqrt16" to FSignature(true, listOf(FParam("value", setOf(DataType.UWORD))), DataType.UBYTE) { a, p, prg -> oneIntArgOutputInt(a, p, prg) { sqrt(it.toDouble()).toInt() } },
"sqrt" to FSignature(true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::sqrt) },
"rad" to FSignature(true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::toRadians) },
"deg" to FSignature(true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::toDegrees) },
"round" to FSignature(true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArgOutputWord(a, p, prg, Math::round) },
"floor" to FSignature(true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArgOutputWord(a, p, prg, Math::floor) },
"ceil" to FSignature(true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArgOutputWord(a, p, prg, Math::ceil) },
"any" to FSignature(true, listOf(FParam("values", ArrayDatatypes)), DataType.UBYTE) { a, p, prg -> collectionArg(a, p, prg, ::builtinAny) },
"all" to FSignature(true, listOf(FParam("values", ArrayDatatypes)), DataType.UBYTE) { a, p, prg -> collectionArg(a, p, prg, ::builtinAll) },
"lsb" to FSignature(true, listOf(FParam("value", setOf(DataType.UWORD, DataType.WORD))), DataType.UBYTE) { a, p, prg -> oneIntArgOutputInt(a, p, prg) { x: Int -> x and 255 }},
"msb" to FSignature(true, listOf(FParam("value", setOf(DataType.UWORD, DataType.WORD))), DataType.UBYTE) { a, p, prg -> oneIntArgOutputInt(a, p, prg) { x: Int -> x ushr 8 and 255}},
"mkword" to FSignature(true, listOf(FParam("lsb", setOf(DataType.UBYTE)), FParam("msb", setOf(DataType.UBYTE))), DataType.UWORD, ::builtinMkword),
"rnd" to FSignature(true, emptyList(), DataType.UBYTE),
"rndw" to FSignature(true, emptyList(), DataType.UWORD),
"rndf" to FSignature(true, emptyList(), DataType.FLOAT),
"exit" to FSignature(false, listOf(FParam("returnvalue", setOf(DataType.UBYTE))), null),
"rsave" to FSignature(false, emptyList(), null),
"rrestore" to FSignature(false, emptyList(), null),
"set_carry" to FSignature(false, emptyList(), null),
"clear_carry" to FSignature(false, emptyList(), null),
"set_irqd" to FSignature(false, emptyList(), null),
"clear_irqd" to FSignature(false, emptyList(), null),
"read_flags" to FSignature(false, emptyList(), DataType.UBYTE),
"swap" to FSignature(false, listOf(FParam("first", NumericDatatypes), FParam("second", NumericDatatypes)), null),
"memcopy" to FSignature(false, listOf(
FSignature("sgn" , true, listOf(FParam("value", NumericDatatypes)), DataType.BYTE, ::builtinSgn ),
FSignature("sin" , true, listOf(FParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::sin) },
FSignature("sin8" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.BYTE, ::builtinSin8 ),
FSignature("sin8u" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.UBYTE, ::builtinSin8u ),
FSignature("sin16" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.WORD, ::builtinSin16 ),
FSignature("sin16u" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.UWORD, ::builtinSin16u ),
FSignature("cos" , true, listOf(FParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::cos) },
FSignature("cos8" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.BYTE, ::builtinCos8 ),
FSignature("cos8u" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.UBYTE, ::builtinCos8u ),
FSignature("cos16" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.WORD, ::builtinCos16 ),
FSignature("cos16u" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.UWORD, ::builtinCos16u ),
FSignature("tan" , true, listOf(FParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::tan) },
FSignature("atan" , true, listOf(FParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::atan) },
FSignature("ln" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::log) },
FSignature("log2" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, ::log2) },
FSignature("sqrt16" , true, listOf(FParam("value", setOf(DataType.UWORD))), DataType.UBYTE) { a, p, prg -> oneIntArgOutputInt(a, p, prg) { sqrt(it.toDouble()).toInt() } },
FSignature("sqrt" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::sqrt) },
FSignature("rad" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::toRadians) },
FSignature("deg" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::toDegrees) },
FSignature("round" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArgOutputWord(a, p, prg, Math::round) },
FSignature("floor" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArgOutputWord(a, p, prg, Math::floor) },
FSignature("ceil" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArgOutputWord(a, p, prg, Math::ceil) },
FSignature("any" , true, listOf(FParam("values", ArrayDatatypes)), DataType.UBYTE) { a, p, prg -> collectionArg(a, p, prg, ::builtinAny) },
FSignature("all" , true, listOf(FParam("values", ArrayDatatypes)), DataType.UBYTE) { a, p, prg -> collectionArg(a, p, prg, ::builtinAll) },
FSignature("lsb" , true, listOf(FParam("value", setOf(DataType.UWORD, DataType.WORD))), DataType.UBYTE) { a, p, prg -> oneIntArgOutputInt(a, p, prg) { x: Int -> x and 255 }},
FSignature("msb" , true, listOf(FParam("value", setOf(DataType.UWORD, DataType.WORD))), DataType.UBYTE) { a, p, prg -> oneIntArgOutputInt(a, p, prg) { x: Int -> x ushr 8 and 255}},
FSignature("mkword" , true, listOf(FParam("msb", setOf(DataType.UBYTE)), FParam("lsb", setOf(DataType.UBYTE))), DataType.UWORD, ::builtinMkword),
FSignature("rnd" , false, emptyList(), DataType.UBYTE),
FSignature("rndw" , false, emptyList(), DataType.UWORD),
FSignature("rndf" , false, emptyList(), DataType.FLOAT),
FSignature("exit" , false, listOf(FParam("returnvalue", setOf(DataType.UBYTE))), null),
FSignature("rsave" , false, emptyList(), null),
FSignature("rrestore" , false, emptyList(), null),
FSignature("set_carry" , false, emptyList(), null),
FSignature("clear_carry" , false, emptyList(), null),
FSignature("set_irqd" , false, emptyList(), null),
FSignature("clear_irqd" , false, emptyList(), null),
FSignature("read_flags" , false, emptyList(), DataType.UBYTE),
FSignature("swap" , false, listOf(FParam("first", NumericDatatypes), FParam("second", NumericDatatypes)), null),
FSignature("memcopy" , false, listOf(
FParam("from", IterableDatatypes + DataType.UWORD),
FParam("to", IterableDatatypes + DataType.UWORD),
FParam("numbytes", setOf(DataType.UBYTE))), null),
"memset" to FSignature(false, listOf(
FParam("numbytes", setOf(DataType.UBYTE, DataType.UWORD))), null),
FSignature("memset" , false, listOf(
FParam("address", IterableDatatypes + DataType.UWORD),
FParam("numbytes", setOf(DataType.UWORD)),
FParam("bytevalue", ByteDatatypes)), null),
"memsetw" to FSignature(false, listOf(
FSignature("memsetw" , false, listOf(
FParam("address", IterableDatatypes + DataType.UWORD),
FParam("numwords", setOf(DataType.UWORD)),
FParam("wordvalue", setOf(DataType.UWORD, DataType.WORD))), null),
"strlen" to FSignature(true, listOf(FParam("string", setOf(DataType.STR))), DataType.UBYTE, ::builtinStrlen)
FSignature("strlen" , true, listOf(FParam("string", setOf(DataType.STR))), DataType.UBYTE, ::builtinStrlen),
FSignature("substr" , false, listOf(
FParam("source", IterableDatatypes + DataType.UWORD),
FParam("target", IterableDatatypes + DataType.UWORD),
FParam("start", setOf(DataType.UBYTE)),
FParam("length", setOf(DataType.UBYTE))), null),
FSignature("leftstr" , false, listOf(
FParam("source", IterableDatatypes + DataType.UWORD),
FParam("target", IterableDatatypes + DataType.UWORD),
FParam("length", setOf(DataType.UBYTE))), null),
FSignature("rightstr" , false, listOf(
FParam("source", IterableDatatypes + DataType.UWORD),
FParam("target", IterableDatatypes + DataType.UWORD),
FParam("length", setOf(DataType.UBYTE))), null),
FSignature("strcmp" , false, listOf(FParam("s1", IterableDatatypes + DataType.UWORD), FParam("s2", IterableDatatypes + DataType.UWORD)), DataType.BYTE, null)
)
fun builtinMax(array: List<Number>): Number = array.maxBy { it.toDouble() }!!
val BuiltinFunctions = functionSignatures.associateBy { it.name }
fun builtinMin(array: List<Number>): Number = array.minBy { it.toDouble() }!!
fun builtinMax(array: List<Number>): Number = array.maxByOrNull { it.toDouble() }!!
fun builtinMin(array: List<Number>): Number = array.minByOrNull { it.toDouble() }!!
fun builtinSum(array: List<Number>): Number = array.sumByDouble { it.toDouble() }
@ -129,17 +213,17 @@ fun builtinFunctionReturnType(function: String, args: List<Expression>, program:
}
val func = BuiltinFunctions.getValue(function)
if(func.returntype!=null)
return InferredTypes.knownFor(func.returntype)
// function has return values, but the return type depends on the arguments
if(func.known_returntype!=null)
return InferredTypes.knownFor(func.known_returntype)
// function has return values, but the return type depends on the arguments
return when (function) {
"abs" -> {
val dt = args.single().inferType(program)
if(dt.typeOrElse(DataType.STRUCT) in NumericDatatypes)
return dt
return if(dt.typeOrElse(DataType.STRUCT) in NumericDatatypes)
dt
else
throw FatalAstException("weird datatype passed to abs $dt")
InferredTypes.InferredType.unknown()
}
"max", "min" -> {
when(val dt = datatypeFromIterableArg(args.single())) {
@ -172,6 +256,7 @@ fun builtinFunctionReturnType(function: String, args: List<Expression>, program:
class NotConstArgumentException: AstException("not a const argument to a built-in function")
class CannotEvaluateException(func:String, msg: String): FatalAstException("cannot evaluate built-in function $func: $msg")
private fun oneDoubleArg(args: List<Expression>, position: Position, program: Program, function: (arg: Double)->Number): NumericLiteralValue {
@ -226,54 +311,88 @@ private fun builtinAbs(args: List<Expression>, position: Position, program: Prog
}
}
private fun builtinSizeof(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
// 1 arg, type = anything, result type = ubyte
if(args.size!=1)
throw SyntaxError("sizeof requires one argument", position)
if(args[0] !is IdentifierReference)
throw SyntaxError("sizeof argument should be an identifier", position)
val dt = args[0].inferType(program)
if(dt.isKnown) {
val target = (args[0] as IdentifierReference).targetStatement(program.namespace)
?: throw CannotEvaluateException("sizeof", "no target")
fun structSize(target: StructDecl) =
NumericLiteralValue(DataType.UBYTE, target.statements.map { (it as VarDecl).datatype.memorySize() }.sum(), position)
return when {
dt.typeOrElse(DataType.STRUCT) in ArrayDatatypes -> {
val length = (target as VarDecl).arraysize!!.constIndex() ?: throw CannotEvaluateException("sizeof", "unknown array size")
val elementDt = ArrayElementTypes.getValue(dt.typeOrElse(DataType.STRUCT))
numericLiteral(elementDt.memorySize() * length, position)
}
dt.istype(DataType.STRUCT) -> {
when (target) {
is VarDecl -> structSize(target.struct!!)
is StructDecl -> structSize(target)
else -> throw CompilerException("weird struct type $target")
}
}
dt.istype(DataType.STR) -> throw SyntaxError("sizeof str is undefined, did you mean len?", position)
else -> NumericLiteralValue(DataType.UBYTE, dt.typeOrElse(DataType.STRUCT).memorySize(), position)
}
} else {
throw SyntaxError("sizeof invalid argument type", position)
}
}
private fun builtinStrlen(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("strlen requires one argument", position)
val argument = args[0].constValue(program) ?: throw NotConstArgumentException()
if(argument.type != DataType.STR)
throw SyntaxError("strlen must have string argument", position)
throw NotConstArgumentException() // this function is not considering the string argument a constant
val argument=args[0]
if(argument is StringLiteralValue)
return NumericLiteralValue.optimalInteger(argument.value.length, argument.position)
val vardecl = (argument as IdentifierReference).targetVarDecl(program.namespace)
if(vardecl!=null) {
if(vardecl.datatype!=DataType.STR && vardecl.datatype!=DataType.UWORD)
throw SyntaxError("strlen must have string argument", position)
if(vardecl.autogeneratedDontRemove && vardecl.value!=null) {
return NumericLiteralValue.optimalInteger((vardecl.value as StringLiteralValue).value.length, argument.position)
}
}
throw NotConstArgumentException()
}
private fun builtinLen(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
// note: in some cases the length is > 255 and then we have to return a UWORD type instead of a UBYTE.
if(args.size!=1)
throw SyntaxError("len requires one argument", position)
val constArg = args[0].constValue(program)
if(constArg!=null)
throw SyntaxError("len of weird argument ${args[0]}", position)
val directMemVar = ((args[0] as? DirectMemoryRead)?.addressExpression as? IdentifierReference)?.targetVarDecl(program.namespace)
var arraySize = directMemVar?.arraysize?.size()
var arraySize = directMemVar?.arraysize?.constIndex()
if(arraySize != null)
return NumericLiteralValue.optimalInteger(arraySize, position)
if(args[0] is ArrayLiteralValue)
return NumericLiteralValue.optimalInteger((args[0] as ArrayLiteralValue).value.size, position)
if(args[0] !is IdentifierReference)
throw SyntaxError("len argument should be an identifier, but is ${args[0]}", position)
val target = (args[0] as IdentifierReference).targetVarDecl(program.namespace)!!
throw SyntaxError("len argument should be an identifier", position)
val target = (args[0] as IdentifierReference).targetVarDecl(program.namespace)
?: throw CannotEvaluateException("len", "no target vardecl")
return when(target.datatype) {
DataType.ARRAY_UB, DataType.ARRAY_B, DataType.ARRAY_UW, DataType.ARRAY_W -> {
arraySize = target.arraysize!!.size()!!
if(arraySize>256)
throw CompilerException("array length exceeds byte limit ${target.position}")
NumericLiteralValue.optimalInteger(arraySize, args[0].position)
}
DataType.ARRAY_F -> {
arraySize = target.arraysize!!.size()!!
if(arraySize>256)
throw CompilerException("array length exceeds byte limit ${target.position}")
DataType.ARRAY_UB, DataType.ARRAY_B, DataType.ARRAY_UW, DataType.ARRAY_W, DataType.ARRAY_F -> {
arraySize = target.arraysize?.constIndex()
if(arraySize==null)
throw CannotEvaluateException("len", "arraysize unknown")
NumericLiteralValue.optimalInteger(arraySize, args[0].position)
}
DataType.STR -> {
val refLv = target.value as StringLiteralValue
if(refLv.value.length>255)
throw CompilerException("string length exceeds byte limit ${refLv.position}")
NumericLiteralValue.optimalInteger(refLv.value.length, args[0].position)
}
in NumericDatatypes -> throw SyntaxError("len of weird argument ${args[0]}", position)
DataType.STRUCT -> throw SyntaxError("cannot use len on struct, did you mean sizeof?", args[0].position)
in NumericDatatypes -> throw SyntaxError("cannot use len on numeric value, did you mean sizeof?", args[0].position)
else -> throw CompilerException("weird datatype")
}
}
@ -281,9 +400,9 @@ private fun builtinLen(args: List<Expression>, position: Position, program: Prog
private fun builtinMkword(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 2)
throw SyntaxError("mkword requires lsb and msb arguments", position)
val constLsb = args[0].constValue(program) ?: throw NotConstArgumentException()
val constMsb = args[1].constValue(program) ?: throw NotConstArgumentException()
throw SyntaxError("mkword requires msb and lsb arguments", position)
val constMsb = args[0].constValue(program) ?: throw NotConstArgumentException()
val constLsb = args[1].constValue(program) ?: throw NotConstArgumentException()
val result = (constMsb.number.toInt() shl 8) or constLsb.number.toInt()
return NumericLiteralValue(DataType.UWORD, result, position)
}
@ -293,7 +412,7 @@ private fun builtinSin8(args: List<Expression>, position: Position, program: Pro
throw SyntaxError("sin8 requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.BYTE, (127.0 * sin(rad)).toShort(), position)
return NumericLiteralValue(DataType.BYTE, (127.0 * sin(rad)).toInt().toShort(), position)
}
private fun builtinSin8u(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
@ -301,7 +420,7 @@ private fun builtinSin8u(args: List<Expression>, position: Position, program: Pr
throw SyntaxError("sin8u requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.UBYTE, (128.0 + 127.5 * sin(rad)).toShort(), position)
return NumericLiteralValue(DataType.UBYTE, (128.0 + 127.5 * sin(rad)).toInt().toShort(), position)
}
private fun builtinCos8(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
@ -309,7 +428,7 @@ private fun builtinCos8(args: List<Expression>, position: Position, program: Pro
throw SyntaxError("cos8 requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.BYTE, (127.0 * cos(rad)).toShort(), position)
return NumericLiteralValue(DataType.BYTE, (127.0 * cos(rad)).toInt().toShort(), position)
}
private fun builtinCos8u(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
@ -317,7 +436,7 @@ private fun builtinCos8u(args: List<Expression>, position: Position, program: Pr
throw SyntaxError("cos8u requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.UBYTE, (128.0 + 127.5 * cos(rad)).toShort(), position)
return NumericLiteralValue(DataType.UBYTE, (128.0 + 127.5 * cos(rad)).toInt().toShort(), position)
}
private fun builtinSin16(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
@ -356,7 +475,7 @@ private fun builtinSgn(args: List<Expression>, position: Position, program: Prog
if (args.size != 1)
throw SyntaxError("sgn requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
return NumericLiteralValue(DataType.BYTE, constval.number.toDouble().sign.toShort(), position)
return NumericLiteralValue(DataType.BYTE, constval.number.toDouble().sign.toInt().toShort(), position)
}
private fun numericLiteral(value: Number, position: Position): NumericLiteralValue {
@ -368,8 +487,8 @@ private fun numericLiteral(value: Number, position: Position): NumericLiteralVal
floatNum
return when(tweakedValue) {
is Int -> NumericLiteralValue.optimalNumeric(value.toInt(), position)
is Short -> NumericLiteralValue.optimalNumeric(value.toInt(), position)
is Int -> NumericLiteralValue.optimalInteger(value.toInt(), position)
is Short -> NumericLiteralValue.optimalInteger(value.toInt(), position)
is Byte -> NumericLiteralValue(DataType.UBYTE, value.toShort(), position)
is Double -> NumericLiteralValue(DataType.FLOAT, value.toDouble(), position)
is Float -> NumericLiteralValue(DataType.FLOAT, value.toDouble(), position)

View File

@ -0,0 +1,87 @@
package prog8.optimizer
import prog8.ast.INameScope
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.expressions.*
import prog8.ast.processing.AstWalker
import prog8.ast.processing.IAstModification
import prog8.ast.statements.AssignTarget
import prog8.ast.statements.Assignment
internal class BinExprSplitter(private val program: Program) : AstWalker() {
private val noModifications = emptyList<IAstModification>()
// override fun after(decl: VarDecl, parent: Node): Iterable<IAstModification> {
// TODO somehow if we do this, the resulting code for some programs (cube3d.p8) gets hundreds of bytes larger...:
// if(decl.type==VarDeclType.VAR ) {
// val binExpr = decl.value as? BinaryExpression
// if (binExpr != null && binExpr.operator in augmentAssignmentOperators) {
// // split into a vardecl with just the left expression, and an aug. assignment with the right expression.
// val augExpr = BinaryExpression(IdentifierReference(listOf(decl.name), decl.position), binExpr.operator, binExpr.right, binExpr.position)
// val target = AssignTarget(IdentifierReference(listOf(decl.name), decl.position), null, null, decl.position)
// val assign = Assignment(target, augExpr, binExpr.position)
// println("SPLIT VARDECL $decl")
// return listOf(
// IAstModification.SetExpression({ decl.value = it }, binExpr.left, decl),
// IAstModification.InsertAfter(decl, assign, parent)
// )
// }
// }
// return noModifications
// }
override fun after(assignment: Assignment, parent: Node): Iterable<IAstModification> {
val binExpr = assignment.value as? BinaryExpression
if (binExpr != null) {
/*
Reduce the complexity of a (binary) expression that has to be evaluated on the eval stack,
by attempting to splitting it up into individual simple steps.
We only consider a binary expression *one* level deep (so the operands must not be a combined expression)
X = BinExpr X = LeftExpr
<operator> followed by
/ \ IF 'X' not used X = BinExpr
/ \ IN expression ==> <operator>
/ \ / \
LeftExpr. RightExpr. / \
X RightExpr.
*/
if(binExpr.operator in augmentAssignmentOperators && isSimpleTarget(assignment.target, program.namespace)) {
if(assignment.target isSameAs binExpr.left || assignment.target isSameAs binExpr.right)
return noModifications
if(isSimpleExpression(binExpr.right) && !assignment.isAugmentable) {
val firstAssign = Assignment(assignment.target, binExpr.left, binExpr.left.position)
val targetExpr = assignment.target.toExpression()
val augExpr = BinaryExpression(targetExpr, binExpr.operator, binExpr.right, binExpr.right.position)
return listOf(
IAstModification.InsertBefore(assignment, firstAssign, assignment.definingScope()),
IAstModification.ReplaceNode(assignment.value, augExpr, assignment))
}
}
// TODO further unraveling of binary expression trees into flat statements.
// however this should probably be done in a more generic way to also service
// the expressiontrees that are not used in an assignment statement...
}
return noModifications
}
private fun isSimpleExpression(expr: Expression) =
expr is IdentifierReference || expr is NumericLiteralValue || expr is AddressOf || expr is DirectMemoryRead || expr is StringLiteralValue || expr is ArrayLiteralValue || expr is RangeExpr
private fun isSimpleTarget(target: AssignTarget, namespace: INameScope) =
if (target.identifier!=null || target.memoryAddress!=null)
target.isInRegularRAM(namespace)
else
false
}

