; Prog8 definitions for the Commodore-128 ; Including memory registers, I/O registers, Basic and Kernal subroutines. c64 { &ubyte TIME_HI = $a0 ; software jiffy clock, hi byte &ubyte TIME_MID = $a1 ; .. mid byte &ubyte TIME_LO = $a2 ; .. lo byte. Updated by IRQ every 1/60 sec &ubyte STATUS = $90 ; kernal status variable for I/O &ubyte STKEY = $91 ; various keyboard statuses (updated by IRQ) &ubyte SHFLAG = $d3 ; various modifier key status (updated by IRQ) &ubyte SFDX = $d4 ; current key pressed (matrix value) (updated by IRQ) &ubyte COLOR = $f1 ; cursor color &uword IERROR = $0300 &uword IMAIN = $0302 &uword ICRNCH = $0304 &uword IQPLOP = $0306 &uword IGONE = $0308 &uword IEVAL = $030a &uword ICRNCH2 = $030c &uword IQPLOP2 = $030e &uword IGONE2 = $0310 ; $0312 and $0313 are unused. &uword CINV = $0314 ; IRQ vector (in ram) &uword CBINV = $0316 ; BRK vector (in ram) &uword NMINV = $0318 ; NMI vector (in ram) &uword IOPEN = $031a &uword ICLOSE = $031c &uword ICHKIN = $031e &uword ICKOUT = $0320 &uword ICLRCH = $0322 &uword IBASIN = $0324 &uword IBSOUT = $0326 &uword ISTOP = $0328 &uword IGETIN = $032a &uword ICLALL = $032c &uword IEXMON = $032e &uword ILOAD = $0330 &uword ISAVE = $0332 &uword NMI_VEC = $FFFA ; 6502 nmi vector, determined by the kernal if banked in &uword RESET_VEC = $FFFC ; 6502 reset vector, determined by the kernal if banked in &uword IRQ_VEC = $FFFE ; 6502 interrupt vector, determined by the kernal if banked in ; the default addresses for the character screen chars and colors const uword Screen = $0400 ; to have this as an array[40*25] the compiler would have to support array size > 255 const uword Colors = $d800 ; to have this as an array[40*25] the compiler would have to support array size > 255 ; the default locations of the 8 sprite pointers (store address of sprite / 64) &ubyte SPRPTR0 = 2040 &ubyte SPRPTR1 = 2041 &ubyte SPRPTR2 = 2042 &ubyte SPRPTR3 = 2043 &ubyte SPRPTR4 = 2044 &ubyte SPRPTR5 = 2045 &ubyte SPRPTR6 = 2046 &ubyte SPRPTR7 = 2047 &ubyte[8] SPRPTR = 2040 ; the 8 sprite pointers as an array. ; ---- VIC-II 6567/6569/856x registers ---- &ubyte SP0X = $d000 &ubyte SP0Y = $d001 &ubyte SP1X = $d002 &ubyte SP1Y = $d003 &ubyte SP2X = $d004 &ubyte SP2Y = $d005 &ubyte SP3X = $d006 &ubyte SP3Y = $d007 &ubyte SP4X = $d008 &ubyte SP4Y = $d009 &ubyte SP5X = $d00a &ubyte SP5Y = $d00b &ubyte SP6X = $d00c &ubyte SP6Y = $d00d &ubyte SP7X = $d00e &ubyte SP7Y = $d00f &ubyte[16] SPXY = $d000 ; the 8 sprite X and Y registers as an array. &uword[8] SPXYW = $d000 ; the 8 sprite X and Y registers as a combined xy word array. &ubyte MSIGX = $d010 &ubyte SCROLY = $d011 &ubyte RASTER = $d012 &ubyte LPENX = $d013 &ubyte LPENY = $d014 &ubyte SPENA = $d015 &ubyte SCROLX = $d016 &ubyte YXPAND = $d017 &ubyte VMCSB = $d018 &ubyte VICIRQ = $d019 &ubyte IREQMASK = $d01a &ubyte SPBGPR = $d01b &ubyte SPMC = $d01c &ubyte XXPAND = $d01d &ubyte SPSPCL = $d01e &ubyte SPBGCL = $d01f &ubyte EXTCOL = $d020 ; border color &ubyte BGCOL0 = $d021 ; screen color &ubyte BGCOL1 = $d022 &ubyte BGCOL2 = $d023 &ubyte BGCOL4 = $d024 &ubyte SPMC0 = $d025 &ubyte SPMC1 = $d026 &ubyte SP0COL = $d027 &ubyte SP1COL = $d028 &ubyte SP2COL = $d029 &ubyte SP3COL = $d02a &ubyte SP4COL = $d02b &ubyte SP5COL = $d02c &ubyte SP6COL = $d02d &ubyte SP7COL = $d02e &ubyte[8] SPCOL = $d027 ; ---- end of VIC-II registers ---- ; ---- CIA 6526 1 & 2 registers ---- &ubyte CIA1PRA = $DC00 ; CIA 1 DRA, keyboard column