%import textio %zeropage basicsafe ; Recursive N-Queens solver. ; The problem is: find all possible ways to place 8 Queen chess pieces on a chess board, so that none of them attacks any other. ; (this program prints all solutions without taking mirroring and flipping the chess board into account) ; Note: this program can be compiled for multiple target systems. main { const ubyte NUMQUEENS=8 ubyte[NUMQUEENS] board sub could_place(ubyte row, ubyte col) -> bool { if row==0 return true ubyte i for i in 0 to row-1 { if board[i]==col or board[i]-i==col-row or board[i]+i==col+row return false } return true } ubyte solution_count sub print_solution() { solution_count++ txt.home() txt.print("found solution ") txt.print_ub(solution_count) txt.nl() ubyte i for i in 0 to NUMQUEENS-1 { ubyte col = board[i] txt.chrout(' ') repeat col txt.chrout('.') txt.chrout('q') repeat NUMQUEENS-col-1 txt.chrout('.') txt.nl() } } sub place_queen(ubyte row) { if row == NUMQUEENS { print_solution() return } ubyte col for col in 0 to NUMQUEENS-1 { if could_place(row, col) { board[row] = col ; we need to save the local variables row and col. sys.push(row) sys.push(col) place_queen(row + 1) ; restore the local variables after the recursive call. col = sys.pop() row = sys.pop() board[row] = 0 } } } sub start() { cbm.SETTIM(0,0,0) txt.clear_screen() place_queen(0) txt.nl() uword duration=100*cbm.RDTIM16()/6 txt.print_uw(duration) txt.print(" milliseconds\n") } }