View File

@ -1,11 +1,10 @@
package prog8.optimizer
import prog8.ast.INameScope
import prog8.ast.Module
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.*
import prog8.ast.base.DataType
import prog8.ast.base.ErrorReporter
import prog8.ast.base.ParentSentinel
import prog8.ast.base.Position
import prog8.ast.expressions.FunctionCall
import prog8.ast.expressions.IdentifierReference
import prog8.ast.processing.IAstVisitor
@ -14,8 +13,7 @@ import prog8.compiler.loadAsmIncludeFile
private val alwaysKeepSubroutines = setOf(
Pair("main", "start"),
Pair("irq", "irq"),
Pair("prog8_lib", "init_system")
Pair("irq", "irq")
)
private val asmJumpRx = Regex("""[\-+a-zA-Z0-9_ \t]+(jmp|jsr)[ \t]+(\S+).*""", RegexOption.IGNORE_CASE)
@ -24,12 +22,12 @@ private val asmRefRx = Regex("""[\-+a-zA-Z0-9_ \t]+(...)[ \t]+(\S+).*""", RegexO
class CallGraph(private val program: Program) : IAstVisitor {
val modulesImporting = mutableMapOf<Module, List<Module>>().withDefault { mutableListOf() }
val modulesImportedBy = mutableMapOf<Module, List<Module>>().withDefault { mutableListOf() }
val subroutinesCalling = mutableMapOf<INameScope, List<Subroutine>>().withDefault { mutableListOf() }
val subroutinesCalledBy = mutableMapOf<Subroutine, List<Node>>().withDefault { mutableListOf() }
val imports = mutableMapOf<Module, List<Module>>().withDefault { mutableListOf() }
val importedBy = mutableMapOf<Module, List<Module>>().withDefault { mutableListOf() }
val calls = mutableMapOf<Subroutine, List<Subroutine>>().withDefault { mutableListOf() }
val calledBy = mutableMapOf<Subroutine, List<Node>>().withDefault { mutableListOf() }
// TODO add dataflow graph: what statements use what variables
// TODO add dataflow graph: what statements use what variables - can be used to eliminate unused vars
val usedSymbols = mutableSetOf<Statement>()
init {
@ -55,17 +53,8 @@ class CallGraph(private val program: Program) : IAstVisitor {
it.importedBy.clear()
it.imports.clear()
it.importedBy.addAll(modulesImportedBy.getValue(it))
it.imports.addAll(modulesImporting.getValue(it))
forAllSubroutines(it) { sub ->
sub.calledBy.clear()
sub.calls.clear()
sub.calledBy.addAll(subroutinesCalledBy.getValue(sub))
sub.calls.addAll(subroutinesCalling.getValue(sub))
}
it.importedBy.addAll(importedBy.getValue(it))
it.imports.addAll(imports.getValue(it))
}
val rootmodule = program.modules.first()
@ -85,12 +74,14 @@ class CallGraph(private val program: Program) : IAstVisitor {
val thisModule = directive.definingModule()
if (directive.directive == "%import") {
val importedModule: Module = program.modules.single { it.name == directive.args[0].name }
modulesImporting[thisModule] = modulesImporting.getValue(thisModule).plus(importedModule)
modulesImportedBy[importedModule] = modulesImportedBy.getValue(importedModule).plus(thisModule)
imports[thisModule] = imports.getValue(thisModule).plus(importedModule)
importedBy[importedModule] = importedBy.getValue(importedModule).plus(thisModule)
} else if (directive.directive == "%asminclude") {
val asm = loadAsmIncludeFile(directive.args[0].str!!, thisModule.source)
val scope = directive.definingScope()
scanAssemblyCode(asm, directive, scope)
val scope = directive.definingSubroutine()
if(scope!=null) {
scanAssemblyCode(asm, directive, scope)
}
}
super.visit(directive)
@ -127,7 +118,7 @@ class CallGraph(private val program: Program) : IAstVisitor {
override fun visit(decl: VarDecl) {
if (decl.autogeneratedDontRemove || decl.definingModule().isLibraryModule) {
// make sure autogenerated vardecls are in the used symbols
// make sure autogenerated vardecls are in the used symbols and are never removed as 'unused'
addNodeAndParentScopes(decl)
}
@ -141,8 +132,8 @@ class CallGraph(private val program: Program) : IAstVisitor {
val otherSub = functionCall.target.targetSubroutine(program.namespace)
if (otherSub != null) {
functionCall.definingSubroutine()?.let { thisSub ->
subroutinesCalling[thisSub] = subroutinesCalling.getValue(thisSub).plus(otherSub)
subroutinesCalledBy[otherSub] = subroutinesCalledBy.getValue(otherSub).plus(functionCall)
calls[thisSub] = calls.getValue(thisSub).plus(otherSub)
calledBy[otherSub] = calledBy.getValue(otherSub).plus(functionCall)
}
}
super.visit(functionCall)
@ -152,8 +143,8 @@ class CallGraph(private val program: Program) : IAstVisitor {
val otherSub = functionCallStatement.target.targetSubroutine(program.namespace)
if (otherSub != null) {
functionCallStatement.definingSubroutine()?.let { thisSub ->
subroutinesCalling[thisSub] = subroutinesCalling.getValue(thisSub).plus(otherSub)
subroutinesCalledBy[otherSub] = subroutinesCalledBy.getValue(otherSub).plus(functionCallStatement)
calls[thisSub] = calls.getValue(thisSub).plus(otherSub)
calledBy[otherSub] = calledBy.getValue(otherSub).plus(functionCallStatement)
}
}
super.visit(functionCallStatement)
@ -163,8 +154,8 @@ class CallGraph(private val program: Program) : IAstVisitor {
val otherSub = jump.identifier?.targetSubroutine(program.namespace)
if (otherSub != null) {
jump.definingSubroutine()?.let { thisSub ->
subroutinesCalling[thisSub] = subroutinesCalling.getValue(thisSub).plus(otherSub)
subroutinesCalledBy[otherSub] = subroutinesCalledBy.getValue(otherSub).plus(jump)
calls[thisSub] = calls.getValue(thisSub).plus(otherSub)
calledBy[otherSub] = calledBy.getValue(otherSub).plus(jump)
}
}
super.visit(jump)
@ -177,12 +168,12 @@ class CallGraph(private val program: Program) : IAstVisitor {
override fun visit(inlineAssembly: InlineAssembly) {
// parse inline asm for subroutine calls (jmp, jsr)
val scope = inlineAssembly.definingScope()
val scope = inlineAssembly.definingSubroutine()
scanAssemblyCode(inlineAssembly.assembly, inlineAssembly, scope)
super.visit(inlineAssembly)
}
private fun scanAssemblyCode(asm: String, context: Statement, scope: INameScope) {
private fun scanAssemblyCode(asm: String, context: Statement, scope: Subroutine?) {
asm.lines().forEach { line ->
val matches = asmJumpRx.matchEntire(line)
if (matches != null) {
@ -190,14 +181,16 @@ class CallGraph(private val program: Program) : IAstVisitor {
if (jumptarget != null && (jumptarget[0].isLetter() || jumptarget[0] == '_')) {
val node = program.namespace.lookup(jumptarget.split('.'), context)
if (node is Subroutine) {
subroutinesCalling[scope] = subroutinesCalling.getValue(scope).plus(node)
subroutinesCalledBy[node] = subroutinesCalledBy.getValue(node).plus(context)
if(scope!=null)
calls[scope] = calls.getValue(scope).plus(node)
calledBy[node] = calledBy.getValue(node).plus(context)
} else if (jumptarget.contains('.')) {
// maybe only the first part already refers to a subroutine
val node2 = program.namespace.lookup(listOf(jumptarget.substringBefore('.')), context)
if (node2 is Subroutine) {
subroutinesCalling[scope] = subroutinesCalling.getValue(scope).plus(node2)
subroutinesCalledBy[node2] = subroutinesCalledBy.getValue(node2).plus(context)
if(scope!=null)
calls[scope] = calls.getValue(scope).plus(node2)
calledBy[node2] = calledBy.getValue(node2).plus(context)
}
}
}
@ -209,8 +202,9 @@ class CallGraph(private val program: Program) : IAstVisitor {
if (target.contains('.')) {
val node = program.namespace.lookup(listOf(target.substringBefore('.')), context)
if (node is Subroutine) {
subroutinesCalling[scope] = subroutinesCalling.getValue(scope).plus(node)
subroutinesCalledBy[node] = subroutinesCalledBy.getValue(node).plus(context)
if(scope!=null)
calls[scope] = calls.getValue(scope).plus(node)
calledBy[node] = calledBy.getValue(node).plus(context)
}
}
}
@ -218,4 +212,55 @@ class CallGraph(private val program: Program) : IAstVisitor {
}
}
}
fun checkRecursiveCalls(errors: ErrorReporter) {
val cycles = recursionCycles()
if(cycles.any()) {
errors.warn("Program contains recursive subroutine calls. These only works in very specific limited scenarios!", Position.DUMMY)
val printed = mutableSetOf<Subroutine>()
for(chain in cycles) {
if(chain[0] !in printed) {
val chainStr = chain.joinToString(" <-- ") { "${it.name} at ${it.position}" }
errors.warn("Cycle in (a subroutine call in) $chainStr", Position.DUMMY)
printed.add(chain[0])
}
}
}
}
private fun recursionCycles(): List<List<Subroutine>> {
val chains = mutableListOf<MutableList<Subroutine>>()
for(caller in calls.keys) {
val visited = calls.keys.associateWith { false }.toMutableMap()
val recStack = calls.keys.associateWith { false }.toMutableMap()
val chain = mutableListOf<Subroutine>()
if(hasCycle(caller, visited, recStack, chain))
chains.add(chain)
}
return chains
}
private fun hasCycle(sub: Subroutine, visited: MutableMap<Subroutine, Boolean>, recStack: MutableMap<Subroutine, Boolean>, chain: MutableList<Subroutine>): Boolean {
// mark current node as visited and add to recursion stack
if(recStack[sub]==true)
return true
if(visited[sub]==true)
return false
// mark visited and add to recursion stack
visited[sub] = true
recStack[sub] = true
// recurse for all neighbours
for(called in calls.getValue(sub)) {
if(hasCycle(called, visited, recStack, chain)) {
chain.add(called)
return true
}
}
// pop from recursion stack
recStack[sub] = false
return false
}
}

View File

@ -132,11 +132,11 @@ class ConstExprEvaluator {
private fun bitwiseand(left: NumericLiteralValue, right: NumericLiteralValue): NumericLiteralValue {
if(left.type== DataType.UBYTE) {
if(right.type in IntegerDatatypes) {
return NumericLiteralValue(DataType.UBYTE, (left.number.toInt() or (right.number.toInt() and 255)).toShort(), left.position)
return NumericLiteralValue(DataType.UBYTE, (left.number.toInt() and (right.number.toInt() and 255)).toShort(), left.position)
}
} else if(left.type== DataType.UWORD) {
if(right.type in IntegerDatatypes) {
return NumericLiteralValue(DataType.UWORD, left.number.toInt() or right.number.toInt(), left.position)
return NumericLiteralValue(DataType.UWORD, left.number.toInt() and right.number.toInt(), left.position)
}
}
throw ExpressionError("cannot calculate $left & $right", left.position)
@ -163,7 +163,7 @@ class ConstExprEvaluator {
val error = "cannot add $left and $right"
return when (left.type) {
in IntegerDatatypes -> when (right.type) {
in IntegerDatatypes -> NumericLiteralValue.optimalNumeric(left.number.toInt() + right.number.toInt(), left.position)
in IntegerDatatypes -> NumericLiteralValue.optimalInteger(left.number.toInt() + right.number.toInt(), left.position)
DataType.FLOAT -> NumericLiteralValue(DataType.FLOAT, left.number.toInt() + right.number.toDouble(), left.position)
else -> throw ExpressionError(error, left.position)
}
@ -180,7 +180,7 @@ class ConstExprEvaluator {
val error = "cannot subtract $left and $right"
return when (left.type) {
in IntegerDatatypes -> when (right.type) {
in IntegerDatatypes -> NumericLiteralValue.optimalNumeric(left.number.toInt() - right.number.toInt(), left.position)
in IntegerDatatypes -> NumericLiteralValue.optimalInteger(left.number.toInt() - right.number.toInt(), left.position)
DataType.FLOAT -> NumericLiteralValue(DataType.FLOAT, left.number.toInt() - right.number.toDouble(), left.position)
else -> throw ExpressionError(error, left.position)
}
@ -197,7 +197,7 @@ class ConstExprEvaluator {
val error = "cannot multiply ${left.type} and ${right.type}"
return when (left.type) {
in IntegerDatatypes -> when (right.type) {
in IntegerDatatypes -> NumericLiteralValue.optimalNumeric(left.number.toInt() * right.number.toInt(), left.position)
in IntegerDatatypes -> NumericLiteralValue.optimalInteger(left.number.toInt() * right.number.toInt(), left.position)
DataType.FLOAT -> NumericLiteralValue(DataType.FLOAT, left.number.toInt() * right.number.toDouble(), left.position)
else -> throw ExpressionError(error, left.position)
}
@ -220,7 +220,7 @@ class ConstExprEvaluator {
in IntegerDatatypes -> {
if(right.number.toInt()==0) divideByZeroError(right.position)
val result: Int = left.number.toInt() / right.number.toInt()
NumericLiteralValue.optimalNumeric(result, left.position)
NumericLiteralValue.optimalInteger(result, left.position)
}
DataType.FLOAT -> {
if(right.number.toDouble()==0.0) divideByZeroError(right.position)

View File

@ -1,277 +1,84 @@
package prog8.optimizer
import prog8.ast.IFunctionCall
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.processing.IAstModifyingVisitor
import prog8.ast.processing.AstWalker
import prog8.ast.processing.IAstModification
import prog8.ast.statements.*
import prog8.compiler.target.CompilationTarget
import prog8.functions.BuiltinFunctions
internal class ConstantFoldingOptimizer(private val program: Program, private val errors: ErrorReporter) : IAstModifyingVisitor {
var optimizationsDone: Int = 0
internal class ConstantFoldingOptimizer(private val program: Program) : AstWalker() {
private val noModifications = emptyList<IAstModification>()
override fun visit(decl: VarDecl): Statement {
// the initializer value can't refer to the variable itself (recursive definition)
// TODO: use call tree for this?
if(decl.value?.referencesIdentifiers(decl.name) == true || decl.arraysize?.index?.referencesIdentifiers(decl.name) == true) {
errors.err("recursive var declaration", decl.position)
return decl
}
if(decl.type==VarDeclType.CONST || decl.type==VarDeclType.VAR) {
if(decl.isArray){
if(decl.arraysize==null) {
// for arrays that have no size specifier (or a non-constant one) attempt to deduce the size
val arrayval = decl.value as? ArrayLiteralValue
if(arrayval!=null) {
decl.arraysize = ArrayIndex(NumericLiteralValue.optimalInteger(arrayval.value.size, decl.position), decl.position)
optimizationsDone++
}
}
else if(decl.arraysize?.size()==null) {
val size = decl.arraysize!!.index.accept(this)
if(size is NumericLiteralValue) {
decl.arraysize = ArrayIndex(size, decl.position)
optimizationsDone++
}
}
}
when(decl.datatype) {
DataType.FLOAT -> {
// vardecl: for scalar float vars, promote constant integer initialization values to floats
val litval = decl.value as? NumericLiteralValue
if (litval!=null && litval.type in IntegerDatatypes) {
val newValue = NumericLiteralValue(DataType.FLOAT, litval.number.toDouble(), litval.position)
decl.value = newValue
optimizationsDone++
return super.visit(decl)
}
}
DataType.ARRAY_UB, DataType.ARRAY_B, DataType.ARRAY_UW, DataType.ARRAY_W -> {
val numericLv = decl.value as? NumericLiteralValue
val rangeExpr = decl.value as? RangeExpr
if(rangeExpr!=null) {
// convert the initializer range expression to an actual array
val declArraySize = decl.arraysize?.size()
if(declArraySize!=null && declArraySize!=rangeExpr.size())
errors.err("range expression size doesn't match declared array size", decl.value?.position!!)
val constRange = rangeExpr.toConstantIntegerRange()
if(constRange!=null) {
val eltType = rangeExpr.inferType(program).typeOrElse(DataType.UBYTE)
if(eltType in ByteDatatypes) {
decl.value = ArrayLiteralValue(InferredTypes.InferredType.known(decl.datatype),
constRange.map { NumericLiteralValue(eltType, it.toShort(), decl.value!!.position) }.toTypedArray(),
position = decl.value!!.position)
} else {
decl.value = ArrayLiteralValue(InferredTypes.InferredType.known(decl.datatype),
constRange.map { NumericLiteralValue(eltType, it, decl.value!!.position) }.toTypedArray(),
position = decl.value!!.position)
}
decl.value!!.linkParents(decl)
optimizationsDone++
return super.visit(decl)
}
}
if(numericLv!=null && numericLv.type== DataType.FLOAT)
errors.err("arraysize requires only integers here", numericLv.position)
val size = decl.arraysize?.size() ?: return decl
if (rangeExpr==null && numericLv!=null) {
// arraysize initializer is empty or a single int, and we know the size; create the arraysize.
val fillvalue = numericLv.number.toInt()
when(decl.datatype){
DataType.ARRAY_UB -> {
if(fillvalue !in 0..255)
errors.err("ubyte value overflow", numericLv.position)
}
DataType.ARRAY_B -> {
if(fillvalue !in -128..127)
errors.err("byte value overflow", numericLv.position)
}
DataType.ARRAY_UW -> {
if(fillvalue !in 0..65535)
errors.err("uword value overflow", numericLv.position)
}
DataType.ARRAY_W -> {
if(fillvalue !in -32768..32767)
errors.err("word value overflow", numericLv.position)
}
else -> {}
}
// create the array itself, filled with the fillvalue.
val array = Array(size) {fillvalue}.map { NumericLiteralValue(ArrayElementTypes.getValue(decl.datatype), it, numericLv.position) as Expression}.toTypedArray()
val refValue = ArrayLiteralValue(InferredTypes.InferredType.known(decl.datatype), array, position = numericLv.position)
decl.value = refValue
refValue.parent=decl
optimizationsDone++
return super.visit(decl)
}
}
DataType.ARRAY_F -> {
val size = decl.arraysize?.size() ?: return decl
val litval = decl.value as? NumericLiteralValue
if(litval==null) {
// there's no initialization value, but the size is known, so we're ok.
return super.visit(decl)
} else {
// arraysize initializer is a single int, and we know the size.
val fillvalue = litval.number.toDouble()
if (fillvalue < CompilationTarget.machine.FLOAT_MAX_NEGATIVE || fillvalue > CompilationTarget.machine.FLOAT_MAX_POSITIVE)
errors.err("float value overflow", litval.position)
else {
// create the array itself, filled with the fillvalue.
val array = Array(size) {fillvalue}.map { NumericLiteralValue(DataType.FLOAT, it, litval.position) as Expression}.toTypedArray()
val refValue = ArrayLiteralValue(InferredTypes.InferredType.known(DataType.ARRAY_F), array, position = litval.position)
decl.value = refValue
refValue.parent=decl
optimizationsDone++
return super.visit(decl)
}
}
}
else -> {
// nothing to do for this type
// this includes strings and structs
}
}
}
val declValue = decl.value
if(declValue!=null && decl.type==VarDeclType.VAR
&& declValue is NumericLiteralValue && !declValue.inferType(program).istype(decl.datatype)) {
// cast the numeric literal to the appropriate datatype of the variable
decl.value = declValue.cast(decl.datatype)
}
return super.visit(decl)
}
/**
* replace identifiers that refer to const value, with the value itself (if it's a simple type)
*/
override fun visit(identifier: IdentifierReference): Expression {
// don't replace when it's an assignment target or loop variable
if(identifier.parent is AssignTarget)
return identifier
var forloop = identifier.parent as? ForLoop
if(forloop==null)
forloop = identifier.parent.parent as? ForLoop
if(forloop!=null && identifier===forloop.loopVar)
return identifier
val cval = identifier.constValue(program) ?: return identifier
return when (cval.type) {
in NumericDatatypes -> {
val copy = NumericLiteralValue(cval.type, cval.number, identifier.position)
copy.parent = identifier.parent
copy
}
in PassByReferenceDatatypes -> throw FatalAstException("pass-by-reference type should not be considered a constant")
else -> identifier
}
}
override fun visit(functionCall: FunctionCall): Expression {
super.visit(functionCall)
typeCastConstArguments(functionCall)
return functionCall.constValue(program) ?: functionCall
}
override fun visit(functionCallStatement: FunctionCallStatement): Statement {
super.visit(functionCallStatement)
typeCastConstArguments(functionCallStatement)
return functionCallStatement
}
private fun typeCastConstArguments(functionCall: IFunctionCall) {
if(functionCall.target.nameInSource.size==1) {
val builtinFunction = BuiltinFunctions[functionCall.target.nameInSource.single()]
if(builtinFunction!=null) {
// match the arguments of a builtin function signature.
for(arg in functionCall.args.withIndex().zip(builtinFunction.parameters)) {
val possibleDts = arg.second.possibleDatatypes
val argConst = arg.first.value.constValue(program)
if(argConst!=null && argConst.type !in possibleDts) {
val convertedValue = argConst.cast(possibleDts.first())
functionCall.args[arg.first.index] = convertedValue
optimizationsDone++
}
}
return
}
}
// match the arguments of a subroutine.
val subroutine = functionCall.target.targetSubroutine(program.namespace)
if(subroutine!=null) {
// if types differ, try to typecast constant arguments to the function call to the desired data type of the parameter
for(arg in functionCall.args.withIndex().zip(subroutine.parameters)) {
val expectedDt = arg.second.type
val argConst = arg.first.value.constValue(program)
if(argConst!=null && argConst.type!=expectedDt) {
val convertedValue = argConst.cast(expectedDt)
functionCall.args[arg.first.index] = convertedValue
optimizationsDone++
}
}
}
}
override fun visit(memread: DirectMemoryRead): Expression {
override fun before(memread: DirectMemoryRead, parent: Node): Iterable<IAstModification> {
// @( &thing ) --> thing
val addrOf = memread.addressExpression as? AddressOf
if(addrOf!=null)
return super.visit(addrOf.identifier)
return super.visit(memread)
return if(addrOf!=null)
listOf(IAstModification.ReplaceNode(memread, addrOf.identifier, parent))
else
noModifications
}
/**
* Try to accept a unary prefix expression.
* Compile-time constant sub expressions will be evaluated on the spot.
* For instance, the expression for "- 4.5" will be optimized into the float literal -4.5
*/
override fun visit(expr: PrefixExpression): Expression {
val prefixExpr=super.visit(expr)
if(prefixExpr !is PrefixExpression)
return prefixExpr
val subexpr = prefixExpr.expression
override fun after(expr: PrefixExpression, parent: Node): Iterable<IAstModification> {
// Try to turn a unary prefix expression into a single constant value.
// Compile-time constant sub expressions will be evaluated on the spot.
// For instance, the expression for "- 4.5" will be optimized into the float literal -4.5
val subexpr = expr.expression
if (subexpr is NumericLiteralValue) {
// accept prefixed literal values (such as -3, not true)
return when (prefixExpr.operator) {
"+" -> subexpr
return when (expr.operator) {
"+" -> listOf(IAstModification.ReplaceNode(expr, subexpr, parent))
"-" -> when (subexpr.type) {
in IntegerDatatypes -> {
optimizationsDone++
NumericLiteralValue.optimalNumeric(-subexpr.number.toInt(), subexpr.position)
listOf(IAstModification.ReplaceNode(expr,
NumericLiteralValue.optimalInteger(-subexpr.number.toInt(), subexpr.position),
parent))
}
DataType.FLOAT -> {
optimizationsDone++
NumericLiteralValue(DataType.FLOAT, -subexpr.number.toDouble(), subexpr.position)
listOf(IAstModification.ReplaceNode(expr,
NumericLiteralValue(DataType.FLOAT, -subexpr.number.toDouble(), subexpr.position),
parent))
}
else -> throw ExpressionError("can only take negative of int or float", subexpr.position)
}
"~" -> when (subexpr.type) {
in IntegerDatatypes -> {
optimizationsDone++
NumericLiteralValue.optimalNumeric(subexpr.number.toInt().inv(), subexpr.position)
DataType.BYTE -> {
listOf(IAstModification.ReplaceNode(expr,
NumericLiteralValue(DataType.BYTE, subexpr.number.toInt().inv(), subexpr.position),
parent))
}
DataType.UBYTE -> {
listOf(IAstModification.ReplaceNode(expr,
NumericLiteralValue(DataType.UBYTE, subexpr.number.toInt().inv() and 255, subexpr.position),
parent))
}
DataType.WORD -> {
listOf(IAstModification.ReplaceNode(expr,
NumericLiteralValue(DataType.WORD, subexpr.number.toInt().inv(), subexpr.position),
parent))
}
DataType.UWORD -> {
listOf(IAstModification.ReplaceNode(expr,
NumericLiteralValue(DataType.UWORD, subexpr.number.toInt().inv() and 65535, subexpr.position),
parent))
}
else -> throw ExpressionError("can only take bitwise inversion of int", subexpr.position)
}
"not" -> {
optimizationsDone++
NumericLiteralValue.fromBoolean(subexpr.number.toDouble() == 0.0, subexpr.position)
listOf(IAstModification.ReplaceNode(expr,
NumericLiteralValue.fromBoolean(subexpr.number.toDouble() == 0.0, subexpr.position),
parent))
}
else -> throw ExpressionError(prefixExpr.operator, subexpr.position)
else -> throw ExpressionError(expr.operator, subexpr.position)
}
}
return prefixExpr
return noModifications
}
/**
* Try to accept a binary expression.
* Try to constfold a binary expression.
* Compile-time constant sub expressions will be evaluated on the spot.
* For instance, "9 * (4 + 2)" will be optimized into the integer literal 54.
*
@ -287,13 +94,7 @@ internal class ConstantFoldingOptimizer(private val program: Program, private va
* (X / c1) * c2 -> X / (c2/c1)
* (X + c1) - c2 -> X + (c1-c2)
*/
override fun visit(expr: BinaryExpression): Expression {
super.visit(expr)
if(expr.left is StringLiteralValue || expr.left is ArrayLiteralValue
|| expr.right is StringLiteralValue || expr.right is ArrayLiteralValue)
throw FatalAstException("binexpr with reference litval instead of numeric")
override fun after(expr: BinaryExpression, parent: Node): Iterable<IAstModification> {
val leftconst = expr.left.constValue(program)
val rightconst = expr.right.constValue(program)
@ -307,21 +108,153 @@ internal class ConstantFoldingOptimizer(private val program: Program, private va
val subrightconst = subExpr.right.constValue(program)
if ((subleftconst != null && subrightconst == null) || (subleftconst==null && subrightconst!=null)) {
// try reordering.
return groupTwoConstsTogether(expr, subExpr,
val change = groupTwoConstsTogether(expr, subExpr,
leftconst != null, rightconst != null,
subleftconst != null, subrightconst != null)
return change?.let { listOf(it) } ?: noModifications
}
}
// const fold when both operands are a const
return when {
leftconst != null && rightconst != null -> {
optimizationsDone++
val evaluator = ConstExprEvaluator()
evaluator.evaluate(leftconst, expr.operator, rightconst)
}
if(leftconst != null && rightconst != null) {
val evaluator = ConstExprEvaluator()
val result = evaluator.evaluate(leftconst, expr.operator, rightconst)
return listOf(IAstModification.ReplaceNode(expr, result, parent))
}
else -> expr
return noModifications
}
override fun after(array: ArrayLiteralValue, parent: Node): Iterable<IAstModification> {
// because constant folding can result in arrays that are now suddenly capable
// of telling the type of all their elements (for instance, when they contained -2 which
// was a prefix expression earlier), we recalculate the array's datatype.
if(array.type.isKnown)
return noModifications
// if the array literalvalue is inside an array vardecl, take the type from that
// otherwise infer it from the elements of the array
val vardeclType = (array.parent as? VarDecl)?.datatype
if(vardeclType!=null) {
val newArray = array.cast(vardeclType)
if (newArray != null && newArray != array)
return listOf(IAstModification.ReplaceNode(array, newArray, parent))
} else {
val arrayDt = array.guessDatatype(program)
if (arrayDt.isKnown) {
val newArray = array.cast(arrayDt.typeOrElse(DataType.STRUCT))
if (newArray != null && newArray != array)
return listOf(IAstModification.ReplaceNode(array, newArray, parent))
}
}
return noModifications
}
override fun after(functionCall: FunctionCall, parent: Node): Iterable<IAstModification> {
// the args of a fuction are constfolded via recursion already.
val constvalue = functionCall.constValue(program)
return if(constvalue!=null)
listOf(IAstModification.ReplaceNode(functionCall, constvalue, parent))
else
noModifications
}
override fun after(forLoop: ForLoop, parent: Node): Iterable<IAstModification> {
fun adjustRangeDt(rangeFrom: NumericLiteralValue, targetDt: DataType, rangeTo: NumericLiteralValue, stepLiteral: NumericLiteralValue?, range: RangeExpr): RangeExpr? {
val fromCast = rangeFrom.cast(targetDt)
val toCast = rangeTo.cast(targetDt)
if(!fromCast.isValid || !toCast.isValid)
return null
val newStep =
if(stepLiteral!=null) {
val stepCast = stepLiteral.cast(targetDt)
if(stepCast.isValid)
stepCast.valueOrZero()
else
range.step
} else {
range.step
}
return RangeExpr(fromCast.valueOrZero(), toCast.valueOrZero(), newStep, range.position)
}
// adjust the datatype of a range expression in for loops to the loop variable.
val iterableRange = forLoop.iterable as? RangeExpr ?: return noModifications
val rangeFrom = iterableRange.from as? NumericLiteralValue
val rangeTo = iterableRange.to as? NumericLiteralValue
if(rangeFrom==null || rangeTo==null) return noModifications
val loopvar = forLoop.loopVar.targetVarDecl(program.namespace)!!
val stepLiteral = iterableRange.step as? NumericLiteralValue
when(loopvar.datatype) {
DataType.UBYTE -> {
if(rangeFrom.type!= DataType.UBYTE) {
// attempt to translate the iterable into ubyte values
val newIter = adjustRangeDt(rangeFrom, loopvar.datatype, rangeTo, stepLiteral, iterableRange)
if(newIter!=null)
return listOf(IAstModification.ReplaceNode(forLoop.iterable, newIter, forLoop))
}
}
DataType.BYTE -> {
if(rangeFrom.type!= DataType.BYTE) {
// attempt to translate the iterable into byte values
val newIter = adjustRangeDt(rangeFrom, loopvar.datatype, rangeTo, stepLiteral, iterableRange)
if(newIter!=null)
return listOf(IAstModification.ReplaceNode(forLoop.iterable, newIter, forLoop))
}
}
DataType.UWORD -> {
if(rangeFrom.type!= DataType.UWORD) {
// attempt to translate the iterable into uword values
val newIter = adjustRangeDt(rangeFrom, loopvar.datatype, rangeTo, stepLiteral, iterableRange)
if(newIter!=null)
return listOf(IAstModification.ReplaceNode(forLoop.iterable, newIter, forLoop))
}
}
DataType.WORD -> {
if(rangeFrom.type!= DataType.WORD) {
// attempt to translate the iterable into word values
val newIter = adjustRangeDt(rangeFrom, loopvar.datatype, rangeTo, stepLiteral, iterableRange)
if(newIter!=null)
return listOf(IAstModification.ReplaceNode(forLoop.iterable, newIter, forLoop))
}
}
else -> throw FatalAstException("invalid loopvar datatype $loopvar")
}
return noModifications
}
override fun after(decl: VarDecl, parent: Node): Iterable<IAstModification> {
val numval = decl.value as? NumericLiteralValue
if(decl.type== VarDeclType.CONST && numval!=null) {
val valueDt = numval.inferType(program)
if(!valueDt.istype(decl.datatype)) {
val cast = numval.cast(decl.datatype)
if(cast.isValid)
return listOf(IAstModification.ReplaceNode(numval, cast.valueOrZero(), decl))
}
}
return noModifications
}
private class ShuffleOperands(val expr: BinaryExpression,
val exprOperator: String?,
val subExpr: BinaryExpression,
val newExprLeft: Expression?,
val newExprRight: Expression?,
val newSubexprLeft: Expression?,
val newSubexprRight: Expression?
): IAstModification {
override fun perform() {
if(exprOperator!=null) expr.operator = exprOperator
if(newExprLeft!=null) expr.left = newExprLeft
if(newExprRight!=null) expr.right = newExprRight
if(newSubexprLeft!=null) subExpr.left = newSubexprLeft
if(newSubexprRight!=null) subExpr.right = newSubexprRight
}
}
@ -330,64 +263,61 @@ internal class ConstantFoldingOptimizer(private val program: Program, private va
leftIsConst: Boolean,
rightIsConst: Boolean,
subleftIsConst: Boolean,
subrightIsConst: Boolean): Expression
subrightIsConst: Boolean): IAstModification?
{
// todo: this implements only a small set of possible reorderings at this time
if(expr.operator==subExpr.operator) {
// both operators are the isSameAs.
// If + or *, we can simply swap the const of expr and Var in subexpr.
if(expr.operator=="+" || expr.operator=="*") {
if(leftIsConst) {
// both operators are the same.
// If associative, we can simply shuffle the const operands around to optimize.
if(expr.operator in associativeOperators) {
return if(leftIsConst) {
if(subleftIsConst)
expr.left = subExpr.right.also { subExpr.right = expr.left }
ShuffleOperands(expr, null, subExpr, subExpr.right, null, null, expr.left)
else
expr.left = subExpr.left.also { subExpr.left = expr.left }
ShuffleOperands(expr, null, subExpr, subExpr.left, null, expr.left, null)
} else {
if(subleftIsConst)
expr.right = subExpr.right.also {subExpr.right = expr.right }
ShuffleOperands(expr, null, subExpr, null, subExpr.right, null, expr.right)
else
expr.right = subExpr.left.also { subExpr.left = expr.right }
ShuffleOperands(expr, null, subExpr, null, subExpr.left, expr.right, null)
}
optimizationsDone++
return expr
}
// If - or /, we simetimes must reorder more, and flip operators (- -> +, / -> *)
if(expr.operator=="-" || expr.operator=="/") {
optimizationsDone++
if(leftIsConst) {
return if(subleftIsConst) {
val tmp = subExpr.right
subExpr.right = subExpr.left
subExpr.left = expr.left
expr.left = tmp
expr.operator = if(expr.operator=="-") "+" else "*"
expr
} else
BinaryExpression(
BinaryExpression(expr.left, if (expr.operator == "-") "+" else "*", subExpr.right, subExpr.position),
expr.operator, subExpr.left, expr.position)
return if (subleftIsConst) {
ShuffleOperands(expr, if (expr.operator == "-") "+" else "*", subExpr, subExpr.right, null, expr.left, subExpr.left)
} else {
IAstModification.ReplaceNode(expr,
BinaryExpression(
BinaryExpression(expr.left, if (expr.operator == "-") "+" else "*", subExpr.right, subExpr.position),
expr.operator, subExpr.left, expr.position),
expr.parent)
}
} else {
return if(subleftIsConst) {
expr.right = subExpr.right.also { subExpr.right = expr.right }
expr
} else
BinaryExpression(
subExpr.left, expr.operator,
BinaryExpression(expr.right, if (expr.operator == "-") "+" else "*", subExpr.right, subExpr.position),
expr.position)
return ShuffleOperands(expr, null, subExpr, null, subExpr.right, null, expr.right)
} else {
IAstModification.ReplaceNode(expr,
BinaryExpression(
subExpr.left, expr.operator,
BinaryExpression(expr.right, if (expr.operator == "-") "+" else "*", subExpr.right, subExpr.position),
expr.position),
expr.parent)
}
}
}
return expr
return null
}
else
{
if(expr.operator=="/" && subExpr.operator=="*") {
optimizationsDone++
if(leftIsConst) {
return if(subleftIsConst) {
val change = if(subleftIsConst) {
// C1/(C2*V) -> (C1/C2)/V
BinaryExpression(
BinaryExpression(expr.left, "/", subExpr.left, subExpr.position),
@ -400,8 +330,9 @@ internal class ConstantFoldingOptimizer(private val program: Program, private va
"/",
subExpr.left, expr.position)
}
return IAstModification.ReplaceNode(expr, change, expr.parent)
} else {
return if(subleftIsConst) {
val change = if(subleftIsConst) {
// (C1*V)/C2 -> (C1/C2)*V
BinaryExpression(
BinaryExpression(subExpr.left, "/", expr.right, subExpr.position),
@ -414,12 +345,12 @@ internal class ConstantFoldingOptimizer(private val program: Program, private va
"*",
subExpr.left, expr.position)
}
return IAstModification.ReplaceNode(expr, change, expr.parent)
}
}
else if(expr.operator=="*" && subExpr.operator=="/") {
optimizationsDone++
if(leftIsConst) {
return if(subleftIsConst) {
val change = if(subleftIsConst) {
// C1*(C2/V) -> (C1*C2)/V
BinaryExpression(
BinaryExpression(expr.left, "*", subExpr.left, subExpr.position),
@ -432,8 +363,9 @@ internal class ConstantFoldingOptimizer(private val program: Program, private va
"*",
subExpr.left, expr.position)
}
return IAstModification.ReplaceNode(expr, change, expr.parent)
} else {
return if(subleftIsConst) {
val change = if(subleftIsConst) {
// (C1/V)*C2 -> (C1*C2)/V
BinaryExpression(
BinaryExpression(subExpr.left, "*", expr.right, subExpr.position),
@ -446,12 +378,12 @@ internal class ConstantFoldingOptimizer(private val program: Program, private va
"*",
subExpr.left, expr.position)
}
return IAstModification.ReplaceNode(expr, change, expr.parent)
}
}
else if(expr.operator=="+" && subExpr.operator=="-") {
optimizationsDone++
if(leftIsConst){
return if(subleftIsConst){
val change = if(subleftIsConst){
// c1+(c2-v) -> (c1+c2)-v
BinaryExpression(
BinaryExpression(expr.left, "+", subExpr.left, subExpr.position),
@ -464,8 +396,9 @@ internal class ConstantFoldingOptimizer(private val program: Program, private va
"+",
subExpr.left, expr.position)
}
return IAstModification.ReplaceNode(expr, change, expr.parent)
} else {
return if(subleftIsConst) {
val change = if(subleftIsConst) {
// (c1-v)+c2 -> (c1+c2)-v
BinaryExpression(
BinaryExpression(subExpr.left, "+", expr.right, subExpr.position),
@ -478,12 +411,12 @@ internal class ConstantFoldingOptimizer(private val program: Program, private va
"+",
subExpr.left, expr.position)
}
return IAstModification.ReplaceNode(expr, change, expr.parent)
}
}
else if(expr.operator=="-" && subExpr.operator=="+") {
optimizationsDone++
if(leftIsConst) {
return if(subleftIsConst) {
val change = if(subleftIsConst) {
// c1-(c2+v) -> (c1-c2)-v
BinaryExpression(
BinaryExpression(expr.left, "-", subExpr.left, subExpr.position),
@ -496,8 +429,9 @@ internal class ConstantFoldingOptimizer(private val program: Program, private va
"-",
subExpr.left, expr.position)
}
return IAstModification.ReplaceNode(expr, change, expr.parent)
} else {
return if(subleftIsConst) {
val change = if(subleftIsConst) {
// (c1+v)-c2 -> v+(c1-c2)
BinaryExpression(
BinaryExpression(subExpr.left, "-", expr.right, subExpr.position),
@ -510,113 +444,12 @@ internal class ConstantFoldingOptimizer(private val program: Program, private va
"+",
subExpr.left, expr.position)
}
return IAstModification.ReplaceNode(expr, change, expr.parent)
}
}
return expr
return null
}
}
override fun visit(forLoop: ForLoop): Statement {
fun adjustRangeDt(rangeFrom: NumericLiteralValue, targetDt: DataType, rangeTo: NumericLiteralValue, stepLiteral: NumericLiteralValue?, range: RangeExpr): RangeExpr {
val newFrom: NumericLiteralValue
val newTo: NumericLiteralValue
try {
newFrom = rangeFrom.cast(targetDt)
newTo = rangeTo.cast(targetDt)
} catch (x: ExpressionError) {
return range
}
val newStep: Expression = try {
stepLiteral?.cast(targetDt)?: range.step
} catch(ee: ExpressionError) {
range.step
}
return RangeExpr(newFrom, newTo, newStep, range.position)
}
val forLoop2 = super.visit(forLoop) as ForLoop
// check if we need to adjust an array literal to the loop variable's datatype
val array = forLoop2.iterable as? ArrayLiteralValue
if(array!=null) {
val loopvarDt: DataType = when {
forLoop.loopVar!=null -> forLoop.loopVar!!.inferType(program).typeOrElse(DataType.UBYTE)
forLoop.loopRegister!=null -> DataType.UBYTE
else -> throw FatalAstException("weird for loop")
}
val arrayType = when(loopvarDt) {
DataType.UBYTE -> DataType.ARRAY_UB
DataType.BYTE -> DataType.ARRAY_B
DataType.UWORD -> DataType.ARRAY_UW
DataType.WORD -> DataType.ARRAY_W
DataType.FLOAT -> DataType.ARRAY_F
else -> throw FatalAstException("invalid array elt type")
}
val array2 = array.cast(arrayType)
if(array2!=null && array2!==array) {
forLoop2.iterable = array2
array2.linkParents(forLoop2)
}
}
// adjust the datatype of a range expression in for loops to the loop variable.
val iterableRange = forLoop2.iterable as? RangeExpr ?: return forLoop2
val rangeFrom = iterableRange.from as? NumericLiteralValue
val rangeTo = iterableRange.to as? NumericLiteralValue
if(rangeFrom==null || rangeTo==null) return forLoop2
val loopvar = forLoop2.loopVar?.targetVarDecl(program.namespace)
if(loopvar!=null) {
val stepLiteral = iterableRange.step as? NumericLiteralValue
when(loopvar.datatype) {
DataType.UBYTE -> {
if(rangeFrom.type!= DataType.UBYTE) {
// attempt to translate the iterable into ubyte values
forLoop2.iterable = adjustRangeDt(rangeFrom, loopvar.datatype, rangeTo, stepLiteral, iterableRange)
}
}
DataType.BYTE -> {
if(rangeFrom.type!= DataType.BYTE) {
// attempt to translate the iterable into byte values
forLoop2.iterable = adjustRangeDt(rangeFrom, loopvar.datatype, rangeTo, stepLiteral, iterableRange)
}
}
DataType.UWORD -> {
if(rangeFrom.type!= DataType.UWORD) {
// attempt to translate the iterable into uword values
forLoop2.iterable = adjustRangeDt(rangeFrom, loopvar.datatype, rangeTo, stepLiteral, iterableRange)
}
}
DataType.WORD -> {
if(rangeFrom.type!= DataType.WORD) {
// attempt to translate the iterable into word values
forLoop2.iterable = adjustRangeDt(rangeFrom, loopvar.datatype, rangeTo, stepLiteral, iterableRange)
}
}
else -> throw FatalAstException("invalid loopvar datatype $loopvar")
}
}
return forLoop2
}
override fun visit(arrayLiteral: ArrayLiteralValue): Expression {
// because constant folding can result in arrays that are now suddenly capable
// of telling the type of all their elements (for instance, when they contained -2 which
// was a prefix expression earlier), we recalculate the array's datatype.
val array = super.visit(arrayLiteral)
if(array is ArrayLiteralValue) {
if(array.type.isKnown)
return array
val arrayDt = array.guessDatatype(program)
if(arrayDt.isKnown) {
val newArray = arrayLiteral.cast(arrayDt.typeOrElse(DataType.STRUCT))
if(newArray!=null)
return newArray
}
}
return array
}
}

View File

@ -0,0 +1,192 @@
package prog8.optimizer
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.processing.AstWalker
import prog8.ast.processing.IAstModification
import prog8.ast.statements.ArrayIndex
import prog8.ast.statements.AssignTarget
import prog8.ast.statements.ForLoop
import prog8.ast.statements.VarDecl
import prog8.compiler.target.CompilationTarget
// Fix up the literal value's type to match that of the vardecl
internal class VarConstantValueTypeAdjuster(private val program: Program) : AstWalker() {
private val noModifications = emptyList<IAstModification>()
override fun after(decl: VarDecl, parent: Node): Iterable<IAstModification> {
val declConstValue = decl.value?.constValue(program)
if(declConstValue!=null && (decl.type==VarDeclType.VAR || decl.type==VarDeclType.CONST)
&& !declConstValue.inferType(program).istype(decl.datatype)) {
// cast the numeric literal to the appropriate datatype of the variable
val cast = declConstValue.cast(decl.datatype)
if(cast.isValid)
return listOf(IAstModification.ReplaceNode(decl.value!!, cast.valueOrZero(), decl))
}
return noModifications
}
}
// Replace all constant identifiers with their actual value,
// and the array var initializer values and sizes.
// This is needed because further constant optimizations depend on those.
internal class ConstantIdentifierReplacer(private val program: Program, private val errors: ErrorReporter) : AstWalker() {
private val noModifications = emptyList<IAstModification>()
override fun after(identifier: IdentifierReference, parent: Node): Iterable<IAstModification> {
// replace identifiers that refer to const value, with the value itself
// if it's a simple type and if it's not a left hand side variable
if(identifier.parent is AssignTarget)
return noModifications
var forloop = identifier.parent as? ForLoop
if(forloop==null)
forloop = identifier.parent.parent as? ForLoop
if(forloop!=null && identifier===forloop.loopVar)
return noModifications
val cval = identifier.constValue(program) ?: return noModifications
return when (cval.type) {
in NumericDatatypes -> listOf(IAstModification.ReplaceNode(identifier, NumericLiteralValue(cval.type, cval.number, identifier.position), identifier.parent))
in PassByReferenceDatatypes -> throw FatalAstException("pass-by-reference type should not be considered a constant")
else -> noModifications
}
}
override fun before(decl: VarDecl, parent: Node): Iterable<IAstModification> {
// the initializer value can't refer to the variable itself (recursive definition)
// TODO: use call graph for this?
if(decl.value?.referencesIdentifier(decl.name) == true || decl.arraysize?.indexVar?.referencesIdentifier(decl.name) == true) {
errors.err("recursive var declaration", decl.position)
return noModifications
}
if(decl.type== VarDeclType.CONST || decl.type== VarDeclType.VAR) {
if(decl.isArray){
val arraysize = decl.arraysize
if(arraysize==null) {
// for arrays that have no size specifier attempt to deduce the size
val arrayval = decl.value as? ArrayLiteralValue
if(arrayval!=null) {
return listOf(IAstModification.SetExpression(
{ decl.arraysize = ArrayIndex(it, decl.position) },
NumericLiteralValue.optimalInteger(arrayval.value.size, decl.position),
decl
))
}
} else if(arraysize.constIndex()==null) {
// see if we can calculate the size from other fields
val cval = arraysize.indexVar?.constValue(program) ?: arraysize.origExpression?.constValue(program)
if(cval!=null) {
arraysize.indexVar = null
arraysize.origExpression = null
arraysize.indexNum = cval
}
}
}
when(decl.datatype) {
DataType.FLOAT -> {
// vardecl: for scalar float vars, promote constant integer initialization values to floats
val litval = decl.value as? NumericLiteralValue
if (litval!=null && litval.type in IntegerDatatypes) {
val newValue = NumericLiteralValue(DataType.FLOAT, litval.number.toDouble(), litval.position)
return listOf(IAstModification.ReplaceNode(decl.value!!, newValue, decl))
}
}
DataType.ARRAY_UB, DataType.ARRAY_B, DataType.ARRAY_UW, DataType.ARRAY_W -> {
val numericLv = decl.value as? NumericLiteralValue
val rangeExpr = decl.value as? RangeExpr
if(rangeExpr!=null) {
// convert the initializer range expression to an actual array
val declArraySize = decl.arraysize?.constIndex()
if(declArraySize!=null && declArraySize!=rangeExpr.size())
errors.err("range expression size doesn't match declared array size", decl.value?.position!!)
val constRange = rangeExpr.toConstantIntegerRange()
if(constRange!=null) {
val eltType = rangeExpr.inferType(program).typeOrElse(DataType.UBYTE)
val newValue = if(eltType in ByteDatatypes) {
ArrayLiteralValue(InferredTypes.InferredType.known(decl.datatype),
constRange.map { NumericLiteralValue(eltType, it.toShort(), decl.value!!.position) }.toTypedArray(),
position = decl.value!!.position)
} else {
ArrayLiteralValue(InferredTypes.InferredType.known(decl.datatype),
constRange.map { NumericLiteralValue(eltType, it, decl.value!!.position) }.toTypedArray(),
position = decl.value!!.position)
}
return listOf(IAstModification.ReplaceNode(decl.value!!, newValue, decl))
}
}
if(numericLv!=null && numericLv.type== DataType.FLOAT)
errors.err("arraysize requires only integers here", numericLv.position)
val size = decl.arraysize?.constIndex() ?: return noModifications
if (rangeExpr==null && numericLv!=null) {
// arraysize initializer is empty or a single int, and we know the size; create the arraysize.
val fillvalue = numericLv.number.toInt()
when(decl.datatype){
DataType.ARRAY_UB -> {
if(fillvalue !in 0..255)
errors.err("ubyte value overflow", numericLv.position)
}
DataType.ARRAY_B -> {
if(fillvalue !in -128..127)
errors.err("byte value overflow", numericLv.position)
}
DataType.ARRAY_UW -> {
if(fillvalue !in 0..65535)
errors.err("uword value overflow", numericLv.position)
}
DataType.ARRAY_W -> {
if(fillvalue !in -32768..32767)
errors.err("word value overflow", numericLv.position)
}
else -> {}
}
// create the array itself, filled with the fillvalue.
val array = Array(size) {fillvalue}.map { NumericLiteralValue(ArrayElementTypes.getValue(decl.datatype), it, numericLv.position) }.toTypedArray<Expression>()
val refValue = ArrayLiteralValue(InferredTypes.InferredType.known(decl.datatype), array, position = numericLv.position)
return listOf(IAstModification.ReplaceNode(decl.value!!, refValue, decl))
}
}
DataType.ARRAY_F -> {
val size = decl.arraysize?.constIndex() ?: return noModifications
val litval = decl.value as? NumericLiteralValue
val rangeExpr = decl.value as? RangeExpr
if(rangeExpr!=null) {
// convert the initializer range expression to an actual array of floats
val declArraySize = decl.arraysize?.constIndex()
if(declArraySize!=null && declArraySize!=rangeExpr.size())
errors.err("range expression size doesn't match declared array size", decl.value?.position!!)
val constRange = rangeExpr.toConstantIntegerRange()
if(constRange!=null) {
val newValue = ArrayLiteralValue(InferredTypes.InferredType.known(DataType.ARRAY_F),
constRange.map { NumericLiteralValue(DataType.FLOAT, it.toDouble(), decl.value!!.position) }.toTypedArray(),
position = decl.value!!.position)
return listOf(IAstModification.ReplaceNode(decl.value!!, newValue, decl))
}
}
if(rangeExpr==null && litval!=null) {
// arraysize initializer is a single int, and we know the size.
val fillvalue = litval.number.toDouble()
if (fillvalue < CompilationTarget.instance.machine.FLOAT_MAX_NEGATIVE || fillvalue > CompilationTarget.instance.machine.FLOAT_MAX_POSITIVE)
errors.err("float value overflow", litval.position)
else {
// create the array itself, filled with the fillvalue.
val array = Array(size) {fillvalue}.map { NumericLiteralValue(DataType.FLOAT, it, litval.position) }.toTypedArray<Expression>()
val refValue = ArrayLiteralValue(InferredTypes.InferredType.known(DataType.ARRAY_F), array, position = litval.position)
return listOf(IAstModification.ReplaceNode(decl.value!!, refValue, decl))
}
}
}
else -> {
// nothing to do for this type
// this includes strings and structs
}
}
}
return noModifications
}
}

View File

@ -6,7 +6,6 @@ import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.processing.AstWalker
import prog8.ast.processing.IAstModification
import prog8.ast.statements.Assignment
import kotlin.math.abs
import kotlin.math.log2
import kotlin.math.pow
@ -14,12 +13,6 @@ import kotlin.math.pow
/*
todo add more expression optimizations
x + x -> x << 1 (for words... for bytes too?)
x + x + x + x -> x << 2 (for words... for bytes too?)
x + x + x -> ???? x*3 ??? words/bytes?
x - x -> 0
Investigate what optimizations binaryen has, also see https://egorbo.com/peephole-optimizations.html
*/
@ -28,12 +21,7 @@ import kotlin.math.pow
internal class ExpressionSimplifier(private val program: Program) : AstWalker() {
private val powersOfTwo = (1..16).map { (2.0).pow(it) }.toSet()
private val negativePowersOfTwo = powersOfTwo.map { -it }.toSet()
override fun after(assignment: Assignment, parent: Node): Iterable<IAstModification> {
if (assignment.aug_op != null)
throw AstException("augmented assignments should have been converted to normal assignments before this optimizer: $assignment")
return emptyList()
}
private val noModifications = emptyList<IAstModification>()
override fun after(typecast: TypecastExpression, parent: Node): Iterable<IAstModification> {
val mods = mutableListOf<IAstModification>()
@ -42,19 +30,22 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
val literal = typecast.expression as? NumericLiteralValue
if (literal != null) {
val newLiteral = literal.cast(typecast.type)
if (newLiteral !== literal)
mods += IAstModification.ReplaceNode(typecast.expression, newLiteral, typecast)
if (newLiteral.isValid && newLiteral.valueOrZero() !== literal)
mods += IAstModification.ReplaceNode(typecast.expression, newLiteral.valueOrZero(), typecast)
}
// remove redundant nested typecasts:
// if the typecast casts a value to the same type, remove the cast.
// if the typecast contains another typecast, remove the inner typecast.
// remove redundant nested typecasts
val subTypecast = typecast.expression as? TypecastExpression
if (subTypecast != null) {
mods += IAstModification.ReplaceNode(typecast.expression, subTypecast.expression, typecast)
// remove the sub-typecast if its datatype is larger than the outer typecast
if(subTypecast.type largerThan typecast.type) {
mods += IAstModification.ReplaceNode(typecast.expression, subTypecast.expression, typecast)
}
} else {
if (typecast.expression.inferType(program).istype(typecast.type))
if (typecast.expression.inferType(program).istype(typecast.type)) {
// remove duplicate cast
mods += IAstModification.ReplaceNode(typecast, typecast.expression, parent)
}
}
return mods
@ -88,10 +79,10 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
if (newExpr != null)
return listOf(IAstModification.ReplaceNode(expr, newExpr, parent))
}
else -> return emptyList()
else -> return noModifications
}
}
return emptyList()
return noModifications
}
override fun after(expr: BinaryExpression, parent: Node): Iterable<IAstModification> {
@ -103,7 +94,6 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
if (!leftIDt.isKnown || !rightIDt.isKnown)
throw FatalAstException("can't determine datatype of both expression operands $expr")
// ConstValue <associativeoperator> X --> X <associativeoperator> ConstValue
if (leftVal != null && expr.operator in associativeOperators && rightVal == null)
return listOf(IAstModification.SwapOperands(expr))
@ -180,6 +170,42 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
}
}
if(expr.operator == ">=" && rightVal?.number == 0) {
if (leftDt == DataType.UBYTE || leftDt == DataType.UWORD) {
// unsigned >= 0 --> true
return listOf(IAstModification.ReplaceNode(expr, NumericLiteralValue.fromBoolean(true, expr.position), parent))
}
}
if(expr.operator == "<" && rightVal?.number == 0) {
if (leftDt == DataType.UBYTE || leftDt == DataType.UWORD) {
// unsigned < 0 --> false
return listOf(IAstModification.ReplaceNode(expr, NumericLiteralValue.fromBoolean(false, expr.position), parent))
}
when(leftDt) {
DataType.BYTE -> {
// signed < 0 --> signed & $80
return listOf(IAstModification.ReplaceNode(
expr,
BinaryExpression(expr.left, "&", NumericLiteralValue.optimalInteger(0x80, expr.position), expr.position),
parent
))
}
DataType.WORD -> {
// signedw < 0 --> msb(signedw) & $80
return listOf(IAstModification.ReplaceNode(
expr,
BinaryExpression(FunctionCall(IdentifierReference(listOf("msb"), expr.position),
mutableListOf(expr.left),
expr.position
), "&", NumericLiteralValue.optimalInteger(0x80, expr.position), expr.position),
parent
))
}
else -> {}
}
}
// simplify when a term is constant and directly determines the outcome
val constTrue = NumericLiteralValue.fromBoolean(true, expr.position)
val constFalse = NumericLiteralValue.fromBoolean(false, expr.position)
@ -246,7 +272,50 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
if(newExpr != null)
return listOf(IAstModification.ReplaceNode(expr, newExpr, parent))
return emptyList()
return noModifications
}
override fun after(functionCall: FunctionCall, parent: Node): Iterable<IAstModification> {
if(functionCall.target.nameInSource == listOf("lsb")) {
val arg = functionCall.args[0]
if(arg is TypecastExpression) {
val valueDt = arg.expression.inferType(program)
if (valueDt.istype(DataType.BYTE) || valueDt.istype(DataType.UBYTE)) {
// useless lsb() of byte value that was casted to word
return listOf(IAstModification.ReplaceNode(functionCall, arg.expression, parent))
}
} else {
val argDt = arg.inferType(program)
if (argDt.istype(DataType.BYTE) || argDt.istype(DataType.UBYTE)) {
// useless lsb() of byte value
return listOf(IAstModification.ReplaceNode(functionCall, arg, parent))
}
}
}
else if(functionCall.target.nameInSource == listOf("msb")) {
val arg = functionCall.args[0]
if(arg is TypecastExpression) {
val valueDt = arg.expression.inferType(program)
if (valueDt.istype(DataType.BYTE) || valueDt.istype(DataType.UBYTE)) {
// useless msb() of byte value that was casted to word, replace with 0
return listOf(IAstModification.ReplaceNode(
functionCall,
NumericLiteralValue(valueDt.typeOrElse(DataType.UBYTE), 0, arg.expression.position),
parent))
}
} else {
val argDt = arg.inferType(program)
if (argDt.istype(DataType.BYTE) || argDt.istype(DataType.UBYTE)) {
// useless msb() of byte value, replace with 0
return listOf(IAstModification.ReplaceNode(
functionCall,
NumericLiteralValue(argDt.typeOrElse(DataType.UBYTE), 0, arg.position),
parent))
}
}
}
return noModifications
}
private fun determineY(x: Expression, subBinExpr: BinaryExpression): Expression? {
@ -258,6 +327,14 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
}
private fun optimizeAdd(expr: BinaryExpression, leftVal: NumericLiteralValue?, rightVal: NumericLiteralValue?): Expression? {
if(expr.left.isSameAs(expr.right)) {
// optimize X+X into X *2
expr.operator = "*"
expr.right = NumericLiteralValue.optimalInteger(2, expr.right.position)
expr.right.linkParents(expr)
return expr
}
if (leftVal == null && rightVal == null)
return null
@ -274,21 +351,37 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
}
// no need to check for left val constant (because of associativity)
val rnum = rightVal?.number?.toDouble()
if(rnum!=null && rnum<0.0) {
expr.operator = "-"
expr.right = NumericLiteralValue(rightVal.type, -rnum, rightVal.position)
return expr
}
return null
}
private fun optimizeSub(expr: BinaryExpression, leftVal: NumericLiteralValue?, rightVal: NumericLiteralValue?): Expression? {
if(expr.left.isSameAs(expr.right)) {
// optimize X-X into 0
return NumericLiteralValue.optimalInteger(0, expr.position)
}
if (leftVal == null && rightVal == null)
return null
if (rightVal != null) {
// right value is a constant, see if we can optimize
val rightConst: NumericLiteralValue = rightVal
when (rightConst.number.toDouble()) {
0.0 -> {
// left
return expr.left
}
val rnum = rightVal.number.toDouble()
if (rnum == 0.0) {
// left
return expr.left
}
if(rnum<0.0) {
expr.operator = "+"
expr.right = NumericLiteralValue(rightVal.type, -rnum, rightVal.position)
return expr
}
}
if (leftVal != null) {
@ -301,6 +394,7 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
}
}
return null
}
@ -383,7 +477,10 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
when (expr.operator) {
"%" -> {
if (cv == 1.0) {
return NumericLiteralValue(expr.inferType(program).typeOrElse(DataType.STRUCT), 0, expr.position)
val idt = expr.inferType(program)
if(!idt.isKnown)
throw FatalAstException("unknown dt")
return NumericLiteralValue(idt.typeOrElse(DataType.STRUCT), 0, expr.position)
} else if (cv == 2.0) {
expr.operator = "&"
expr.right = NumericLiteralValue.optimalInteger(1, expr.position)
@ -512,8 +609,10 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
if (amount == 0) {
return expr.left
}
val targetDt = expr.left.inferType(program).typeOrElse(DataType.STRUCT)
when (targetDt) {
val targetIDt = expr.left.inferType(program)
if(!targetIDt.isKnown)
throw FatalAstException("unknown dt")
when (val targetDt = targetIDt.typeOrElse(DataType.STRUCT)) {
DataType.UBYTE, DataType.BYTE -> {
if (amount >= 8) {
return NumericLiteralValue(targetDt, 0, expr.position)
@ -523,12 +622,12 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
if (amount >= 16) {
return NumericLiteralValue(targetDt, 0, expr.position)
} else if (amount >= 8) {
val lsb = TypecastExpression(expr.left, DataType.UBYTE, true, expr.position)
val lsb = FunctionCall(IdentifierReference(listOf("lsb"), expr.position), mutableListOf(expr.left), expr.position)
if (amount == 8) {
return FunctionCall(IdentifierReference(listOf("mkword"), expr.position), mutableListOf(NumericLiteralValue.optimalInteger(0, expr.position), lsb), expr.position)
return FunctionCall(IdentifierReference(listOf("mkword"), expr.position), mutableListOf(lsb, NumericLiteralValue.optimalInteger(0, expr.position)), expr.position)
}
val shifted = BinaryExpression(lsb, "<<", NumericLiteralValue.optimalInteger(amount - 8, expr.position), expr.position)
return FunctionCall(IdentifierReference(listOf("mkword"), expr.position), mutableListOf(NumericLiteralValue.optimalInteger(0, expr.position), shifted), expr.position)
return FunctionCall(IdentifierReference(listOf("mkword"), expr.position), mutableListOf(shifted, NumericLiteralValue.optimalInteger(0, expr.position)), expr.position)
}
}
else -> {
@ -545,8 +644,10 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
if (amount == 0) {
return expr.left
}
val targetDt = expr.left.inferType(program).typeOrElse(DataType.STRUCT)
when (targetDt) {
val idt = expr.left.inferType(program)
if(!idt.isKnown)
throw FatalAstException("unknown dt")
when (idt.typeOrElse(DataType.STRUCT)) {
DataType.UBYTE -> {
if (amount >= 8) {
return NumericLiteralValue.optimalInteger(0, expr.position)
@ -563,8 +664,9 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
return NumericLiteralValue.optimalInteger(0, expr.position)
} else if (amount >= 8) {
val msb = FunctionCall(IdentifierReference(listOf("msb"), expr.position), mutableListOf(expr.left), expr.position)
if (amount == 8)
return msb
if (amount == 8) {
return TypecastExpression(msb, DataType.UWORD, true, expr.position)
}
return BinaryExpression(msb, ">>", NumericLiteralValue.optimalInteger(amount - 8, expr.position), expr.position)
}
}
@ -572,14 +674,6 @@ internal class ExpressionSimplifier(private val program: Program) : AstWalker()
if (amount > 16) {
expr.right = NumericLiteralValue.optimalInteger(16, expr.right.position)
return null
} else if (amount >= 8) {
val msbAsByte = TypecastExpression(
FunctionCall(IdentifierReference(listOf("msb"), expr.position), mutableListOf(expr.left), expr.position),
DataType.BYTE,
true, expr.position)
if (amount == 8)
return msbAsByte
return BinaryExpression(msbAsByte, ">>", NumericLiteralValue.optimalInteger(amount - 8, expr.position), expr.position)
}
}
else -> {

View File

@ -5,12 +5,32 @@ import prog8.ast.base.ErrorReporter
internal fun Program.constantFold(errors: ErrorReporter) {
val optimizer = ConstantFoldingOptimizer(this, errors)
optimizer.visit(this)
val valuetypefixer = VarConstantValueTypeAdjuster(this)
valuetypefixer.visit(this)
if(errors.isEmpty()) {
valuetypefixer.applyModifications()
while(errors.isEmpty() && optimizer.optimizationsDone>0) {
optimizer.optimizationsDone = 0
optimizer.visit(this)
val replacer = ConstantIdentifierReplacer(this, errors)
replacer.visit(this)
if (errors.isEmpty()) {
replacer.applyModifications()
valuetypefixer.visit(this)
if(errors.isEmpty()) {
valuetypefixer.applyModifications()
val optimizer = ConstantFoldingOptimizer(this)
optimizer.visit(this)
while (errors.isEmpty() && optimizer.applyModifications() > 0) {
optimizer.visit(this)
}
if (errors.isEmpty()) {
replacer.visit(this)
replacer.applyModifications()
}
}
}
}
if(errors.isEmpty())
@ -21,9 +41,11 @@ internal fun Program.constantFold(errors: ErrorReporter) {
internal fun Program.optimizeStatements(errors: ErrorReporter): Int {
val optimizer = StatementOptimizer(this, errors)
optimizer.visit(this)
val optimizationCount = optimizer.applyModifications()
modules.forEach { it.linkParents(this.namespace) } // re-link in final configuration
return optimizer.optimizationsDone
return optimizationCount
}
internal fun Program.simplifyExpressions() : Int {
@ -31,3 +53,9 @@ internal fun Program.simplifyExpressions() : Int {
opti.visit(this)
return opti.applyModifications()
}
internal fun Program.splitBinaryExpressions() : Int {
val opti = BinExprSplitter(this)
opti.visit(this)
return opti.applyModifications()
}

View File

@ -1,46 +0,0 @@
package prog8.optimizer
import prog8.ast.INameScope
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.processing.IAstVisitor
import prog8.ast.statements.AnonymousScope
import prog8.ast.statements.NopStatement
import prog8.ast.statements.Statement
internal class FlattenAnonymousScopesAndNopRemover: IAstVisitor {
private var scopesToFlatten = mutableListOf<INameScope>()
private val nopStatements = mutableListOf<NopStatement>()
override fun visit(program: Program) {
super.visit(program)
for(scope in scopesToFlatten.reversed()) {
val namescope = scope.parent as INameScope
val idx = namescope.statements.indexOf(scope as Statement)
if(idx>=0) {
val nop = NopStatement.insteadOf(namescope.statements[idx])
nop.parent = namescope as Node
namescope.statements[idx] = nop
namescope.statements.addAll(idx, scope.statements)
scope.statements.forEach { it.parent = namescope }
visit(nop)
}
}
this.nopStatements.forEach {
it.definingScope().remove(it)
}
}
override fun visit(scope: AnonymousScope) {
if(scope.parent is INameScope) {
scopesToFlatten.add(scope) // get rid of the anonymous scope
}
return super.visit(scope)
}
override fun visit(nopStatement: NopStatement) {
nopStatements.add(nopStatement)
}
}

View File

@ -1,173 +1,86 @@
package prog8.optimizer
import prog8.ast.INameScope
import prog8.ast.Module
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.processing.IAstModifyingVisitor
import prog8.ast.processing.AstWalker
import prog8.ast.processing.IAstModification
import prog8.ast.processing.IAstVisitor
import prog8.ast.statements.*
import prog8.compiler.target.CompilationTarget
import prog8.functions.BuiltinFunctions
import kotlin.math.floor
/*
TODO: remove unreachable code after return and exit()
TODO: proper inlining of tiny subroutines (at first, restrict to subs without parameters and variables in them, and build it up from there: correctly renaming/relocating all variables in them and refs to those as well)
*/
internal class StatementOptimizer(private val program: Program,
private val errors: ErrorReporter) : IAstModifyingVisitor {
var optimizationsDone: Int = 0
private set
private val errors: ErrorReporter) : AstWalker() {
private val pureBuiltinFunctions = BuiltinFunctions.filter { it.value.pure }
private val noModifications = emptyList<IAstModification>()
private val callgraph = CallGraph(program)
private val vardeclsToRemove = mutableListOf<VarDecl>()
private val pureBuiltinFunctions = BuiltinFunctions.filter { it.value.pure }
override fun visit(program: Program) {
removeUnusedCode(callgraph)
super.visit(program)
for(decl in vardeclsToRemove) {
decl.definingScope().remove(decl)
}
}
private fun removeUnusedCode(callgraph: CallGraph) {
// remove all subroutines that aren't called, or are empty
val removeSubroutines = mutableSetOf<Subroutine>()
val entrypoint = program.entrypoint()
program.modules.forEach {
callgraph.forAllSubroutines(it) { sub ->
if (sub !== entrypoint && !sub.keepAlways && (sub.calledBy.isEmpty() || (sub.containsNoCodeNorVars() && !sub.isAsmSubroutine)))
removeSubroutines.add(sub)
}
}
if (removeSubroutines.isNotEmpty()) {
removeSubroutines.forEach {
it.definingScope().remove(it)
}
}
val removeBlocks = mutableSetOf<Block>()
program.modules.flatMap { it.statements }.filterIsInstance<Block>().forEach { block ->
if (block.containsNoCodeNorVars() && "force_output" !in block.options())
removeBlocks.add(block)
}
if (removeBlocks.isNotEmpty()) {
removeBlocks.forEach { it.definingScope().remove(it) }
}
// remove modules that are not imported, or are empty (unless it's a library modules)
val removeModules = mutableSetOf<Module>()
program.modules.forEach {
if (!it.isLibraryModule && (it.importedBy.isEmpty() || it.containsNoCodeNorVars()))
removeModules.add(it)
}
if (removeModules.isNotEmpty()) {
program.modules.removeAll(removeModules)
}
}
override fun visit(block: Block): Statement {
override fun after(block: Block, parent: Node): Iterable<IAstModification> {
if("force_output" !in block.options()) {
if (block.containsNoCodeNorVars()) {
optimizationsDone++
errors.warn("removing empty block '${block.name}'", block.position)
return NopStatement.insteadOf(block)
return listOf(IAstModification.Remove(block, parent as INameScope))
}
if (block !in callgraph.usedSymbols) {
optimizationsDone++
errors.warn("removing unused block '${block.name}'", block.position)
return NopStatement.insteadOf(block) // remove unused block
return listOf(IAstModification.Remove(block, parent as INameScope))
}
}
return super.visit(block)
return noModifications
}
override fun visit(subroutine: Subroutine): Statement {
super.visit(subroutine)
override fun after(subroutine: Subroutine, parent: Node): Iterable<IAstModification> {
val forceOutput = "force_output" in subroutine.definingBlock().options()
if(subroutine.asmAddress==null && !forceOutput) {
if(subroutine.containsNoCodeNorVars()) {
errors.warn("removing empty subroutine '${subroutine.name}'", subroutine.position)
optimizationsDone++
return NopStatement.insteadOf(subroutine)
val removals = callgraph.calledBy.getValue(subroutine).map {
IAstModification.Remove(it, it.definingScope())
}.toMutableList()
removals += IAstModification.Remove(subroutine, subroutine.definingScope())
return removals
}
}
val linesToRemove = deduplicateAssignments(subroutine.statements)
if(linesToRemove.isNotEmpty()) {
linesToRemove.reversed().forEach{subroutine.statements.removeAt(it)}
}
if(subroutine !in callgraph.usedSymbols && !forceOutput) {
errors.warn("removing unused subroutine '${subroutine.name}'", subroutine.position)
optimizationsDone++
return NopStatement.insteadOf(subroutine)
return listOf(IAstModification.Remove(subroutine, subroutine.definingScope()))
}
return subroutine
return noModifications
}
override fun visit(decl: VarDecl): Statement {
override fun after(decl: VarDecl, parent: Node): Iterable<IAstModification> {
val forceOutput = "force_output" in decl.definingBlock().options()
if(decl !in callgraph.usedSymbols && !forceOutput) {
if(decl.type == VarDeclType.VAR)
errors.warn("removing unused variable ${decl.type} '${decl.name}'", decl.position)
optimizationsDone++
return NopStatement.insteadOf(decl)
errors.warn("removing unused variable '${decl.name}'", decl.position)
return listOf(IAstModification.Remove(decl, decl.definingScope()))
}
return super.visit(decl)
return noModifications
}
private fun deduplicateAssignments(statements: List<Statement>): MutableList<Int> {
// removes 'duplicate' assignments that assign the isSameAs target
val linesToRemove = mutableListOf<Int>()
var previousAssignmentLine: Int? = null
for (i in statements.indices) {
val stmt = statements[i] as? Assignment
if (stmt != null && stmt.value is NumericLiteralValue) {
if (previousAssignmentLine == null) {
previousAssignmentLine = i
continue
} else {
val prev = statements[previousAssignmentLine] as Assignment
if (prev.target.isSameAs(stmt.target, program)) {
// get rid of the previous assignment, if the target is not MEMORY
if (prev.target.isNotMemory(program.namespace))
linesToRemove.add(previousAssignmentLine)
}
previousAssignmentLine = i
}
} else
previousAssignmentLine = null
}
return linesToRemove
}
override fun visit(functionCallStatement: FunctionCallStatement): Statement {
override fun after(functionCallStatement: FunctionCallStatement, parent: Node): Iterable<IAstModification> {
if(functionCallStatement.target.nameInSource.size==1 && functionCallStatement.target.nameInSource[0] in BuiltinFunctions) {
val functionName = functionCallStatement.target.nameInSource[0]
if (functionName in pureBuiltinFunctions) {
errors.warn("statement has no effect (function return value is discarded)", functionCallStatement.position)
optimizationsDone++
return NopStatement.insteadOf(functionCallStatement)
return listOf(IAstModification.Remove(functionCallStatement, functionCallStatement.definingScope()))
}
}
if(functionCallStatement.target.nameInSource==listOf("c64scr", "print") ||
functionCallStatement.target.nameInSource==listOf("c64scr", "print_p")) {
// printing a literal string of just 2 or 1 characters is replaced by directly outputting those characters
// printing a literal string of just 2 or 1 characters is replaced by directly outputting those characters
// this is a C-64 specific optimization
if(functionCallStatement.target.nameInSource==listOf("c64scr", "print")) {
val arg = functionCallStatement.args.single()
val stringVar: IdentifierReference?
stringVar = if(arg is AddressOf) {
@ -177,85 +90,78 @@ internal class StatementOptimizer(private val program: Program,
}
if(stringVar!=null) {
val vardecl = stringVar.targetVarDecl(program.namespace)!!
val string = vardecl.value!! as StringLiteralValue
if(string.value.length==1) {
val firstCharEncoded = CompilationTarget.encodeString(string.value, string.altEncoding)[0]
functionCallStatement.args.clear()
functionCallStatement.args.add(NumericLiteralValue.optimalInteger(firstCharEncoded.toInt(), functionCallStatement.position))
functionCallStatement.target = IdentifierReference(listOf("c64", "CHROUT"), functionCallStatement.target.position)
vardeclsToRemove.add(vardecl)
optimizationsDone++
return functionCallStatement
} else if(string.value.length==2) {
val firstTwoCharsEncoded = CompilationTarget.encodeString(string.value.take(2), string.altEncoding)
val scope = AnonymousScope(mutableListOf(), functionCallStatement.position)
scope.statements.add(FunctionCallStatement(IdentifierReference(listOf("c64", "CHROUT"), functionCallStatement.target.position),
mutableListOf(NumericLiteralValue.optimalInteger(firstTwoCharsEncoded[0].toInt(), functionCallStatement.position)),
functionCallStatement.void, functionCallStatement.position))
scope.statements.add(FunctionCallStatement(IdentifierReference(listOf("c64", "CHROUT"), functionCallStatement.target.position),
mutableListOf(NumericLiteralValue.optimalInteger(firstTwoCharsEncoded[1].toInt(), functionCallStatement.position)),
functionCallStatement.void, functionCallStatement.position))
vardeclsToRemove.add(vardecl)
optimizationsDone++
return scope
val string = vardecl.value as? StringLiteralValue
if(string!=null) {
val pos = functionCallStatement.position
if (string.value.length == 1) {
val firstCharEncoded = CompilationTarget.instance.encodeString(string.value, string.altEncoding)[0]
val chrout = FunctionCallStatement(
IdentifierReference(listOf("c64", "CHROUT"), pos),
mutableListOf(NumericLiteralValue(DataType.UBYTE, firstCharEncoded.toInt(), pos)),
functionCallStatement.void, pos
)
return listOf(IAstModification.ReplaceNode(functionCallStatement, chrout, parent))
} else if (string.value.length == 2) {
val firstTwoCharsEncoded = CompilationTarget.instance.encodeString(string.value.take(2), string.altEncoding)
val chrout1 = FunctionCallStatement(
IdentifierReference(listOf("c64", "CHROUT"), pos),
mutableListOf(NumericLiteralValue(DataType.UBYTE, firstTwoCharsEncoded[0].toInt(), pos)),
functionCallStatement.void, pos
)
val chrout2 = FunctionCallStatement(
IdentifierReference(listOf("c64", "CHROUT"), pos),
mutableListOf(NumericLiteralValue(DataType.UBYTE, firstTwoCharsEncoded[1].toInt(), pos)),
functionCallStatement.void, pos
)
val anonscope = AnonymousScope(mutableListOf(), pos)
anonscope.statements.add(chrout1)
anonscope.statements.add(chrout2)
return listOf(IAstModification.ReplaceNode(functionCallStatement, anonscope, parent))
}
}
}
}
// if it calls a subroutine,
// and the first instruction in the subroutine is a jump, call that jump target instead
// if the first instruction in the subroutine is a return statement, replace with a nop instruction
// if the first instruction in the called subroutine is a return statement, remove the jump altogeter
val subroutine = functionCallStatement.target.targetSubroutine(program.namespace)
if(subroutine!=null) {
val first = subroutine.statements.asSequence().filterNot { it is VarDecl || it is Directive }.firstOrNull()
if(first is Jump && first.identifier!=null) {
optimizationsDone++
return FunctionCallStatement(first.identifier, functionCallStatement.args, functionCallStatement.void, functionCallStatement.position)
}
if(first is ReturnFromIrq || first is Return) {
optimizationsDone++
return NopStatement.insteadOf(functionCallStatement)
}
if(first is Return)
return listOf(IAstModification.Remove(functionCallStatement, functionCallStatement.definingScope()))
}
return super.visit(functionCallStatement)
return noModifications
}
override fun visit(functionCall: FunctionCall): Expression {
// if it calls a subroutine,
// and the first instruction in the subroutine is a jump, call that jump target instead
// if the first instruction in the subroutine is a return statement with constant value, replace with the constant value
override fun before(functionCall: FunctionCall, parent: Node): Iterable<IAstModification> {
// if the first instruction in the called subroutine is a return statement with constant value, replace with the constant value
val subroutine = functionCall.target.targetSubroutine(program.namespace)
if(subroutine!=null) {
val first = subroutine.statements.asSequence().filterNot { it is VarDecl || it is Directive }.firstOrNull()
if(first is Jump && first.identifier!=null) {
optimizationsDone++
return FunctionCall(first.identifier, functionCall.args, functionCall.position)
}
if(first is Return && first.value!=null) {
val constval = first.value?.constValue(program)
if(constval!=null)
return constval
return listOf(IAstModification.ReplaceNode(functionCall, constval, parent))
}
}
return super.visit(functionCall)
return noModifications
}
override fun visit(ifStatement: IfStatement): Statement {
super.visit(ifStatement)
if(ifStatement.truepart.containsNoCodeNorVars() && ifStatement.elsepart.containsNoCodeNorVars()) {
optimizationsDone++
return NopStatement.insteadOf(ifStatement)
}
override fun after(ifStatement: IfStatement, parent: Node): Iterable<IAstModification> {
// remove empty if statements
if(ifStatement.truepart.containsNoCodeNorVars() && ifStatement.elsepart.containsNoCodeNorVars())
return listOf(IAstModification.Remove(ifStatement, ifStatement.definingScope()))
// empty true part? switch with the else part
if(ifStatement.truepart.containsNoCodeNorVars() && ifStatement.elsepart.containsCodeOrVars()) {
// invert the condition and move else part to true part
ifStatement.truepart = ifStatement.elsepart
ifStatement.elsepart = AnonymousScope(mutableListOf(), ifStatement.elsepart.position)
ifStatement.condition = PrefixExpression("not", ifStatement.condition, ifStatement.condition.position)
optimizationsDone++
return ifStatement
val invertedCondition = PrefixExpression("not", ifStatement.condition, ifStatement.condition.position)
val emptyscope = AnonymousScope(mutableListOf(), ifStatement.elsepart.position)
val truepart = AnonymousScope(ifStatement.elsepart.statements, ifStatement.truepart.position)
return listOf(
IAstModification.ReplaceNode(ifStatement.condition, invertedCondition, ifStatement),
IAstModification.ReplaceNode(ifStatement.truepart, truepart, ifStatement),
IAstModification.ReplaceNode(ifStatement.elsepart, emptyscope, ifStatement)
)
}
val constvalue = ifStatement.condition.constValue(program)
@ -263,115 +169,289 @@ internal class StatementOptimizer(private val program: Program,
return if(constvalue.asBooleanValue){
// always true -> keep only if-part
errors.warn("condition is always true", ifStatement.position)
optimizationsDone++
ifStatement.truepart
listOf(IAstModification.ReplaceNode(ifStatement, ifStatement.truepart, parent))
} else {
// always false -> keep only else-part
errors.warn("condition is always false", ifStatement.position)
optimizationsDone++
ifStatement.elsepart
listOf(IAstModification.ReplaceNode(ifStatement, ifStatement.elsepart, parent))
}
}
return ifStatement
return noModifications
}
override fun visit(forLoop: ForLoop): Statement {
super.visit(forLoop)
override fun after(forLoop: ForLoop, parent: Node): Iterable<IAstModification> {
if(forLoop.body.containsNoCodeNorVars()) {
// remove empty for loop
optimizationsDone++
return NopStatement.insteadOf(forLoop)
errors.warn("removing empty for loop", forLoop.position)
return listOf(IAstModification.Remove(forLoop, forLoop.definingScope()))
} else if(forLoop.body.statements.size==1) {
val loopvar = forLoop.body.statements[0] as? VarDecl
if(loopvar!=null && loopvar.name==forLoop.loopVar?.nameInSource?.singleOrNull()) {
// remove empty for loop
optimizationsDone++
return NopStatement.insteadOf(forLoop)
if(loopvar!=null && loopvar.name==forLoop.loopVar.nameInSource.singleOrNull()) {
// remove empty for loop (only loopvar decl in it)
return listOf(IAstModification.Remove(forLoop, forLoop.definingScope()))
}
}
val range = forLoop.iterable as? RangeExpr
if(range!=null) {
if(range.size()==1) {
// for loop over a (constant) range of just a single value-- optimize the loop away
// loopvar/reg = range value , follow by block
val assignment = Assignment(AssignTarget(forLoop.loopRegister, forLoop.loopVar, null, null, forLoop.position), null, range.from, forLoop.position)
forLoop.body.statements.add(0, assignment)
optimizationsDone++
return forLoop.body
val scope = AnonymousScope(mutableListOf(), forLoop.position)
scope.statements.add(Assignment(AssignTarget(forLoop.loopVar, null, null, forLoop.position), range.from, forLoop.position))
scope.statements.addAll(forLoop.body.statements)
return listOf(IAstModification.ReplaceNode(forLoop, scope, parent))
}
}
return forLoop
val iterable = (forLoop.iterable as? IdentifierReference)?.targetVarDecl(program.namespace)
if(iterable!=null) {
if(iterable.datatype==DataType.STR) {
val sv = iterable.value as StringLiteralValue
val size = sv.value.length
if(size==1) {
// loop over string of length 1 -> just assign the single character
val character = CompilationTarget.instance.encodeString(sv.value, sv.altEncoding)[0]
val byte = NumericLiteralValue(DataType.UBYTE, character, iterable.position)
val scope = AnonymousScope(mutableListOf(), forLoop.position)
scope.statements.add(Assignment(AssignTarget(forLoop.loopVar, null, null, forLoop.position), byte, forLoop.position))
scope.statements.addAll(forLoop.body.statements)
return listOf(IAstModification.ReplaceNode(forLoop, scope, parent))
}
}
else if(iterable.datatype in ArrayDatatypes) {
val size = iterable.arraysize!!.constIndex()
if(size==1) {
// loop over array of length 1 -> just assign the single value
val av = (iterable.value as ArrayLiteralValue).value[0].constValue(program)?.number
if(av!=null) {
val scope = AnonymousScope(mutableListOf(), forLoop.position)
scope.statements.add(Assignment(
AssignTarget(forLoop.loopVar, null, null, forLoop.position), NumericLiteralValue.optimalInteger(av.toInt(), iterable.position),
forLoop.position))
scope.statements.addAll(forLoop.body.statements)
return listOf(IAstModification.ReplaceNode(forLoop, scope, parent))
}
}
}
}
return noModifications
}
override fun visit(whileLoop: WhileLoop): Statement {
super.visit(whileLoop)
override fun before(untilLoop: UntilLoop, parent: Node): Iterable<IAstModification> {
val constvalue = untilLoop.condition.constValue(program)
if(constvalue!=null) {
if(constvalue.asBooleanValue) {
// always true -> keep only the statement block (if there are no break statements)
errors.warn("condition is always true", untilLoop.condition.position)
if(!hasBreak(untilLoop.body))
return listOf(IAstModification.ReplaceNode(untilLoop, untilLoop.body, parent))
} else {
// always false
val forever = RepeatLoop(null, untilLoop.body, untilLoop.position)
return listOf(IAstModification.ReplaceNode(untilLoop, forever, parent))
}
}
return noModifications
}
override fun before(whileLoop: WhileLoop, parent: Node): Iterable<IAstModification> {
val constvalue = whileLoop.condition.constValue(program)
if(constvalue!=null) {
return if(constvalue.asBooleanValue){
// always true -> print a warning, and optimize into a forever-loop
errors.warn("condition is always true", whileLoop.condition.position)
optimizationsDone++
ForeverLoop(whileLoop.body, whileLoop.position)
return if(constvalue.asBooleanValue) {
// always true
val forever = RepeatLoop(null, whileLoop.body, whileLoop.position)
listOf(IAstModification.ReplaceNode(whileLoop, forever, parent))
} else {
// always false -> remove the while statement altogether
errors.warn("condition is always false", whileLoop.condition.position)
optimizationsDone++
NopStatement.insteadOf(whileLoop)
listOf(IAstModification.Remove(whileLoop, whileLoop.definingScope()))
}
}
return whileLoop
return noModifications
}
override fun visit(repeatLoop: RepeatLoop): Statement {
super.visit(repeatLoop)
val constvalue = repeatLoop.untilCondition.constValue(program)
if(constvalue!=null) {
return if(constvalue.asBooleanValue){
// always true -> keep only the statement block (if there are no continue and break statements)
errors.warn("condition is always true", repeatLoop.untilCondition.position)
if(hasContinueOrBreak(repeatLoop.body))
repeatLoop
else {
optimizationsDone++
repeatLoop.body
}
} else {
// always false -> print a warning, and optimize into a forever loop
errors.warn("condition is always false", repeatLoop.untilCondition.position)
optimizationsDone++
ForeverLoop(repeatLoop.body, repeatLoop.position)
override fun after(repeatLoop: RepeatLoop, parent: Node): Iterable<IAstModification> {
val iter = repeatLoop.iterations
if(iter!=null) {
if(repeatLoop.body.containsNoCodeNorVars()) {
errors.warn("empty loop removed", repeatLoop.position)
return listOf(IAstModification.Remove(repeatLoop, repeatLoop.definingScope()))
}
val iterations = iter.constValue(program)?.number?.toInt()
if (iterations == 0) {
errors.warn("iterations is always 0, removed loop", iter.position)
return listOf(IAstModification.Remove(repeatLoop, repeatLoop.definingScope()))
}
if (iterations == 1) {
errors.warn("iterations is always 1", iter.position)
return listOf(IAstModification.ReplaceNode(repeatLoop, repeatLoop.body, parent))
}
}
return repeatLoop
return noModifications
}
override fun visit(whenStatement: WhenStatement): Statement {
val choices = whenStatement.choices.toList()
for(choice in choices) {
if(choice.statements.containsNoCodeNorVars())
override fun after(whenStatement: WhenStatement, parent: Node): Iterable<IAstModification> {
// remove empty choices
class ChoiceRemover(val choice: WhenChoice) : IAstModification {
override fun perform() {
whenStatement.choices.remove(choice)
}
}
return super.visit(whenStatement)
return whenStatement.choices
.filter { !it.statements.containsCodeOrVars() }
.map { ChoiceRemover(it) }
}
private fun hasContinueOrBreak(scope: INameScope): Boolean {
override fun after(jump: Jump, parent: Node): Iterable<IAstModification> {
// if the jump is to the next statement, remove the jump
val scope = jump.definingScope()
val label = jump.identifier?.targetStatement(scope)
if(label!=null && scope.statements.indexOf(label) == scope.statements.indexOf(jump)+1)
return listOf(IAstModification.Remove(jump, jump.definingScope()))
class Searcher: IAstModifyingVisitor
return noModifications
}
override fun before(assignment: Assignment, parent: Node): Iterable<IAstModification> {
val binExpr = assignment.value as? BinaryExpression
if(binExpr!=null) {
if(binExpr.left isSameAs assignment.target) {
val rExpr = binExpr.right as? BinaryExpression
if(rExpr!=null) {
val op1 = binExpr.operator
val op2 = rExpr.operator
if(rExpr.left is NumericLiteralValue && op2 in setOf("+", "*", "&", "|")) {
// associative operator, make sure the constant numeric value is second (right)
return listOf(IAstModification.SwapOperands(rExpr))
}
val rNum = (rExpr.right as? NumericLiteralValue)?.number
if(rNum!=null) {
if (op1 == "+" || op1 == "-") {
if (op2 == "+") {
// A = A +/- B + N
val expr2 = BinaryExpression(binExpr.left, binExpr.operator, rExpr.left, binExpr.position)
val addConstant = Assignment(
assignment.target,
BinaryExpression(binExpr.left, "+", rExpr.right, rExpr.position),
assignment.position
)
return listOf(
IAstModification.ReplaceNode(binExpr, expr2, binExpr.parent),
IAstModification.InsertAfter(assignment, addConstant, assignment.definingScope()))
} else if (op2 == "-") {
// A = A +/- B - N
val expr2 = BinaryExpression(binExpr.left, binExpr.operator, rExpr.left, binExpr.position)
val subConstant = Assignment(
assignment.target,
BinaryExpression(binExpr.left, "-", rExpr.right, rExpr.position),
assignment.position
)
return listOf(
IAstModification.ReplaceNode(binExpr, expr2, binExpr.parent),
IAstModification.InsertAfter(assignment, subConstant, assignment.definingScope()))
}
}
}
}
}
if(binExpr.operator in associativeOperators && binExpr.right isSameAs assignment.target) {
// associative operator, swap the operands so that the assignment target is first (left)
// unless the other operand is the same in which case we don't swap (endless loop!)
if (!(binExpr.left isSameAs binExpr.right))
return listOf(IAstModification.SwapOperands(binExpr))
}
}
return noModifications
}
override fun after(assignment: Assignment, parent: Node): Iterable<IAstModification> {
if(assignment.target isSameAs assignment.value) {
// remove assignment to self
return listOf(IAstModification.Remove(assignment, assignment.definingScope()))
}
val targetIDt = assignment.target.inferType(program)
if(!targetIDt.isKnown)
throw FatalAstException("can't infer type of assignment target")
// optimize binary expressions a bit
val targetDt = targetIDt.typeOrElse(DataType.STRUCT)
val bexpr=assignment.value as? BinaryExpression
if(bexpr!=null) {
val rightCv = bexpr.right.constValue(program)?.number?.toDouble()
if (rightCv != null && assignment.target isSameAs bexpr.left) {
// assignments of the form: X = X <operator> <expr>
// remove assignments that have no effect (such as X=X+0)
// optimize/rewrite some other expressions
val vardeclDt = (assignment.target.identifier?.targetVarDecl(program.namespace))?.type
when (bexpr.operator) {
"+" -> {
if (rightCv == 0.0) {
return listOf(IAstModification.Remove(assignment, assignment.definingScope()))
} else if (targetDt in IntegerDatatypes && floor(rightCv) == rightCv) {
if (vardeclDt != VarDeclType.MEMORY && rightCv in 1.0..4.0) {
// replace by several INCs if it's not a memory address (inc on a memory mapped register doesn't work very well)
val incs = AnonymousScope(mutableListOf(), assignment.position)
repeat(rightCv.toInt()) {
incs.statements.add(PostIncrDecr(assignment.target, "++", assignment.position))
}
return listOf(IAstModification.ReplaceNode(assignment, incs, parent))
}
}
}
"-" -> {
if (rightCv == 0.0) {
return listOf(IAstModification.Remove(assignment, assignment.definingScope()))
} else if (targetDt in IntegerDatatypes && floor(rightCv) == rightCv) {
if (vardeclDt != VarDeclType.MEMORY && rightCv in 1.0..4.0) {
// replace by several DECs if it's not a memory address (dec on a memory mapped register doesn't work very well)
val decs = AnonymousScope(mutableListOf(), assignment.position)
repeat(rightCv.toInt()) {
decs.statements.add(PostIncrDecr(assignment.target, "--", assignment.position))
}
return listOf(IAstModification.ReplaceNode(assignment, decs, parent))
}
}
}
"*" -> if (rightCv == 1.0) return listOf(IAstModification.Remove(assignment, assignment.definingScope()))
"/" -> if (rightCv == 1.0) return listOf(IAstModification.Remove(assignment, assignment.definingScope()))
"**" -> if (rightCv == 1.0) return listOf(IAstModification.Remove(assignment, assignment.definingScope()))
"|" -> if (rightCv == 0.0) return listOf(IAstModification.Remove(assignment, assignment.definingScope()))
"^" -> if (rightCv == 0.0) return listOf(IAstModification.Remove(assignment, assignment.definingScope()))
"<<" -> {
if (rightCv == 0.0)
return listOf(IAstModification.Remove(assignment, assignment.definingScope()))
}
">>" -> {
if (rightCv == 0.0)
return listOf(IAstModification.Remove(assignment, assignment.definingScope()))
}
}
}
}
return noModifications
}
private fun hasBreak(scope: INameScope): Boolean {
class Searcher: IAstVisitor
{
var count=0
override fun visit(breakStmt: Break): Statement {
override fun visit(breakStmt: Break) {
count++
return super.visit(breakStmt)
}
override fun visit(contStmt: Continue): Statement {
count++
return super.visit(contStmt)
}
}
val s=Searcher()
for(stmt in scope.statements) {
stmt.accept(s)
@ -381,185 +461,4 @@ internal class StatementOptimizer(private val program: Program,
return s.count > 0
}
override fun visit(jump: Jump): Statement {
val subroutine = jump.identifier?.targetSubroutine(program.namespace)
if(subroutine!=null) {
// if the first instruction in the subroutine is another jump, shortcut this one
val first = subroutine.statements.asSequence().filterNot { it is VarDecl || it is Directive }.firstOrNull()
if(first is Jump) {
optimizationsDone++
return first
}
}
// if the jump is to the next statement, remove the jump
val scope = jump.definingScope()
val label = jump.identifier?.targetStatement(scope)
if(label!=null) {
if(scope.statements.indexOf(label) == scope.statements.indexOf(jump)+1) {
optimizationsDone++
return NopStatement.insteadOf(jump)
}
}
return jump
}
override fun visit(assignment: Assignment): Statement {
if(assignment.aug_op!=null)
throw AstException("augmented assignments should have been converted to normal assignments before this optimizer: $assignment")
if(assignment.target isSameAs assignment.value) {
if(assignment.target.isNotMemory(program.namespace)) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
}
val targetIDt = assignment.target.inferType(program, assignment)
if(!targetIDt.isKnown)
throw FatalAstException("can't infer type of assignment target")
val targetDt = targetIDt.typeOrElse(DataType.STRUCT)
val bexpr=assignment.value as? BinaryExpression
if(bexpr!=null) {
val cv = bexpr.right.constValue(program)?.number?.toDouble()
if (cv == null) {
if (bexpr.operator == "+" && targetDt != DataType.FLOAT) {
if (bexpr.left isSameAs bexpr.right && assignment.target isSameAs bexpr.left) {
bexpr.operator = "*"
bexpr.right = NumericLiteralValue.optimalInteger(2, assignment.value.position)
optimizationsDone++
return assignment
}
}
} else {
if (assignment.target isSameAs bexpr.left) {
// remove assignments that have no effect X=X , X+=0, X-=0, X*=1, X/=1, X//=1, A |= 0, A ^= 0, A<<=0, etc etc
// A = A <operator> B
val vardeclDt = (assignment.target.identifier?.targetVarDecl(program.namespace))?.type
when (bexpr.operator) {
"+" -> {
if (cv == 0.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
} else if (targetDt in IntegerDatatypes && floor(cv) == cv) {
if ((vardeclDt == VarDeclType.MEMORY && cv in 1.0..3.0) || (vardeclDt != VarDeclType.MEMORY && cv in 1.0..8.0)) {
// replace by several INCs (a bit less when dealing with memory targets)
val decs = AnonymousScope(mutableListOf(), assignment.position)
repeat(cv.toInt()) {
decs.statements.add(PostIncrDecr(assignment.target, "++", assignment.position))
}
return decs
}
}
}
"-" -> {
if (cv == 0.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
} else if (targetDt in IntegerDatatypes && floor(cv) == cv) {
if ((vardeclDt == VarDeclType.MEMORY && cv in 1.0..3.0) || (vardeclDt != VarDeclType.MEMORY && cv in 1.0..8.0)) {
// replace by several DECs (a bit less when dealing with memory targets)
val decs = AnonymousScope(mutableListOf(), assignment.position)
repeat(cv.toInt()) {
decs.statements.add(PostIncrDecr(assignment.target, "--", assignment.position))
}
return decs
}
}
}
"*" -> if (cv == 1.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
"/" -> if (cv == 1.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
"**" -> if (cv == 1.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
"|" -> if (cv == 0.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
"^" -> if (cv == 0.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
"<<" -> {
if (cv == 0.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
if (((targetDt == DataType.UWORD || targetDt == DataType.WORD) && cv > 15.0) ||
((targetDt == DataType.UBYTE || targetDt == DataType.BYTE) && cv > 7.0)) {
assignment.value = NumericLiteralValue.optimalInteger(0, assignment.value.position)
assignment.value.linkParents(assignment)
optimizationsDone++
} else {
// replace by in-place lsl(...) call
val scope = AnonymousScope(mutableListOf(), assignment.position)
var numshifts = cv.toInt()
while (numshifts > 0) {
scope.statements.add(FunctionCallStatement(IdentifierReference(listOf("lsl"), assignment.position),
mutableListOf(bexpr.left), true, assignment.position))
numshifts--
}
optimizationsDone++
return scope
}
}
">>" -> {
if (cv == 0.0) {
optimizationsDone++
return NopStatement.insteadOf(assignment)
}
if ((targetDt == DataType.UWORD && cv > 15.0) || (targetDt == DataType.UBYTE && cv > 7.0)) {
assignment.value = NumericLiteralValue.optimalInteger(0, assignment.value.position)
assignment.value.linkParents(assignment)
optimizationsDone++
} else {
// replace by in-place lsr(...) call
val scope = AnonymousScope(mutableListOf(), assignment.position)
var numshifts = cv.toInt()
while (numshifts > 0) {
scope.statements.add(FunctionCallStatement(IdentifierReference(listOf("lsr"), assignment.position),
mutableListOf(bexpr.left), true, assignment.position))
numshifts--
}
optimizationsDone++
return scope
}
}
}
}
}
}
return super.visit(assignment)
}
override fun visit(scope: AnonymousScope): Statement {
val linesToRemove = deduplicateAssignments(scope.statements)
if(linesToRemove.isNotEmpty()) {
linesToRemove.reversed().forEach{scope.statements.removeAt(it)}
}
return super.visit(scope)
}
override fun visit(label: Label): Statement {
// remove duplicate labels
val stmts = label.definingScope().statements
val startIdx = stmts.indexOf(label)
if(startIdx< stmts.lastIndex && stmts[startIdx+1] == label)
return NopStatement.insteadOf(label)
return super.visit(label)
}
}

View File

@ -0,0 +1,103 @@
package prog8.optimizer
import prog8.ast.INameScope
import prog8.ast.Node
import prog8.ast.Program
import prog8.ast.base.ErrorReporter
import prog8.ast.processing.AstWalker
import prog8.ast.processing.IAstModification
import prog8.ast.statements.*
internal class UnusedCodeRemover(private val program: Program, private val errors: ErrorReporter): AstWalker() {
override fun before(program: Program, parent: Node): Iterable<IAstModification> {
val callgraph = CallGraph(program)
val removals = mutableListOf<IAstModification>()
// remove all subroutines that aren't called, or are empty
val entrypoint = program.entrypoint()
program.modules.forEach {
callgraph.forAllSubroutines(it) { sub ->
if (sub !== entrypoint && !sub.isAsmSubroutine && (callgraph.calledBy[sub].isNullOrEmpty() || sub.containsNoCodeNorVars())) {
removals.add(IAstModification.Remove(sub, sub.definingScope()))
}
}
}
program.modules.flatMap { it.statements }.filterIsInstance<Block>().forEach { block ->
if (block.containsNoCodeNorVars() && "force_output" !in block.options())
removals.add(IAstModification.Remove(block, block.definingScope()))
}
// remove modules that are not imported, or are empty (unless it's a library modules)
program.modules.forEach {
if (!it.isLibraryModule && (it.importedBy.isEmpty() || it.containsNoCodeNorVars()))
removals.add(IAstModification.Remove(it, it.definingScope()))
}
return removals
}
override fun before(breakStmt: Break, parent: Node): Iterable<IAstModification> {
reportUnreachable(breakStmt, parent as INameScope)
return emptyList()
}
override fun before(jump: Jump, parent: Node): Iterable<IAstModification> {
reportUnreachable(jump, parent as INameScope)
return emptyList()
}
override fun before(returnStmt: Return, parent: Node): Iterable<IAstModification> {
reportUnreachable(returnStmt, parent as INameScope)
return emptyList()
}
override fun before(functionCallStatement: FunctionCallStatement, parent: Node): Iterable<IAstModification> {
if(functionCallStatement.target.nameInSource.last() == "exit")
reportUnreachable(functionCallStatement, parent as INameScope)
return emptyList()
}
private fun reportUnreachable(stmt: Statement, parent: INameScope) {
when(val next = parent.nextSibling(stmt)) {
null, is Label, is Directive, is VarDecl, is InlineAssembly, is Subroutine, is StructDecl -> {}
else -> errors.warn("unreachable code", next.position)
}
}
override fun after(scope: AnonymousScope, parent: Node): Iterable<IAstModification> {
val removeDoubleAssignments = deduplicateAssignments(scope.statements)
return removeDoubleAssignments.map { IAstModification.Remove(it, scope) }
}
override fun after(block: Block, parent: Node): Iterable<IAstModification> {
val removeDoubleAssignments = deduplicateAssignments(block.statements)
return removeDoubleAssignments.map { IAstModification.Remove(it, block) }
}
override fun after(subroutine: Subroutine, parent: Node): Iterable<IAstModification> {
val removeDoubleAssignments = deduplicateAssignments(subroutine.statements)
return removeDoubleAssignments.map { IAstModification.Remove(it, subroutine) }
}
private fun deduplicateAssignments(statements: List<Statement>): List<Assignment> {
// removes 'duplicate' assignments that assign the same target directly after another
val linesToRemove = mutableListOf<Assignment>()
for (stmtPairs in statements.windowed(2, step = 1)) {
val assign1 = stmtPairs[0] as? Assignment
val assign2 = stmtPairs[1] as? Assignment
if (assign1 != null && assign2 != null && !assign2.isAugmentable) {
if (assign1.target.isSameAs(assign2.target, program) && assign1.target.isInRegularRAM(program.namespace)) {
if(assign2.target.identifier==null || !assign2.value.referencesIdentifier(*(assign2.target.identifier!!.nameInSource.toTypedArray())))
linesToRemove.add(assign1)
}
}
}
return linesToRemove
}
}

View File

@ -4,12 +4,12 @@ import org.antlr.v4.runtime.*
import prog8.ast.Module
import prog8.ast.Program
import prog8.ast.antlr.toAst
import prog8.ast.base.ErrorReporter
import prog8.ast.base.Position
import prog8.ast.base.SyntaxError
import prog8.ast.base.checkImportedValid
import prog8.ast.statements.Directive
import prog8.ast.statements.DirectiveArg
import prog8.compiler.target.CompilationTarget
import prog8.pathFrom
import java.io.InputStream
import java.nio.file.Files
@ -20,21 +20,13 @@ import java.nio.file.Paths
internal class ParsingFailedError(override var message: String) : Exception(message)
private class LexerErrorListener: BaseErrorListener() {
var numberOfErrors: Int = 0
override fun syntaxError(p0: Recognizer<*, *>?, p1: Any?, p2: Int, p3: Int, p4: String?, p5: RecognitionException?) {
numberOfErrors++
}
}
internal class CustomLexer(val modulePath: Path, input: CharStream?) : prog8Lexer(input)
internal fun moduleName(fileName: Path) = fileName.toString().substringBeforeLast('.')
internal class ModuleImporter(private val errors: ErrorReporter) {
internal class ModuleImporter {
internal fun importModule(program: Program, filePath: Path): Module {
print("importing '${moduleName(filePath.fileName)}'")
@ -61,13 +53,28 @@ internal class ModuleImporter(private val errors: ErrorReporter) {
return executeImportDirective(program, import, Paths.get(""))
}
private class MyErrorListener: ConsoleErrorListener() {
var numberOfErrors: Int = 0
override fun syntaxError(recognizer: Recognizer<*, *>?, offendingSymbol: Any?, line: Int, charPositionInLine: Int, msg: String, e: RecognitionException?) {
numberOfErrors++
when (recognizer) {
is CustomLexer -> System.err.println("${recognizer.modulePath}:$line:$charPositionInLine: $msg")
is prog8Parser -> System.err.println("${recognizer.inputStream.sourceName}:$line:$charPositionInLine: $msg")
else -> System.err.println("$line:$charPositionInLine $msg")
}
}
}
private fun importModule(program: Program, stream: CharStream, modulePath: Path, isLibrary: Boolean): Module {
val moduleName = moduleName(modulePath.fileName)
val lexer = CustomLexer(modulePath, stream)
val lexerErrors = LexerErrorListener()
lexer.removeErrorListeners()
val lexerErrors = MyErrorListener()
lexer.addErrorListener(lexerErrors)
val tokens = CommentHandlingTokenStream(lexer)
val parser = prog8Parser(tokens)
parser.removeErrorListeners()
parser.addErrorListener(MyErrorListener())
val parseTree = parser.module()
val numberOfErrors = parser.numberOfSyntaxErrors + lexerErrors.numberOfErrors
if(numberOfErrors > 0)
@ -85,7 +92,7 @@ internal class ModuleImporter(private val errors: ErrorReporter) {
// accept additional imports
val lines = moduleAst.statements.toMutableList()
lines.asSequence()
.mapIndexed { i, it -> Pair(i, it) }
.mapIndexed { i, it -> i to it }
.filter { (it.second as? Directive)?.directive == "%import" }
.forEach { executeImportDirective(program, it.second as Directive, modulePath) }
@ -95,7 +102,7 @@ internal class ModuleImporter(private val errors: ErrorReporter) {
private fun discoverImportedModuleFile(name: String, source: Path, position: Position?): Path {
val fileName = "$name.p8"
val locations = mutableListOf(source.parent)
val locations = if(source.toString().isEmpty()) mutableListOf<Path>() else mutableListOf(source.parent)
val propPath = System.getProperty("prog8.libdir")
if(propPath!=null)
@ -110,7 +117,7 @@ internal class ModuleImporter(private val errors: ErrorReporter) {
if (Files.isReadable(file)) return file
}
throw ParsingFailedError("$position Import: no module source file '$fileName' found (I've looked in: $locations)")
throw ParsingFailedError("$position Import: no module source file '$fileName' found (I've looked in: embedded libs and $locations)")
}
private fun executeImportDirective(program: Program, import: Directive, source: Path): Module? {
@ -124,16 +131,14 @@ internal class ModuleImporter(private val errors: ErrorReporter) {
if(existing!=null)
return null
val resource = tryGetEmbeddedResource("$moduleName.p8")
val rsc = tryGetEmbeddedResource("$moduleName.p8")
val importedModule =
if(resource!=null) {
if(rsc!=null) {
// load the module from the embedded resource
val (resource, resourcePath) = rsc
resource.use {
if(import.args[0].int==42)
println("importing '$moduleName' (library, auto)")
else
println("importing '$moduleName' (library)")
importModule(program, CharStreams.fromStream(it), Paths.get("@embedded@/$moduleName"), true)
println("importing '$moduleName' (library)")
importModule(program, CharStreams.fromStream(it), Paths.get("@embedded@/$resourcePath"), true)
}
} else {
val modulePath = discoverImportedModuleFile(moduleName, source, import.position)
@ -144,7 +149,18 @@ internal class ModuleImporter(private val errors: ErrorReporter) {
return importedModule
}
private fun tryGetEmbeddedResource(name: String): InputStream? {
return object{}.javaClass.getResourceAsStream("/prog8lib/$name")
private fun tryGetEmbeddedResource(name: String): Pair<InputStream, String>? {
val target = CompilationTarget.instance.name
val targetSpecificPath = "/prog8lib/$target/$name"
val targetSpecificResource = object{}.javaClass.getResourceAsStream(targetSpecificPath)
if(targetSpecificResource!=null)
return Pair(targetSpecificResource, targetSpecificPath)
val generalPath = "/prog8lib/$name"
val generalResource = object{}.javaClass.getResourceAsStream(generalPath)
if(generalResource!=null)
return Pair(generalResource, generalPath)
return null
}
}

View File

@ -5,17 +5,18 @@ import org.hamcrest.Matchers.closeTo
import org.hamcrest.Matchers.equalTo
import org.junit.jupiter.api.Test
import org.junit.jupiter.api.TestInstance
import prog8.ast.base.DataType
import prog8.ast.base.ErrorReporter
import prog8.ast.base.Position
import prog8.ast.expressions.NumericLiteralValue
import prog8.ast.expressions.StringLiteralValue
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.*
import prog8.compiler.*
import prog8.compiler.target.C64Target
import prog8.compiler.target.CompilationTarget
import prog8.compiler.target.c64.C64MachineDefinition.C64Zeropage
import prog8.compiler.target.c64.C64MachineDefinition.FLOAT_MAX_NEGATIVE
import prog8.compiler.target.c64.C64MachineDefinition.FLOAT_MAX_POSITIVE
import prog8.compiler.target.c64.C64MachineDefinition.Mflpt5
import prog8.compiler.target.c64.Petscii
import prog8.compiler.target.cx16.CX16MachineDefinition
import java.io.CharConversionException
import kotlin.test.*
@ -123,13 +124,13 @@ class TestCompiler {
@TestInstance(TestInstance.Lifecycle.PER_CLASS)
class TestZeropage {
class TestC64Zeropage {
private val errors = ErrorReporter()
@Test
fun testNames() {
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), false))
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), false, false))
zp.allocate("", DataType.UBYTE, null, errors)
zp.allocate("", DataType.UBYTE, null, errors)
@ -142,37 +143,37 @@ class TestZeropage {
@Test
fun testZpFloatEnable() {
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, emptyList(), false))
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, emptyList(), false, false))
assertFailsWith<CompilerException> {
zp.allocate("", DataType.FLOAT, null, errors)
}
val zp2 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.DONTUSE, emptyList(), true))
val zp2 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.DONTUSE, emptyList(), true, false))
assertFailsWith<CompilerException> {
zp2.allocate("", DataType.FLOAT, null, errors)
}
val zp3 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FLOATSAFE, emptyList(), true))
val zp3 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FLOATSAFE, emptyList(), true, false))
zp3.allocate("", DataType.FLOAT, null, errors)
}
@Test
fun testZpModesWithFloats() {
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, emptyList(), false))
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.KERNALSAFE, emptyList(), false))
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), false))
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FLOATSAFE, emptyList(), false))
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), true))
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FLOATSAFE, emptyList(), true))
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, emptyList(), false, false))
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.KERNALSAFE, emptyList(), false, false))
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), false, false))
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FLOATSAFE, emptyList(), false, false))
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), true, false))
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FLOATSAFE, emptyList(), true, false))
assertFailsWith<CompilerException> {
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, emptyList(), true))
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, emptyList(), true, false))
}
assertFailsWith<CompilerException> {
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.KERNALSAFE, emptyList(), true))
C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.KERNALSAFE, emptyList(), true, false))
}
}
@Test
fun testZpDontuse() {
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.DONTUSE, emptyList(), false))
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.DONTUSE, emptyList(), false, false))
println(zp.free)
assertEquals(0, zp.available())
assertFailsWith<CompilerException> {
@ -182,19 +183,19 @@ class TestZeropage {
@Test
fun testFreeSpaces() {
val zp1 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), true))
assertEquals(16, zp1.available())
val zp2 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FLOATSAFE, emptyList(), false))
assertEquals(91, zp2.available())
val zp3 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.KERNALSAFE, emptyList(), false))
val zp1 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), true, false))
assertEquals(18, zp1.available())
val zp2 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FLOATSAFE, emptyList(), false, false))
assertEquals(89, zp2.available())
val zp3 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.KERNALSAFE, emptyList(), false, false))
assertEquals(125, zp3.available())
val zp4 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, emptyList(), false))
val zp4 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, emptyList(), false, false))
assertEquals(238, zp4.available())
}
@Test
fun testReservedSpace() {
val zp1 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, emptyList(), false))
val zp1 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, emptyList(), false, false))
assertEquals(238, zp1.available())
assertTrue(50 in zp1.free)
assertTrue(100 in zp1.free)
@ -203,7 +204,7 @@ class TestZeropage {
assertTrue(200 in zp1.free)
assertTrue(255 in zp1.free)
assertTrue(199 in zp1.free)
val zp2 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, listOf(50 .. 100, 200..255), false))
val zp2 = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, listOf(50 .. 100, 200..255), false, false))
assertEquals(139, zp2.available())
assertFalse(50 in zp2.free)
assertFalse(100 in zp2.free)
@ -216,8 +217,8 @@ class TestZeropage {
@Test
fun testBasicsafeAllocation() {
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), true))
assertEquals(16, zp.available())
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), true, false))
assertEquals(18, zp.available())
assertFailsWith<ZeropageDepletedError> {
// in regular zp there aren't 5 sequential bytes free
@ -239,7 +240,7 @@ class TestZeropage {
@Test
fun testFullAllocation() {
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, emptyList(), false))
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.FULL, emptyList(), false, false))
assertEquals(238, zp.available())
val loc = zp.allocate("", DataType.UWORD, null, errors)
assertTrue(loc > 3)
@ -269,20 +270,38 @@ class TestZeropage {
@Test
fun testEfficientAllocation() {
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), true))
assertEquals(16, zp.available())
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), true, false))
assertEquals(18, zp.available())
assertEquals(0x04, zp.allocate("", DataType.WORD, null, errors))
assertEquals(0x06, zp.allocate("", DataType.UBYTE, null, errors))
assertEquals(0x0a, zp.allocate("", DataType.UBYTE, null, errors))
assertEquals(0x94, zp.allocate("", DataType.UWORD, null, errors))
assertEquals(0xa7, zp.allocate("", DataType.UWORD, null, errors))
assertEquals(0xa9, zp.allocate("", DataType.UWORD, null, errors))
assertEquals(0xb5, zp.allocate("", DataType.UWORD, null, errors))
assertEquals(0xf7, zp.allocate("", DataType.UWORD, null, errors))
assertEquals(0x9b, zp.allocate("", DataType.UWORD, null, errors))
assertEquals(0x9e, zp.allocate("", DataType.UWORD, null, errors))
assertEquals(0xa5, zp.allocate("", DataType.UWORD, null, errors))
assertEquals(0xb0, zp.allocate("", DataType.UWORD, null, errors))
assertEquals(0xbe, zp.allocate("", DataType.UWORD, null, errors))
assertEquals(0x0e, zp.allocate("", DataType.UBYTE, null, errors))
assertEquals(0x92, zp.allocate("", DataType.UBYTE, null, errors))
assertEquals(0x96, zp.allocate("", DataType.UBYTE, null, errors))
assertEquals(0xf9, zp.allocate("", DataType.UBYTE, null, errors))
assertEquals(0, zp.available())
}
@Test
fun testReservedLocations() {
val zp = C64Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), false, false))
assertEquals(zp.SCRATCH_REG, zp.SCRATCH_B1+1, "zp _B1 and _REG must be next to each other to create a word")
}
}
@TestInstance(TestInstance.Lifecycle.PER_CLASS)
class TestCx16Zeropage {
@Test
fun testReservedLocations() {
val zp = CX16MachineDefinition.CX16Zeropage(CompilationOptions(OutputType.RAW, LauncherType.NONE, ZeropageType.BASICSAFE, emptyList(), false, false))
assertEquals(zp.SCRATCH_REG, zp.SCRATCH_B1+1, "zp _B1 and _REG must be next to each other to create a word")
}
}
@ -379,3 +398,169 @@ class TestPetscii {
assertFalse(abc!=abc)
}
}
class TestMemory {
@Test
fun testInValidRamC64_memory_addresses() {
CompilationTarget.instance = C64Target
var memexpr = NumericLiteralValue.optimalInteger(0x0000, Position.DUMMY)
var target = AssignTarget(null, null, DirectMemoryWrite(memexpr, Position.DUMMY), Position.DUMMY)
var scope = AnonymousScope(mutableListOf(), Position.DUMMY)
assertTrue(target.isInRegularRAM(scope))
memexpr = NumericLiteralValue.optimalInteger(0x1000, Position.DUMMY)
target = AssignTarget(null, null, DirectMemoryWrite(memexpr, Position.DUMMY), Position.DUMMY)
scope = AnonymousScope(mutableListOf(), Position.DUMMY)
assertTrue(target.isInRegularRAM(scope))
memexpr = NumericLiteralValue.optimalInteger(0x9fff, Position.DUMMY)
target = AssignTarget(null, null, DirectMemoryWrite(memexpr, Position.DUMMY), Position.DUMMY)
scope = AnonymousScope(mutableListOf(), Position.DUMMY)
assertTrue(target.isInRegularRAM(scope))
memexpr = NumericLiteralValue.optimalInteger(0xc000, Position.DUMMY)
target = AssignTarget(null, null, DirectMemoryWrite(memexpr, Position.DUMMY), Position.DUMMY)
scope = AnonymousScope(mutableListOf(), Position.DUMMY)
assertTrue(target.isInRegularRAM(scope))
memexpr = NumericLiteralValue.optimalInteger(0xcfff, Position.DUMMY)
target = AssignTarget(null, null, DirectMemoryWrite(memexpr, Position.DUMMY), Position.DUMMY)
scope = AnonymousScope(mutableListOf(), Position.DUMMY)
assertTrue(target.isInRegularRAM(scope))
}
@Test
fun testNotInValidRamC64_memory_addresses() {
CompilationTarget.instance = C64Target
var memexpr = NumericLiteralValue.optimalInteger(0xa000, Position.DUMMY)
var target = AssignTarget(null, null, DirectMemoryWrite(memexpr, Position.DUMMY), Position.DUMMY)
var scope = AnonymousScope(mutableListOf(), Position.DUMMY)
assertFalse(target.isInRegularRAM(scope))
memexpr = NumericLiteralValue.optimalInteger(0xafff, Position.DUMMY)
target = AssignTarget(null, null, DirectMemoryWrite(memexpr, Position.DUMMY), Position.DUMMY)
scope = AnonymousScope(mutableListOf(), Position.DUMMY)
assertFalse(target.isInRegularRAM(scope))
memexpr = NumericLiteralValue.optimalInteger(0xd000, Position.DUMMY)
target = AssignTarget(null, null, DirectMemoryWrite(memexpr, Position.DUMMY), Position.DUMMY)
scope = AnonymousScope(mutableListOf(), Position.DUMMY)
assertFalse(target.isInRegularRAM(scope))
memexpr = NumericLiteralValue.optimalInteger(0xffff, Position.DUMMY)
target = AssignTarget(null, null, DirectMemoryWrite(memexpr, Position.DUMMY), Position.DUMMY)
scope = AnonymousScope(mutableListOf(), Position.DUMMY)
assertFalse(target.isInRegularRAM(scope))
}
@Test
fun testInValidRamC64_memory_identifiers() {
CompilationTarget.instance = C64Target
var target = createTestProgramForMemoryRefViaVar(0x1000, VarDeclType.VAR)
assertTrue(target.isInRegularRAM(target.definingScope()))
target = createTestProgramForMemoryRefViaVar(0xd020, VarDeclType.VAR)
assertFalse(target.isInRegularRAM(target.definingScope()))
target = createTestProgramForMemoryRefViaVar(0x1000, VarDeclType.CONST)
assertTrue(target.isInRegularRAM(target.definingScope()))
target = createTestProgramForMemoryRefViaVar(0xd020, VarDeclType.CONST)
assertFalse(target.isInRegularRAM(target.definingScope()))
target = createTestProgramForMemoryRefViaVar(0x1000, VarDeclType.MEMORY)
assertFalse(target.isInRegularRAM(target.definingScope()))
}
@Test
private fun createTestProgramForMemoryRefViaVar(address: Int, vartype: VarDeclType): AssignTarget {
val decl = VarDecl(vartype, DataType.BYTE, ZeropageWish.DONTCARE, null, "address", null, NumericLiteralValue.optimalInteger(address, Position.DUMMY), false, false, Position.DUMMY)
val memexpr = IdentifierReference(listOf("address"), Position.DUMMY)
val target = AssignTarget(null, null, DirectMemoryWrite(memexpr, Position.DUMMY), Position.DUMMY)
val assignment = Assignment(target, NumericLiteralValue.optimalInteger(0, Position.DUMMY), Position.DUMMY)
val subroutine = Subroutine("test", emptyList(), emptyList(), emptyList(), emptyList(), emptySet(), null, false, mutableListOf(decl, assignment), Position.DUMMY)
subroutine.linkParents(ParentSentinel)
return target
}
@Test
fun testInValidRamC64_memory_expression() {
CompilationTarget.instance = C64Target
val memexpr = PrefixExpression("+", NumericLiteralValue.optimalInteger(0x1000, Position.DUMMY), Position.DUMMY)
val target = AssignTarget(null, null, DirectMemoryWrite(memexpr, Position.DUMMY), Position.DUMMY)
val scope = AnonymousScope(mutableListOf(), Position.DUMMY)
assertFalse(target.isInRegularRAM(scope))
}
@Test
fun testInValidRamC64_variable() {
CompilationTarget.instance = C64Target
val decl = VarDecl(VarDeclType.VAR, DataType.BYTE, ZeropageWish.DONTCARE, null, "address", null, null, false, false, Position.DUMMY)
val target = AssignTarget(IdentifierReference(listOf("address"), Position.DUMMY), null, null, Position.DUMMY)
val assignment = Assignment(target, NumericLiteralValue.optimalInteger(0, Position.DUMMY), Position.DUMMY)
val subroutine = Subroutine("test", emptyList(), emptyList(), emptyList(), emptyList(), emptySet(), null, false, mutableListOf(decl, assignment), Position.DUMMY)
subroutine.linkParents(ParentSentinel)
assertTrue(target.isInRegularRAM(target.definingScope()))
}
@Test
fun testInValidRamC64_memmap_variable() {
CompilationTarget.instance = C64Target
val address = 0x1000
val decl = VarDecl(VarDeclType.MEMORY, DataType.UBYTE, ZeropageWish.DONTCARE, null, "address", null, NumericLiteralValue.optimalInteger(address, Position.DUMMY), false, false, Position.DUMMY)
val target = AssignTarget(IdentifierReference(listOf("address"), Position.DUMMY), null, null, Position.DUMMY)
val assignment = Assignment(target, NumericLiteralValue.optimalInteger(0, Position.DUMMY), Position.DUMMY)
val subroutine = Subroutine("test", emptyList(), emptyList(), emptyList(), emptyList(), emptySet(), null, false, mutableListOf(decl, assignment), Position.DUMMY)
subroutine.linkParents(ParentSentinel)
assertTrue(target.isInRegularRAM(target.definingScope()))
}
@Test
fun testNotInValidRamC64_memmap_variable() {
CompilationTarget.instance = C64Target
val address = 0xd020
val decl = VarDecl(VarDeclType.MEMORY, DataType.UBYTE, ZeropageWish.DONTCARE, null, "address", null, NumericLiteralValue.optimalInteger(address, Position.DUMMY), false, false, Position.DUMMY)
val target = AssignTarget(IdentifierReference(listOf("address"), Position.DUMMY), null, null, Position.DUMMY)
val assignment = Assignment(target, NumericLiteralValue.optimalInteger(0, Position.DUMMY), Position.DUMMY)
val subroutine = Subroutine("test", emptyList(), emptyList(), emptyList(), emptyList(), emptySet(), null, false, mutableListOf(decl, assignment), Position.DUMMY)
subroutine.linkParents(ParentSentinel)
assertFalse(target.isInRegularRAM(target.definingScope()))
}
@Test
fun testInValidRamC64_array() {
CompilationTarget.instance = C64Target
val decl = VarDecl(VarDeclType.VAR, DataType.ARRAY_UB, ZeropageWish.DONTCARE, null, "address", null, null, false, false, Position.DUMMY)
val arrayindexed = ArrayIndexedExpression(IdentifierReference(listOf("address"), Position.DUMMY), ArrayIndex(NumericLiteralValue.optimalInteger(1, Position.DUMMY), Position.DUMMY), Position.DUMMY)
val target = AssignTarget(null, arrayindexed, null, Position.DUMMY)
val assignment = Assignment(target, NumericLiteralValue.optimalInteger(0, Position.DUMMY), Position.DUMMY)
val subroutine = Subroutine("test", emptyList(), emptyList(), emptyList(), emptyList(), emptySet(), null, false, mutableListOf(decl, assignment), Position.DUMMY)
subroutine.linkParents(ParentSentinel)
assertTrue(target.isInRegularRAM(target.definingScope()))
}
@Test
fun testInValidRamC64_array_memmapped() {
CompilationTarget.instance = C64Target
val address = 0x1000
val decl = VarDecl(VarDeclType.MEMORY, DataType.ARRAY_UB, ZeropageWish.DONTCARE, null, "address", null, NumericLiteralValue.optimalInteger(address, Position.DUMMY), false, false, Position.DUMMY)
val arrayindexed = ArrayIndexedExpression(IdentifierReference(listOf("address"), Position.DUMMY), ArrayIndex(NumericLiteralValue.optimalInteger(1, Position.DUMMY), Position.DUMMY), Position.DUMMY)
val target = AssignTarget(null, arrayindexed, null, Position.DUMMY)
val assignment = Assignment(target, NumericLiteralValue.optimalInteger(0, Position.DUMMY), Position.DUMMY)
val subroutine = Subroutine("test", emptyList(), emptyList(), emptyList(), emptyList(), emptySet(), null, false, mutableListOf(decl, assignment), Position.DUMMY)
subroutine.linkParents(ParentSentinel)
assertTrue(target.isInRegularRAM(target.definingScope()))
}
@Test
fun testNotValidRamC64_array_memmapped() {
CompilationTarget.instance = C64Target
val address = 0xe000
val decl = VarDecl(VarDeclType.MEMORY, DataType.ARRAY_UB, ZeropageWish.DONTCARE, null, "address", null, NumericLiteralValue.optimalInteger(address, Position.DUMMY), false, false, Position.DUMMY)
val arrayindexed = ArrayIndexedExpression(IdentifierReference(listOf("address"), Position.DUMMY), ArrayIndex(NumericLiteralValue.optimalInteger(1, Position.DUMMY), Position.DUMMY), Position.DUMMY)
val target = AssignTarget(null, arrayindexed, null, Position.DUMMY)
val assignment = Assignment(target, NumericLiteralValue.optimalInteger(0, Position.DUMMY), Position.DUMMY)
val subroutine = Subroutine("test", emptyList(), emptyList(), emptyList(), emptyList(), emptySet(), null, false, mutableListOf(decl, assignment), Position.DUMMY)
subroutine.linkParents(ParentSentinel)
assertFalse(target.isInRegularRAM(target.definingScope()))
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

View File

@ -41,7 +41,7 @@ of that build task, you can start the compiler with:
(You should probably make an alias...)
.. note::
.. hint::
Development and testing is done on Linux, but the compiler should run on most
operating systems. If you do have trouble building or running
the compiler on another operating system, please let me know!
@ -83,7 +83,7 @@ For normal use the compiler is invoked with the command:
By default, assembly code is generated and written to ``sourcefile.asm``.
It is then (automatically) fed to the `64tass <https://sourceforge.net/projects/tass64/>`_ cross assembler tool
that assembles it into the final program.
If you use the option to let the compiler auto-start a C-64 emulator, it will do so after
If you use the option to let the compiler auto-start an emulator, it will do so after
a successful compilation. This will load your program and the symbol and breakpoint lists
(for the machine code monitor) into the emulator.
@ -93,6 +93,8 @@ Almost instant compilation times (less than a second) can be achieved when using
Start the compiler with the ``-watch`` argument to enable this.
It will compile your program and then instead of exiting, it waits for any changes in the module source files.
As soon as a change happens, the program gets compiled again.
It is possible to use the watch mode with multiple modules as well, but it will
recompile everything in that list even if only of the files got updated.
Other options
^^^^^^^^^^^^^
@ -109,8 +111,8 @@ A module source file is a text file with the ``.p8`` suffix, containing the prog
It consists of compilation options and other directives, imports of other modules,
and source code for one or more code blocks.
Prog8 has a couple of *LIBRARY* modules that are defined in special internal files provided by the compiler:
``c64lib``, ``c64utils``, ``c64flt`` and ``prog8lib``. You should not overwrite these or reuse their names.
Prog8 has various *LIBRARY* modules that are defined in special internal files provided by the compiler.
You should not overwrite these or reuse their names.
They are embedded into the packaged release version of the compiler so you don't have to worry about
where they are, but their names are still reserved.
@ -149,10 +151,10 @@ If your running program hits one of the breakpoints, Vice will halt execution an
Troubleshooting
---------------
Getting an assembler error about undefined symbols such as ``not defined 'c64flt'``?
This happens when your program uses floating point values, and you forgot to import ``c64flt`` library.
Getting an assembler error about undefined symbols such as ``not defined 'floats'``?
This happens when your program uses floating point values, and you forgot to import ``floats`` library.
If you use floating points, the compiler needs routines from that library.
Fix it by adding an ``%import c64flt``.
Fix it by adding an ``%import floats``.
Examples

View File

@ -12,6 +12,7 @@ What is Prog8?
This is an experimental compiled programming language targeting the 8-bit
`6502 <https://en.wikipedia.org/wiki/MOS_Technology_6502>`_ /
`65c02 <https://en.wikipedia.org/wiki/MOS_Technology_65C02>`_ /
`6510 <https://en.wikipedia.org/wiki/MOS_Technology_6510>`_ microprocessor.
This CPU is from the late 1970's and early 1980's and was used in many home computers from that era,
such as the `Commodore-64 <https://en.wikipedia.org/wiki/Commodore_64>`_.
@ -37,49 +38,70 @@ This software is licensed under the GNU GPL 3.0, see https://www.gnu.org/license
:alt: Fully playable tetris clone
Code examples
-------------
Language features
-----------------
- It is a cross-compiler running on modern machines (Linux, MacOS, Windows, ...)
The generated output is a machine code program runnable on actual 8-bit 6502 hardware.
- Provide a very convenient edit/compile/run cycle by being able to directly launch
the compiled program in an emulator and provide debugging information to this emulator.
- Based on simple and familiar imperative structured programming (it looks like a mix of C and Python)
- Modular programming and scoping via modules, code blocks, and subroutines.
- Provide high level programming constructs but at the same time stay close to the metal;
still able to directly use memory addresses and ROM subroutines,
and inline assembly to have full control when every register, cycle or byte matters
- Arbitrary number of subroutine parameters, Complex nested expressions are possible
- No stack frame allocations because parameters and local variables are automatically allocated statically
- Nested subroutines can access variables from outer scopes to avoids the overhead to pass everything via parameters
- Variable data types include signed and unsigned bytes and words, arrays, strings and floats.
- High-level code optimizations, such as const-folding, expression and statement simplifications/rewriting.
- Many built-in functions, such as ``sin``, ``cos``, ``rnd``, ``abs``, ``min``, ``max``, ``sqrt``, ``msb``, ``rol``, ``ror``, ``swap``, ``memset``, ``memcopy``, ``substr``, ``sort`` and ``reverse`` (and others)
- If you only use standard kernel and prog8 library routines, it is possible to compile the *exact same program* for both machines (just change the compiler target flag)!
Code example
------------
This code calculates prime numbers using the Sieve of Eratosthenes algorithm::
%import c64utils
%import textio
%zeropage basicsafe
main {
ubyte[256] sieve
ubyte candidate_prime = 2
ubyte candidate_prime = 2 ; is increased in the loop
sub start() {
; clear the sieve, to reset starting situation on subsequent runs
memset(sieve, 256, false)
c64scr.print("prime numbers up to 255:\n\n")
; calculate primes
txt.print("prime numbers up to 255:\n\n")
ubyte amount=0
while true {
repeat {
ubyte prime = find_next_prime()
if prime==0
break
c64scr.print_ub(prime)
c64scr.print(", ")
txt.print_ub(prime)
txt.print(", ")
amount++
}
c64.CHROUT('\n')
c64scr.print("number of primes (expected 54): ")
c64scr.print_ub(amount)
c64.CHROUT('\n')
txt.chrout('\n')
txt.print("number of primes (expected 54): ")
txt.print_ub(amount)
txt.chrout('\n')
}
sub find_next_prime() -> ubyte {
while sieve[candidate_prime] {
candidate_prime++
if candidate_prime==0
return 0
return 0 ; we wrapped; no more primes available in the sieve
}
; found next one, mark the multiples and return it.
sieve[candidate_prime] = true
uword multiple = candidate_prime
while multiple < len(sieve) {
sieve[lsb(multiple)] = true
multiple += candidate_prime
@ -95,69 +117,12 @@ when compiled an ran on a C-64 you get this:
:align: center
:alt: result when run on C-64
when the exact same program is compiled for the Commander X16 target, and run on the emulator, you get this:
The following programs shows a use of the high level ``struct`` type::
.. image:: _static/primes_cx16.png
:align: center
:alt: result when run on CX16 emulator
%import c64utils
%zeropage basicsafe
main {
struct Color {
ubyte red
ubyte green
ubyte blue
}
sub start() {
Color purple = {255, 0, 255}
Color other
other = purple
other.red /= 2
other.green = 10 + other.green / 2
other.blue = 99
c64scr.print_ub(other.red)
c64.CHROUT(',')
c64scr.print_ub(other.green)
c64.CHROUT(',')
c64scr.print_ub(other.blue)
c64.CHROUT('\n')
}
}
when compiled and ran, it prints ``127,10,99`` on the screen.
Design principles and features
------------------------------
- It is a cross-compiler running on modern machines (Linux, MacOS, Windows, ...)
The generated output is a machine code program runnable on actual 8-bit 6502 hardware.
- Based on simple and familiar imperative structured programming (it looks like a mix of C and Python)
- 'One statement per line' code, resulting in clear readable programs.
- Modular programming and scoping via modules, code blocks, and subroutines.
- Provide high level programming constructs but at the same time stay close to the metal;
still able to directly use memory addresses, CPU registers and ROM subroutines,
and inline assembly to have full control when every cycle or byte matters
- Arbitrary number of subroutine parameters
- Complex nested expressions are possible
- Nested subroutines can access variables from outer scopes to avoids the overhead to pass everything via parameters
- Values are typed. Available data types include signed and unsigned bytes and words, arrays, strings and floats.
- No dynamic memory allocation or sizing! All variables stay fixed size as determined at compile time.
- Provide various quality of life language features and library subroutines specifically for the target platform.
- Provide a very convenient edit/compile/run cycle by being able to directly launch
the compiled program in an emulator and provide debugging information to this emulator.
- Arbitrary control flow jumps and branches are possible,
and will usually translate directly into the appropriate single 6502 jump/branch instruction.
- There are no complicated built-in error handling or overflow checks, you'll have to take care
of this yourself if required. This keeps the language and code simple and efficient.
- The compiler tries to optimize the program and generated code a bit, but hand-tuning of the
performance or space-critical parts will likely still be required. This is supported by
the ability to easily write embedded assembly code directly in the program source code.
- There are many built-in functions, such as ``sin``, ``cos``, ``rnd``, ``abs``, ``min``, ``max``, ``sqrt``, ``msb``, ``rol``, ``ror``, ``swap``, ``memset``, ``memcopy``, ``sort`` and ``reverse``
- Assembling the generated code into a program wil be done by an external cross-assembler tool.
.. _requirements:
@ -168,13 +133,17 @@ Required tools
`64tass <https://sourceforge.net/projects/tass64/>`_ - cross assembler. Install this on your shell path.
It's very easy to compile yourself.
A recent precompiled .exe for Windows can be obtained from my `clone <https://github.com/irmen/64tass/releases>`_ of this project.
*You need at least version 1.55.2257 of this assembler to correctly use the breakpoints feature.*
It's possible to use older versions, but it is very likely that the automatic Vice breakpoints won't work with them.
A **Java runtime (jre or jdk), version 8 or newer** is required to run the prog8 compiler itself.
If you're scared of Oracle's licensing terms, most Linux distributions ship OpenJDK instead.
Fnd for Windows it's possible to get that as well. Check out `AdoptOpenJDK <https://adoptopenjdk.net/>`_ .
A **Java runtime (jre or jdk), version 11 or newer** is required to run the prog8 compiler itself.
If you're scared of Oracle's licensing terms, most Linux distributions ship OpenJDK in their packages repository instead.
For Windows it's possible to get that as well; check out `AdoptOpenJDK <https://adoptopenjdk.net/>`_ .
For MacOS you can use the Homebrew system to install a recent version of OpenJDK.
Finally: a **C-64 emulator** (or a real C-64 ofcourse) can be nice to test and run your programs on.
The compiler assumes the presence of the `Vice emulator <http://vice-emu.sourceforge.net/>`_.
Finally: an **emulator** (or a real machine ofcourse) to test and run your programs on.
In C64 mode, thhe compiler assumes the presence of the `Vice emulator <http://vice-emu.sourceforge.net/>`_.
If you're targeting the CommanderX16 instead, there's the `x16emu <https://github.com/commanderx16/x16-emulator>`_.
.. important::
**Building the compiler itself:** (*Only needed if you have not downloaded a pre-built 'fat-jar'*)
@ -195,6 +164,7 @@ The compiler assumes the presence of the `Vice emulator <http://vice-emu.sourcef
building.rst
programming.rst
syntaxreference.rst
libraries.rst
todo.rst

94
docs/source/libraries.rst Normal file
View File

@ -0,0 +1,94 @@
************************
Compiler library modules
************************
The compiler provides several "built-in" library modules with useful subroutine and variables.
Some of these may be specific for a certain compilation target, or work slightly different,
but some effort is put into making them available across compilation targets.
This means that as long as your program is only using the subroutines from these
libraries and not using hardware- and/or system dependent code, and isn't hardcoding certain
assumptions like the screen size, the exact same source program can
be compiled for multiple different target platforms. Many of the example programs that come
with Prog8 are written like this.
You can ``%import`` and use these modules explicitly, but the compiler may also import one or more
of these library modules automatically as required.
.. caution::
The resulting compiled binary program *only works on the target machine it was compiled for*.
You must recompile the program for every target you want to run it on.
syslib
------
The "system library" for your target machine. It contains many system-specific definitions such
as ROM/kernal subroutine definitions, memory location constants, and utility subroutines.
Many of these definitions overlap for the C64 and Commander X16 targets so it is still possible
to write programs that work on both targets without modifications.
conv
----
Routines to convert strings to numbers or vice versa.
- numbers to strings, in various formats (binary, hex, decimal)
- strings in decimal, hex and binary format into numbers
textio (txt.*)
--------------
This will probably be the most used library module. It contains a whole lot of routines
dealing with text-based input and output (to the screen). Such as
- printing strings and numbers
- reading text input from the user via the keyboard
- filling or clearing the screen and colors
- scrolling the text on the screen
- placing individual characters on the screen
diskio
------
Provides several routines that deal with disk drive I/O, such as:
- show directory
- display disk drive status
- load and save data from and to the disk
- delete and rename files on the disk
floats
------
Provides definitions for the ROM/kernel subroutines and utility routines dealing with floating
point variables. This includes ``print_f``, the routine used to print floating point numbers.
graphics
--------
High-res monochrome bitmap graphics routines:
- clearing the screen
- drawing lines
- drawing circles and discs (filled circles)
- plotting individual pixels
math
----
Low level math routines. You should not normally have to bother with this directly.
The compiler needs it to implement most of the math operations in your programs.
cx16logo
--------
A 'fun' module that contains the Commander X16 logo and that allows you
to print it anywhere on the screen.
prog8_lib
---------
Low level language support. You should not normally have to bother with this directly.
The compiler needs it for verious built-in system routines.

View File

@ -50,7 +50,7 @@ Code
There are different kinds of instructions ('statements' is a better name) such as:
- value assignment
- looping (for, while, repeat, unconditional jumps)
- looping (for, while, do-until, repeat, unconditional jumps)
- conditional execution (if - then - else, when, and conditional jumps)
- subroutine calls
- label definition
@ -137,7 +137,7 @@ Scopes are created using either of these two statements:
.. important::
Unlike most other programming languages, a new scope is *not* created inside
for, while and repeat statements, the if statement, and the branching conditionals.
for, while, repeat, and do-until statements, the if statement, and the branching conditionals.
These all share the same scope from the subroutine they're defined in.
You can define variables in these blocks, but these will be treated as if they
were defined in the subroutine instead.
@ -204,13 +204,6 @@ Example::
byte @zp zeropageCounter = 42
Variables that represent CPU hardware registers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following variables are reserved
and map directly (read/write) to a CPU hardware register: ``A``, ``X``, ``Y``.
Integers
^^^^^^^^
@ -233,7 +226,7 @@ This is because routines in the C-64 BASIC and KERNAL ROMs are used for that.
So floating point operations will only work if the C-64 BASIC ROM (and KERNAL ROM)
are banked in.
Also your code needs to import the ``c64flt`` library to enable floating point support
Also your code needs to import the ``floats`` library to enable floating point support
in the compiler, and to gain access to the floating point routines.
(this library contains the directive to enable floating points, you don't have
to worry about this yourself)
@ -243,12 +236,15 @@ The largest 5-byte MFLPT float that can be stored is: **1.7014118345e+38** (ne
Arrays
^^^^^^
Array types are also supported. They can be made of bytes, words or floats::
Array types are also supported. They can be made of bytes, words or floats, strings, and other arrays
(although the usefulness of the latter is very limited for now)::
byte[10] array ; array of 10 bytes, initially set to 0
byte[] array = [1, 2, 3, 4] ; initialize the array, size taken from value
byte[99] array = 255 ; initialize array with 99 times 255 [255, 255, 255, 255, ...]
byte[] array = 100 to 199 ; initialize array with [100, 101, ..., 198, 199]
str[] names = ["ally", "pete"] ; array of string pointers/addresses (equivalent to uword)
uword[] others = [names, array] ; array of pointers/addresses to other arrays
value = array[3] ; the fourth value in the array (index is 0-based)
char = string[4] ; the fifth character (=byte) in the string
@ -265,6 +261,22 @@ can't be used as *identifiers* elsewhere. You can't make a variable, block or su
for instance.
It's possible to assign a new array to another array, this will overwrite all elements in the original
array with those in the value array. The number and types of elements have to match.
For large arrays this is a slow operation because every element is copied over. It should probably be avoided.
**Arrays at a specific memory location:**
Using the memory-mapped syntax it is possible to define an array to be located at a specific memory location.
For instance to reference the first 5 rows of the Commodore 64's screen matrix as an array, you can define::
&ubyte[5*40] top5screenrows = $0400
This way you can set the second character on the second row from the top like this::
top5screenrows[41] = '!'
Strings
^^^^^^^
@ -279,16 +291,35 @@ This @-prefix can also be used for character byte values.
You can concatenate two string literals using '+' (not very useful though) or repeat
a string literal a given number of times using '*'::
a string literal a given number of times using '*'. You can also assign a new string
value to another string. No bounds check is done so be sure the destination string is
large enough to contain the new value (it is overwritten in memory)::
str string1 = "first part" + "second part"
str string2 = "hello!" * 10
string1 = string2
string1 = "new value"
There are several 'escape sequences' to help you put special characters into strings, such
as newlines, quote characters themselves, and so on. The ones used most often are
``\\``, ``\"``, ``\n``, ``\r``. For a detailed description of all of them and what they mean,
read the syntax reference on strings.
.. hint::
Strings and uwords (=memory address) can often be interchanged.
An array of strings is actually an array of uwords where every element is the memory
address of the string. You can pass a memory address to assembly functions
that require a string as an argument.
.. caution::
Avoid changing strings after they've been created.
It's probably best to avoid changing strings after they've been created. This
includes changing certain letters by index, or by assigning a new value, or by
modifying the string via other means for example ``substr`` function and its cousins.
This is because if your program exits and is restarted (without loading it again),
it will then start working with the changed strings instead of the original ones.
it will then start working with the changed strings instead of the original ones!
The same is true for arrays.
@ -317,7 +348,7 @@ and then create a variable with it::
ubyte blue
}
Color rgb = {255,122,0} ; note the curly braces here instead of brackets
Color rgb = [255,122,0] ; note that struct initializer value is same as an array
Color another ; the init value is optional, like arrays
another = rgb ; assign all of the values of rgb to another
@ -342,13 +373,6 @@ address you specified, and setting the varible will directly modify that memory
&word SCREENCOLORS = $d020 ; a 16-bit word at the addres $d020-$d021
.. note::
Directly accessing random memory locations is not yet supported without the
intermediate step of declaring a memory-mapped variable for the memory location.
The advantages of this however, is that it's clearer what the memory location
stands for, and the compiler also knows the data type.
Converting types into other types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@ -386,21 +410,21 @@ expected when the program is restarted.
Loops
-----
The *for*-loop is used to let a variable (or register) iterate over a range of values. Iteration is done in steps of 1, but you can change this.
The *for*-loop is used to let a variable iterate over a range of values. Iteration is done in steps of 1, but you can change this.
The loop variable must be declared as byte or word earlier so you can reuse it for multiple occasions.
Iterating with a floating point variable is not supported. If you want to loop over a floating-point array, use a loop with an integer index variable instead.
The *while*-loop is used to repeat a piece of code while a certain condition is still true.
The *repeat--until* loop is used to repeat a piece of code until a certain condition is true.
The *forever*-loop is used to simply run a piece of code in a loop, forever. You can still
break out of this loop if desired. A "while true" or "until false" loop is equivalent to
a forever-loop.
The *do--until* loop is used to repeat a piece of code until a certain condition is true.
The *repeat* loop is used as a short notation of a for loop where the loop variable doesn't matter and you're only interested in the number of iterations.
(without iteration count specified it simply loops forever).
You can also create loops by using the ``goto`` statement, but this should usually be avoided.
Breaking out of a loop prematurely is possible with the ``break`` statement.
.. attention::
The value of the loop variable or register after executing the loop *is undefined*. Don't use it immediately
The value of the loop variable after executing the loop *is undefined*. Don't use it immediately
after the loop without first assigning a new value to it!
(this is an optimization issue to avoid having to deal with mostly useless post-loop logic to adjust the loop variable's value)
@ -414,15 +438,15 @@ if statements
Conditional execution means that the flow of execution changes based on certiain conditions,
rather than having fixed gotos or subroutine calls::
if A>4 goto overflow
if aa>4 goto overflow
if X==3 Y = 4
if X==3 Y = 4 else A = 2
if xx==3 yy = 4
if xx==3 yy = 4 else aa = 2
if X==5 {
Y = 99
if xx==5 {
yy = 99
} else {
A = 3
aa = 3
}
@ -486,16 +510,16 @@ Assignments
-----------
Assignment statements assign a single value to a target variable or memory location.
Augmented assignments (such as ``A += X``) are also available, but these are just shorthands
for normal assignments (``A = A + X``).
Augmented assignments (such as ``aa += xx``) are also available, but these are just shorthands
for normal assignments (``aa = aa + xx``).
Only register variables and variables of type byte, word and float can be assigned a new value.
Only variables of type byte, word and float can be assigned a new value.
It's not possible to set a new value to string or array variables etc, because they get allocated
a fixed amount of memory which will not change.
a fixed amount of memory which will not change. (You *can* change the value of elements in a string or array though).
.. attention::
**Data type conversion (in assignments):**
When assigning a value with a 'smaller' datatype to a register or variable with a 'larger' datatype,
When assigning a value with a 'smaller' datatype to variable with a 'larger' datatype,
the value will be automatically converted to the target datatype: byte --> word --> float.
So assigning a byte to a word variable, or a word to a floating point variable, is fine.
The reverse is *not* true: it is *not* possible to assign a value of a 'larger' datatype to
@ -511,7 +535,7 @@ as the memory mapped address $d021.
If you want to access a memory location directly (by using the address itself), without defining
a memory mapped location, you can do so by enclosing the address in ``@(...)``::
A = @($d020) ; set the A register to the current c64 screen border color ("peek(53280)")
color = @($d020) ; set the variable 'color' to the current c64 screen border color ("peek(53280)")
@($d020) = 0 ; set the c64 screen border to black ("poke 53280,0")
@(vic+$20) = 6 ; you can also use expressions to 'calculate' the address
@ -568,25 +592,24 @@ within parentheses will be evaluated first. So ``(4 + 8) * 2`` is 24 and not 20,
and ``(true or false) and false`` is false instead of true.
.. attention::
**calculations keep their datatype:**
**calculations keep their datatype even if the target variable is larger:**
When you do calculations on a BYTE type, the result will remain a BYTE.
When you do calculations on a WORD type, the result will remain a WORD.
For instance::
byte b = 44
word w = b*55 ; the result will be 116! (even though the target variable is a word)
w *= 999 ; the result will be -15188 (the multiplication stays within a word)
w *= 999 ; the result will be -15188 (the multiplication stays within a word, but overflows)
The compiler will NOT give a warning about this! It's doing this for
*The compiler does NOT warn about this!* It's doing this for
performance reasons - so you won't get sudden 16 bit (or even float)
calculations where you needed only simple fast byte arithmetic.
If you do need the extended resulting value, cast at least one of the
operands of an operator to the larger datatype. For example::
operands explicitly to the larger datatype. For example::
byte b = 44
word w = b*55.w ; the result will be 2420
w = (b as word)*55 ; same result
w = (b as word)*55
w = b*(55 as word)
@ -627,23 +650,20 @@ There's a set of predefined functions in the language. These are fixed and can't
You can use them in expressions and the compiler will evaluate them at compile-time if possible.
sin(x)
Sine. (floating point version)
Math
^^^^
abs(x)
Absolute value.
atan(x)
Arctangent.
ceil(x)
Rounds the floating point up to an integer towards positive infinity.
cos(x)
Cosine. (floating point version)
sin8u(x)
Fast 8-bit ubyte sine of angle 0..255, result is in range 0..255
sin8(x)
Fast 8-bit byte sine of angle 0..255, result is in range -127..127
sin16u(x)
Fast 16-bit uword sine of angle 0..255, result is in range 0..65535
sin16(x)
Fast 16-bit word sine of angle 0..255, result is in range -32767..32767
Cosine. (floating point version)
cos8u(x)
Fast 8-bit ubyte cosine of angle 0..255, result is in range 0..255
@ -657,14 +677,11 @@ cos16u(x)
cos16(x)
Fast 16-bit word cosine of angle 0..255, result is in range -32767..32767
abs(x)
Absolute value.
deg(x)
Radians to degrees.
tan(x)
Tangent.
atan(x)
Arctangent.
floor (x)
Rounds the floating point down to an integer towards minus infinity.
ln(x)
Natural logarithm (base e).
@ -672,26 +689,55 @@ ln(x)
log2(x)
Base 2 logarithm.
rad(x)
Degrees to radians.
round(x)
Rounds the floating point to the closest integer.
sin(x)
Sine. (floating point version)
sgn(x)
Get the sign of the value. Result is -1, 0 or 1 (negative, zero, positive).
sin8u(x)
Fast 8-bit ubyte sine of angle 0..255, result is in range 0..255
sin8(x)
Fast 8-bit byte sine of angle 0..255, result is in range -127..127
sin16u(x)
Fast 16-bit uword sine of angle 0..255, result is in range 0..65535
sin16(x)
Fast 16-bit word sine of angle 0..255, result is in range -32767..32767
sqrt16(w)
16 bit unsigned integer Square root. Result is unsigned byte.
sqrt(x)
Floating point Square root.
round(x)
Rounds the floating point to the closest integer.
tan(x)
Tangent.
floor (x)
Rounds the floating point down to an integer towards minus infinity.
ceil(x)
Rounds the floating point up to an integer towards positive infinity.
Array operations
^^^^^^^^^^^^^^^^
rad(x)
Degrees to radians.
any(x)
1 ('true') if any of the values in the array value x is 'true' (not zero), else 0 ('false')
deg(x)
Radians to degrees.
all(x)
1 ('true') if all of the values in the array value x are 'true' (not zero), else 0 ('false')
len(x)
Number of values in the array value x, or the number of characters in a string (excluding the size or 0-byte).
Note: this can be different from the number of *bytes* in memory if the datatype isn't a byte. See sizeof().
Note: lengths of strings and arrays are determined at compile-time! If your program modifies the actual
length of the string during execution, the value of len(string) may no longer be correct!
(use strlen function if you want to dynamically determine the length)
max(x)
Maximum of the values in the array value x
@ -699,29 +745,77 @@ max(x)
min(x)
Minimum of the values in the array value x
reverse(array)
Reverse the values in the array (in-place).
Can be used after sort() to sort an array in descending order.
sum(x)
Sum of the values in the array value x
sort(array)
Sort the array in ascending order (in-place)
Note: sorting a floating-point array is not supported right now, as a general sorting routine for this will
be extremely slow. Either build one yourself or find another solution that doesn't require sorting
floating point values.
Supported are arrays of bytes or word values.
Sorting a floating-point array is not supported right now, as a general sorting routine for this will
be extremely slow. Either build one yourself or find another solution that doesn't require sorting.
Finally, note that sorting an array with strings in it will not do what you might think;
it considers the array as just an array of integer words and sorts the string *pointers* accordingly.
Sorting strings alphabetically has to be programmed yourself if you need it.
reverse(array)
Reverse the values in the array (in-place). Supports all data types including floats.
Can be used after sort() to sort an array in descending order.
len(x)
Number of values in the array value x, or the number of characters in a string (excluding the size or 0-byte).
Note: this can be different from the number of *bytes* in memory if the datatype isn't a byte.
Note: lengths of strings and arrays are determined at compile-time! If your program modifies the actual
length of the string during execution, the value of len(string) may no longer be correct!
(use strlen function if you want to dynamically determine the length)
Strings and memory blocks
^^^^^^^^^^^^^^^^^^^^^^^^^
memcopy(from, to, numbytes)
Efficiently copy a number of bytes from a memory location to another.
NOTE: 'to' must NOT overlap with 'from', unless it is *before* 'from'.
Because this function imposes some overhead to handle the parameters,
it is only faster if the number of bytes is larger than a certain threshold.
Compare the generated code to see if it was beneficial or not.
The most efficient will often be to write a specialized copy routine in assembly yourself!
memset(address, numbytes, bytevalue)
Efficiently set a part of memory to the given (u)byte value.
But the most efficient will always be to write a specialized fill routine in assembly yourself!
Note that for clearing the screen, very fast specialized subroutines are
available in the ``textio`` and ``graphics`` library modules.
memsetw(address, numwords, wordvalue)
Efficiently set a part of memory to the given (u)word value.
But the most efficient will always be to write a specialized fill routine in assembly yourself!
leftstr(source, target, length)
Copies the left side of the source string of the given length to target string.
It is assumed the target string buffer is large enough to contain the result.
Also, you have to make sure yourself that length is smaller or equal to the length of the source string.
Modifies in-place, doesn't return a value (so can't be used in an expression).
rightstr(source, target, length)
Copies the right side of the source string of the given length to target string.
It is assumed the target string buffer is large enough to contain the result.
Also, you have to make sure yourself that length is smaller or equal to the length of the source string.
Modifies in-place, doesn't return a value (so can't be used in an expression).
strlen(str)
Number of bytes in the string. This value is determined during runtime and counts upto
the first terminating 0 byte in the string, regardless of the size of the string during compilation time.
Don't confuse this with ``len`` and ``sizeof``
strcmp(string1, string2)
Returns -1, 0 or 1 depeding on wether string1 sorts before, equal or after string2.
Note that you can also directly compare strings and string values with eachother
using ``==``, ``<`` etcetera (it will use strcmp for you under water automatically).
substr(source, target, start, length)
Copies a segment from the source string, starting at the given index,
and of the given length to target string.
It is assumed the target string buffer is large enough to contain the result.
Also, you have to make sure yourself that start and length are within bounds of the strings.
Modifies in-place, doesn't return a value (so can't be used in an expression).
Miscellaneous
^^^^^^^^^^^^^
exit(returncode)
Immediately stops the program and exits it, with the returncode in the A register.
Note: custom interrupt handlers remain active unless manually cleared first!
lsb(x)
Get the least significant byte of the word x. Equivalent to the cast "x as ubyte".
@ -729,17 +823,9 @@ lsb(x)
msb(x)
Get the most significant byte of the word x.
sgn(x)
Get the sign of the value. Result is -1, 0 or 1 (negative, zero, positive).
mkword(lsb, msb)
Efficiently create a word value from two bytes (the lsb and the msb). Avoids multiplication and shifting.
any(x)
1 ('true') if any of the values in the array value x is 'true' (not zero), else 0 ('false')
all(x)
1 ('true') if all of the values in the array value x are 'true' (not zero), else 0 ('false')
mkword(msb, lsb)
Efficiently create a word value from two bytes (the msb and the lsb). Avoids multiplication and shifting.
So mkword($80, $22) results in $8022.
rnd()
returns a pseudo-random byte from 0..255
@ -750,16 +836,6 @@ rndw()
rndf()
returns a pseudo-random float between 0.0 and 1.0
lsl(x)
Shift the bits in x (byte or word) one position to the left.
Bit 0 is set to 0 (and the highest bit is shifted into the status register's Carry flag)
Modifies in-place, doesn't return a value (so can't be used in an expression).
lsr(x)
Shift the bits in x (byte or word) one position to the right.
The highest bit is set to 0 (and bit 0 is shifted into the status register's Carry flag)
Modifies in-place, doesn't return a value (so can't be used in an expression).
rol(x)
Rotate the bits in x (byte or word) one position to the left.
This uses the CPU's rotate semantics: bit 0 will be set to the current value of the Carry flag,
@ -784,35 +860,6 @@ ror2(x)
It uses some extra logic to not consider the carry flag as extra rotation bit.
Modifies in-place, doesn't return a value (so can't be used in an expression).
memcopy(from, to, numbytes)
Efficiently copy a number of bytes (1 - 256) from a memory location to another.
NOTE: 'to' must NOT overlap with 'from', unless it is *before* 'from'.
Because this function imposes some overhead to handle the parameters,
it is only faster if the number of bytes is larger than a certain threshold.
Compare the generated code to see if it was beneficial or not.
The most efficient will always be to write a specialized copy routine in assembly yourself!
memset(address, numbytes, bytevalue)
Efficiently set a part of memory to the given (u)byte value.
But the most efficient will always be to write a specialized fill routine in assembly yourself!
Note that for clearing the character screen, very fast specialized subroutines are
available in the ``c64scr`` block (part of the ``c64utils`` module)
memsetw(address, numwords, wordvalue)
Efficiently set a part of memory to the given (u)word value.
But the most efficient will always be to write a specialized fill routine in assembly yourself!
swap(x, y)
Swap the values of numerical variables (or memory locations) x and y in a fast way.
set_carry() / clear_carry()
Set (or clear) the CPU status register Carry flag. No result value.
(translated into ``SEC`` or ``CLC`` cpu instruction)
set_irqd() / clear_irqd()
Set (or clear) the CPU status register Interrupt Disable flag. No result value.
(translated into ``SEI`` or ``CLI`` cpu instruction)
rsave()
Saves the CPU registers and the status flags.
You can now more or less 'safely' use the registers directly, until you
@ -827,10 +874,22 @@ rrestore()
read_flags()
Returns the current value of the CPU status register.
exit(returncode)
Immediately stops the program and exits it, with the returncode in the A register.
Note: custom interrupt handlers remain active unless manually cleared first!
sizeof(name)
Number of bytes that the object 'name' occupies in memory. This is a constant determined by the data type of
the object. For instance, for a variable of type uword, the sizeof is 2.
For an 10 element array of floats, it is 50 (on the C-64, where a float is 5 bytes).
Note: usually you will be interested in the number of elements in an array, use len() for that.
set_carry() / clear_carry()
Set (or clear) the CPU status register Carry flag. No result value.
(translated into ``SEC`` or ``CLC`` cpu instruction)
set_irqd() / clear_irqd()
Set (or clear) the CPU status register Interrupt Disable flag. No result value.
(translated into ``SEI`` or ``CLI`` cpu instruction)
swap(x, y)
Swap the values of numerical variables (or memory locations) x and y in a fast way.
Library routines

View File

@ -24,7 +24,7 @@ Everything after a semicolon ``;`` is a comment and is ignored.
If the whole line is just a comment, it will be copied into the resulting assembly source code.
This makes it easier to understand and relate the generated code. Examples::
A = 42 ; set the initial value to 42
counter = 42 ; set the initial value to 42
; next is the code that...
@ -33,6 +33,13 @@ This makes it easier to understand and relate the generated code. Examples::
Directives
-----------
.. data:: %target <target>
Level: module.
Global setting, specifies that this module can only work for the given compiler target.
If compiled with a different target, compilation is aborted with an error message.
.. data:: %output <type>
Level: module.
@ -60,7 +67,8 @@ Directives
- style ``kernalsafe`` -- use the part of the ZP that is 'free' or only used by BASIC routines,
and don't change anything else. This allows full use of KERNAL ROM routines (but not BASIC routines),
including default IRQs during normal system operation.
When the program exits, a system reset is performed (because BASIC will be in a corrupt state).
It's not possible to return cleanly to BASIC when the program exits. The only choice is
to perform a system reset. (A ``system_reset`` subroutine is available in the syslib to help you do this)
- style ``floatsafe`` -- like the previous one but also reserves the addresses that
are required to perform floating point operations (from the BASIC kernel). No clean exit is possible.
- style ``basicsafe`` -- the most restricted mode; only use the handful 'free' addresses in the ZP, and don't
@ -70,10 +78,11 @@ Directives
- style ``full`` -- claim the whole ZP for variables for the program, overwriting everything,
except the few addresses mentioned above that are used by the system's IRQ routine.
Even though the default IRQ routine is still active, it is impossible to use most BASIC and KERNAL ROM routines.
This includes many floating point operations and several utility routines that do I/O, such as ``print_string``.
As with ``kernalsafe``, it is not possible to cleanly exit the program, other than to reset the machine.
This includes many floating point operations and several utility routines that do I/O, such as ``print``.
This option makes programs smaller and faster because even more variables can
be stored in the ZP (which allows for more efficient assembly code).
It's not possible to return cleanly to BASIC when the program exits. The only choice is
to perform a system reset. (A ``system_reset`` subroutine is available in the syslib to help you do this)
- style ``dontuse`` -- don't use *any* location in the zeropage.
Also read :ref:`zeropage`.
@ -110,33 +119,39 @@ Directives
Level: module, block.
Sets special compiler options.
For a module option, only the ``enable_floats`` option is recognised, which will tell the compiler
to deal with floating point numbers (by using various subroutines from the Commodore-64 kernal).
Otherwise, floating point support is not enabled.
When used in a block with the ``force_output`` option, it will force the block to be outputted
in the final program. Can be useful to make sure some
data is generated that would otherwise be discarded because it's not referenced (such as sprite data).
- For a module option, there is ``enable_floats``, which will tell the compiler
to deal with floating point numbers (by using various subroutines from the Commodore-64 kernal).
Otherwise, floating point support is not enabled. Normally you don't have to use this yourself as
importing the ``floats`` library is required anyway and that will enable it for you automatically.
- There's also ``no_sysinit`` which cause the resulting program to *not* include
the system re-initialization logic of clearing the screen, resetting I/O config etc. You'll have to
take care of that yourself. The program will just start running from whatever state the machine is in when the
program was launched.
- When used in a block with the ``force_output`` option, it will force the block to be outputted
in the final program. Can be useful to make sure some
data is generated that would otherwise be discarded because it's not referenced (such as sprite data).
.. data:: %asmbinary "<filename>" [, <offset>[, <length>]]
Level: block.
This directive can only be used inside a block.
The assembler will include the file as binary bytes at this point, prog8 will not process this at all.
The optional offset and length can be used to select a particular piece of the file.
The file is located relative to the current working directory!
Level: block.
This directive can only be used inside a block.
The assembler will include the file as binary bytes at this point, prog8 will not process this at all.
The optional offset and length can be used to select a particular piece of the file.
The file is located relative to the current working directory!
.. data:: %asminclude "<filename>", "scopelabel"
Level: block.
This directive can only be used inside a block.
The assembler will include the file as raw assembly source text at this point,
prog8 will not process this at all, with one exception: the labels.
The scopelabel argument will be used as a prefix to access the labels from the included source code,
otherwise you would risk symbol redefinitions or duplications.
If you know what you are doing you can leave it as an empty string to not have a scope prefix.
The compiler first looks for the file relative to the same directory as the module containing this statement is in,
if the file can't be found there it is searched relative to the current directory.
Level: block.
This directive can only be used inside a block.
The assembler will include the file as raw assembly source text at this point,
prog8 will not process this at all, with one exception: the labels.
The scopelabel argument will be used as a prefix to access the labels from the included source code,
otherwise you would risk symbol redefinitions or duplications.
If you know what you are doing you can leave it as an empty string to not have a scope prefix.
The compiler first looks for the file relative to the same directory as the module containing this statement is in,
if the file can't be found there it is searched relative to the current directory.
.. data:: %breakpoint
@ -157,7 +172,7 @@ Directives
Identifiers
-----------
Naming things in Prog8 is done via valid *identifiers*. They start with a letter or underscore,
Naming things in Prog8 is done via valid *identifiers*. They start with a letter,
and after that, a combination of letters, numbers, or underscores. Examples of valid identifiers::
a
@ -165,7 +180,7 @@ and after that, a combination of letters, numbers, or underscores. Examples of v
monkey
COUNTER
Better_Name_2
_something_strange_
something_strange__
Code blocks
@ -267,6 +282,7 @@ type identifier type storage size example var declara
``word[]`` signed word array depends on value ``word[] myvar = [1, 2, 3, 4]``
``uword[]`` unsigned word array depends on value ``uword[] myvar = [1, 2, 3, 4]``
``float[]`` floating-point array depends on value ``float[] myvar = [1.1, 2.2, 3.3, 4.4]``
``str[]`` array with string ptrs 2*x bytes + strs ``str[] names = ["ally", "pete"]``
``str`` string (petscii) varies ``str myvar = "hello."``
implicitly terminated by a 0-byte
=============== ======================= ================= =========================================
@ -289,7 +305,8 @@ of something with an operand starting with 1 or 0, you'll have to add a space in
- When an integer value ranges from 256..65535 the compiler sees it as a ``uword``. For -32768..32767 it's a ``word``.
- When a hex number has 3 or 4 digits, for example ``$0004``, it is seen as a ``word`` otherwise as a ``byte``.
- When a binary number has 9 to 16 digits, for example ``%1100110011``, it is seen as a ``word`` otherwise as a ``byte``.
- You can force a byte value into a word value by adding the ``.w`` datatype suffix to the number: ``$2a.w`` is equivalent to ``$002a``.
- If the number fits in a byte but you really require it as a word value, you'll have to explicitly cast it: ``60 as uword``
or you can use the full word hexadecimal notation ``$003c``.
Data type conversion
@ -306,6 +323,7 @@ should be allocated by the compiler. Instead, the (mandatory) value assigned to
should be the *memory address* where the value is located::
&byte BORDERCOLOR = $d020
&ubyte[5*40] top5screenrows = $0400 ; works for array as well
Direct access to memory locations
@ -313,7 +331,7 @@ Direct access to memory locations
Instead of defining a memory mapped name for a specific memory location, you can also
directly access the memory. Enclose a numeric expression or literal with ``@(...)`` to do that::
A = @($d020) ; set the A register to the current c64 screen border color ("peek(53280)")
color = @($d020) ; set the variable 'color' to the current c64 screen border color ("peek(53280)")
@($d020) = 0 ; set the c64 screen border to black ("poke 53280,0")
@(vic+$20) = 6 ; a dynamic expression to 'calculate' the address
@ -333,8 +351,6 @@ Reserved names
The following names are reserved, they have a special meaning::
A X Y ; 6502 hardware registers
Pc Pz Pn Pv ; 6502 status register flags
true false ; boolean values 1 and 0
@ -384,7 +400,25 @@ After defining a struct you can use the name of the struct as a data type to dec
Struct variables can be assigned a struct literal value (also in their declaration as initial value)::
Color rgb = {255, 100, 0} ; curly braces instead of brackets
Color rgb = [255, 100, 0] ; note that the value is an array
String
^^^^^^
``"hello"`` is a string translated into the default character encoding (PETSCII)
``@"hello"`` is a string translated into the alternate character encoding (Screencodes/pokes)
There are several escape sequences available to put special characters into your string value:
- ``\\`` - the backslash itself, has to be escaped because it is the escape symbol by itself
- ``\n`` - newline character (move cursor down and to beginning of next line)
- ``\r`` - carriage return character (more or less the same as newline if printing to the screen)
- ``\"`` - quote character (otherwise it would terminate the string)
- ``\'`` - apostrophe character (has to be escaped in character literals, is okay inside a string)
- ``\uHHHH`` - a unicode codepoint \u0000 - \uffff (16-bit hexadecimal)
- ``\xHH`` - 8-bit hex value that will be copied verbatim *without encoding*
Operators
@ -406,10 +440,10 @@ assignment: ``=``
Note that an assignment sometimes is not possible or supported.
augmented assignment: ``+=`` ``-=`` ``*=`` ``/=`` ``**=`` ``&=`` ``|=`` ``^=`` ``<<=`` ``>>=``
Syntactic sugar; ``A += X`` is equivalent to ``A = A + X``
This is syntactic sugar; ``aa += xx`` is equivalent to ``aa = aa + xx``
postfix increment and decrement: ``++`` ``--``
Syntactic sugar; ``A++`` is equivalent to ``A = A + 1``, and ``A--`` is equivalent to ``A = A - 1``.
Syntactic sugar; ``aa++`` is equivalent to ``aa = aa + 1``, and ``aa--`` is equivalent to ``aa = aa - 1``.
Because these operations are so common, we have these short forms.
comparison: ``!=`` ``<`` ``>`` ``<=`` ``>=``
@ -427,9 +461,9 @@ range creation: ``to``
0 to 7 ; range of values 0, 1, 2, 3, 4, 5, 6, 7 (constant)
A = 5
X = 10
A to X ; range of 5, 6, 7, 8, 9, 10
aa = 5
aa = 10
aa to xx ; range of 5, 6, 7, 8, 9, 10
byte[] array = 10 to 13 ; sets the array to [1, 2, 3, 4]
@ -471,6 +505,8 @@ takes no parameters. If the subroutine returns a value, usually you assign it t
If you're not interested in the return value, prefix the function call with the ``void`` keyword.
Otherwise the compiler will warn you about discarding the result of the call.
Multiple return values
^^^^^^^^^^^^^^^^^^^^^^
Normal subroutines can only return zero or one return values.
However, the special ``asmsub`` routines (implemented in assembly code) or ``romsub`` routines
(referencing a routine in kernel ROM) can return more than one return value.
@ -478,9 +514,16 @@ For example a status in the carry bit and a number in A, or a 16-bit value in A/
It is not possible to process the results of a call to these kind of routines
directly from the language, because only single value assignments are possible.
You can still call the subroutine and not store the results.
But if you want to do something with the values it returns, you'll have to write
a small block of custom inline assembly that does the call and stores the values
appropriately. Don't forget to save/restore the registers if required.
**There is an exception:** if there's just one return value in a register, and one or more others that are returned
as bits in the status register (such as the Carry bit), the compiler allows you to call the subroutine.
It will then store the result value in a variable if required, and *keep the status register untouched
after the call* so you can use a conditional branch statement for that.
Note that this makes no sense inside an expression, so the compiler will still give an error for that.
If there really are multiple return values (other than a combined 16 bit return value in 2 registers),
you'll have to write a small block of custom inline assembly that does the call and stores the values
appropriately. Don't forget to save/restore any registers that are modified.
Subroutine definitions
@ -515,18 +558,20 @@ and returning stuff in several registers as well. The ``clobbers`` clause is use
what CPU registers are clobbered by the call instead of being unchanged or returning a meaningful result value.
Subroutines that are implemented purely in assembly code and which have an assembly calling convention (i.e.
the parameters are strictly passed via cpu registers), are defined like this::
User subroutines in the program source code that are implemented purely in assembly and which have an assembly calling convention (i.e.
the parameters are strictly passed via cpu registers), are defined with ``asmsub`` like this::
asmsub FREADS32() clobbers(A,X,Y) {
asmsub clear_screenchars (ubyte char @ A) clobbers(Y) {
%asm {{
lda $62
eor #$ff
asl a
lda #0
ldx #$a0
jmp $bc4f
}}
ldy #0
_loop sta c64.Screen,y
sta c64.Screen+$0100,y
sta c64.Screen+$0200,y
sta c64.Screen+$02e8,y
iny
bne _loop
rts
}}
}
the statement body of such a subroutine should consist of just an inline assembly block.
@ -551,7 +596,7 @@ Loops
for loop
^^^^^^^^
The loop variable must be a register or a byte/word variable,
The loop variable must be a byte or word variable,
and must be defined first in the local scope of the for loop.
The expression that you loop over can be anything that supports iteration (such as ranges like ``0 to 100``,
array variables and strings) *except* floating-point arrays (because a floating-point loop variable is not supported).
@ -561,7 +606,6 @@ You can use a single statement, or a statement block like in the example below::
for <loopvar> in <expression> [ step <amount> ] {
; do something...
break ; break out of the loop
continue ; immediately enter next iteration
}
For example, this is a for loop using a byte variable ``i``, defined before, to loop over a certain range of numbers::
@ -594,35 +638,35 @@ You can use a single statement, or a statement block like in the example below::
while <condition> {
; do something...
break ; break out of the loop
continue ; immediately enter next iteration
}
repeat-until loop
^^^^^^^^^^^^^^^^^
do-until loop
^^^^^^^^^^^^^
Until the given condition is true (1), repeat the given statement(s).
You can use a single statement, or a statement block like in the example below::
repeat {
do {
; do something...
break ; break out of the loop
continue ; immediately enter next iteration
} until <condition>
forever loop
^^^^^^^^^^^^
repeat loop
^^^^^^^^^^^
Simply run the code in a loop, forever. It's the same as a while true or until false loop,
or just a jump back to a previous label. You can still break out of this loop as well, if you want::
When you're only interested in repeating something a given number of times.
It's a short hand for a for loop without an explicit loop variable::
forever {
; .. do stuff
if something
break ; you can exit the loop if you want
repeat 15 {
; do something...
break ; you can break out of the loop
}
If you omit the iteration count, it simply loops forever.
You can still ``break`` out of such a loop if you want though.
Conditional Execution and Jumps
-------------------------------
@ -702,3 +746,4 @@ case you have to use { } to enclose them::
}
else -> c64scr.print("don't know")
}

View File

@ -4,12 +4,21 @@ Target system specification
Prog8 targets the following hardware:
- 8 bit MOS 6502/6510 CPU
- 8 bit MOS 6502/65c02/6510 CPU
- 64 Kb addressable memory (RAM or ROM)
- memory mapped I/O registers
- optional use of memory mapped I/O registers
- optional use of system ROM routines
The main target machine is the Commodore-64, which is an example of this.
This chapter explains the relevant system details of such a machine.
Currently there are two machines that are supported as compiler target (selectable via the ``-target`` compiler argument):
- 'c64': the well-known Commodore-64, premium support
- 'cx16': the `CommanderX16 <https://www.commanderx16.com/>`_ a project from the 8-Bit Guy. Support for this is still experimental.
This chapter explains the relevant system details of these machines.
.. hint::
If you only use standard kernel and prog8 library routines,
it is possible to compile the *exact same program* for both machines (just change the compiler target flag)!
Memory Model
@ -113,22 +122,14 @@ CPU
Directly Usable Registers
-------------------------
The following 6502 CPU hardware registers are directly usable in program code (and are reserved symbols):
The hardware CPU registers are not directly accessible from regular Prog8 code.
If you need to mess with them, you'll have to use inline assembly.
Be extra wary of the ``X`` register because it is used as an evaluation stack pointer and
changing its value you will destroy the evaluation stack and likely crash the program.
- ``A``, ``X``, ``Y`` the three main cpu registers (8 bits)
- the status register (P) carry flag and interrupt disable flag can be written via a couple of special
builtin functions (``set_carry()``, ``clear_carry()``, ``set_irqd()``, ``clear_irqd()``),
and read via the ``read_flags()`` function.
However, you must assume that the 3 hardware registers ``A``, ``X`` and ``Y``
are volatile. Their values cannot be depended upon, the compiler will use them as required.
Even simple assignments may require modification of one or more of the registers (for instance, when using arrays).
Even more important, the ``X`` register is used as an evaluation stack pointer.
If you mess with it, you will destroy the evaluation stack and likely crash your program.
In some cases the compiler will warn you about this, but you should really avoid to use
this register. It's possible to store/restore the register's value (using special built in functions)
for the cases you really really need to use it directly.
The status register (P) carry flag and interrupt disable flag can be written via a couple of special
builtin functions (``set_carry()``, ``clear_carry()``, ``set_irqd()``, ``clear_irqd()``),
and read via the ``read_flags()`` function.
Subroutine Calling Conventions
@ -155,15 +156,15 @@ You can however install your own IRQ handler.
This is possible ofcourse by doing it all using customized inline assembly,
but there are a few library routines available to make setting up C-64 IRQs and raster IRQs a lot easier (no assembly code required).
These routines are::
For the C64 these routines are::
c64utils.set_irqvec()
c64utils.set_irqvec_excl()
c64.set_irqvec()
c64.set_irqvec_excl()
c64utils.set_rasterirq( <raster line> )
c64utils.set_rasterirq_excl( <raster line> )
c64.set_rasterirq( <raster line> )
c64.set_rasterirq_excl( <raster line> )
c64utils.restore_irqvec() ; set it back to the systems default irq handler
c64.restore_irqvec() ; set it back to the systems default irq handler
If you activate an IRQ handler with one of these, it expects the handler to be defined
as a subroutine ``irq`` in the module ``irq`` so like this::
@ -173,3 +174,4 @@ as a subroutine ``irq`` in the module ``irq`` so like this::
; ... irq handling here ...
}
}

Some files were not shown because too many files have changed in this diff Show More