drive (and joystick control port #2) &ubyte CIA1PRB = $DC01 ; CIA 1 DRB, keyboard row port (and joystick control port #1) &ubyte CIA1DDRA = $DC02 ; CIA 1 DDRA, keyboard column &ubyte CIA1DDRB = $DC03 ; CIA 1 DDRB, keyboard row &ubyte CIA1TAL = $DC04 ; CIA 1 timer A low byte &ubyte CIA1TAH = $DC05 ; CIA 1 timer A high byte &ubyte CIA1TBL = $DC06 ; CIA 1 timer B low byte &ubyte CIA1TBH = $DC07 ; CIA 1 timer B high byte &ubyte CIA1TOD10 = $DC08 ; time of day, 1/10 sec. &ubyte CIA1TODSEC = $DC09 ; time of day, seconds &ubyte CIA1TODMMIN = $DC0A ; time of day, minutes &ubyte CIA1TODHR = $DC0B ; time of day, hours &ubyte CIA1SDR = $DC0C ; Serial Data Register &ubyte CIA1ICR = $DC0D &ubyte CIA1CRA = $DC0E &ubyte CIA1CRB = $DC0F &ubyte CIA2PRA = $DD00 ; CIA 2 DRA, serial port and video address &ubyte CIA2PRB = $DD01 ; CIA 2 DRB, RS232 port / USERPORT &ubyte CIA2DDRA = $DD02 ; CIA 2 DDRA, serial port and video address &ubyte CIA2DDRB = $DD03 ; CIA 2 DDRB, RS232 port / USERPORT &ubyte CIA2TAL = $DD04 ; CIA 2 timer A low byte &ubyte CIA2TAH = $DD05 ; CIA 2 timer A high byte &ubyte CIA2TBL = $DD06 ; CIA 2 timer B low byte &ubyte CIA2TBH = $DD07 ; CIA 2 timer B high byte &ubyte CIA2TOD10 = $DD08 ; time of day, 1/10 sec. &ubyte CIA2TODSEC = $DD09 ; time of day, seconds &ubyte CIA2TODMIN = $DD0A ; time of day, minutes &ubyte CIA2TODHR = $DD0B ; time of day, hours &ubyte CIA2SDR = $DD0C ; Serial Data Register &ubyte CIA2ICR = $DD0D &ubyte CIA2CRA = $DD0E &ubyte CIA2CRB = $DD0F ; ---- end of CIA registers ---- ; ---- SID 6581/8580 registers ---- &ubyte FREQLO1 = $D400 ; channel 1 freq lo &ubyte FREQHI1 = $D401 ; channel 1 freq hi &uword FREQ1 = $D400 ; channel 1 freq (word) &ubyte PWLO1 = $D402 ; channel 1 pulse width lo (7-0) &ubyte PWHI1 = $D403 ; channel 1 pulse width hi (11-8) &uword PW1 = $D402 ; channel 1 pulse width (word) &ubyte CR1 = $D404 ; channel 1 voice control register &ubyte AD1 = $D405 ; channel 1 attack & decay &ubyte SR1 = $D406 ; channel 1 sustain & release &ubyte FREQLO2 = $D407 ; channel 2 freq lo &ubyte FREQHI2 = $D408 ; channel 2 freq hi &uword FREQ2 = $D407 ; channel 2 freq (word) &ubyte PWLO2 = $D409 ; channel 2 pulse width lo (7-0) &ubyte PWHI2 = $D40A ; channel 2 pulse width hi (11-8) &uword PW2 = $D409 ; channel 2 pulse width (word) &ubyte CR2 = $D40B ; channel 2 voice control register &ubyte AD2 = $D40C ; channel 2 attack & decay &ubyte SR2 = $D40D ; channel 2 sustain & release &ubyte FREQLO3 = $D40E ; channel 3 freq lo &ubyte FREQHI3 = $D40F ; channel 3 freq hi &uword FREQ3 = $D40E ; channel 3 freq (word) &ubyte PWLO3 = $D410 ; channel 3 pulse width lo (7-0) &ubyte PWHI3 = $D411 ; channel 3 pulse width hi (11-8) &uword PW3 = $D410 ; channel 3 pulse width (word) &ubyte CR3 = $D412 ; channel 3 voice control register &ubyte AD3 = $D413 ; channel 3 attack & decay &ubyte SR3 = $D414 ; channel 3 sustain & release &ubyte FCLO = $D415 ; filter cutoff lo (2-0) &ubyte FCHI = $D416 ; filter cutoff hi (10-3) &uword FC = $D415 ; filter cutoff (word) &ubyte RESFILT = $D417 ; filter resonance and routing &ubyte MVOL = $D418 ; filter mode and main volume control &ubyte POTX = $D419 ; potentiometer X &ubyte POTY = $D41A ; potentiometer Y &ubyte OSC3 = $D41B ; channel 3 oscillator value read &ubyte ENV3 = $D41C ; channel 3 envelope value read ; ---- end of SID registers ---- ; ---- kernal routines, these are the same as on the Commodore-64 (hence the same block name) ---- ; STROUT --> use txt.print ; CLEARSCR -> use txt.clear_screen ; HOMECRSR -> use txt.home or txt.plot romsub $FA65 = IRQDFRT() clobbers(A,X,Y) ; default IRQ routine romsub $FF33 = IRQDFEND() clobbers(A,X,Y) ; default IRQ end/cleanup ; TODO c128 a bunch of kernal routines are missing here that are specific to the c128 romsub $FF81 = CINT() clobbers(A,X,Y) ; (alias: SCINIT) initialize screen editor and video chip romsub $FF84 = IOINIT() clobbers(A, X) ; initialize I/O devices (CIA, SID, IRQ) romsub $FF87 = RAMTAS() clobbers(A,X,Y) ; initialize RAM, tape buffer, screen romsub $FF8A = RESTOR() clobbers(A,X,Y) ; restore default I/O vectors romsub $FF8D = VECTOR(uword userptr @ XY, ubyte dir @ Pc) clobbers(A,Y) ; read/set I/O vector table romsub $FF90 = SETMSG(ubyte value @ A) ; set Kernal message control flag romsub $FF93 = SECOND(ubyte address @ A) clobbers(A) ; (alias: LSTNSA) send secondary address after LISTEN romsub $FF96 = TKSA(ubyte address @ A) clobbers(A) ; (alias: TALKSA) send secondary address after TALK romsub $FF99 = MEMTOP(uword address @ XY, ubyte dir @ Pc) -> uword @ XY ; read/set top of memory pointer romsub $FF9C = MEMBOT(uword address @ XY, ubyte dir @ Pc) -> uword @ XY ; read/set bottom of memory pointer romsub $FF9F = SCNKEY() clobbers(A,X,Y) ; scan the keyboard romsub $FFA2 = SETTMO(ubyte timeout @ A) ; set time-out flag for IEEE bus romsub $FFA5 = ACPTR() -> ubyte @ A ; (alias: IECIN) input byte from serial bus romsub $FFA8 = CIOUT(ubyte databyte @ A) ; (alias: IECOUT) output byte to serial bus romsub $FFAB = UNTLK() clobbers(A) ; command serial bus device to UNTALK romsub $FFAE = UNLSN() clobbers(A) ; command serial bus device to UNLISTEN romsub $FFB1 = LISTEN(ubyte device @ A) clobbers(A) ; command serial bus device to LISTEN romsub $FFB4 = TALK(ubyte device @ A) clobbers(A) ; command serial bus device to TALK romsub $FFB7 = READST() -> ubyte @ A ; read I/O status word romsub $FFBA = SETLFS(ubyte logical @ A, ubyte device @ X, ubyte secondary @ Y) ; set logical file parameters romsub $FFBD = SETNAM(ubyte namelen @ A, str filename @ XY) ; set filename parameters romsub $FFC0 = OPEN() clobbers(X,Y) -> ubyte @Pc, ubyte @A ; (via 794 ($31A)) open a logical file romsub $FFC3 = CLOSE(ubyte logical @ A) clobbers(A,X,Y) ; (via 796 ($31C)) close a logical file romsub $FFC6 = CHKIN(ubyte logical @ X) clobbers(A,X) -> ubyte @Pc ; (via 798 ($31E)) define an input channel romsub $FFC9 = CHKOUT(ubyte logical @ X) clobbers(A,X) ; (via 800 ($320)) define an output channel romsub $FFCC = CLRCHN() clobbers(A,X) ; (via 802 ($322)) restore default devices romsub $FFCF = CHRIN() clobbers(X, Y) -> ubyte @ A ; (via 804 ($324)) input a character (for keyboard, read a whole line from the screen) A=byte read. romsub $FFD2 = CHROUT(ubyte char @ A) ; (via 806 ($326)) output a character romsub $FFD5 = LOAD(ubyte verify @ A, uword address @ XY) -> ubyte @Pc, ubyte @ A, uword @ XY ; (via 816 ($330)) load from device romsub $FFD8 = SAVE(ubyte zp_startaddr @ A, uword endaddr @ XY) -> ubyte @ Pc, ubyte @ A ; (via 818 ($332)) save to a device romsub $FFDB = SETTIM(ubyte low @ A, ubyte middle @ X, ubyte high @ Y) ; set the software clock romsub $FFDE = RDTIM() -> ubyte @ A, ubyte @ X, ubyte @ Y ; read the software clock (A=lo,X=mid,Y=high) romsub $FFE1 = STOP() clobbers(X) -> ubyte @ Pz, ubyte @ A ; (via 808 ($328)) check the STOP key (and some others in A) romsub $FFE4 = GETIN() clobbers(X,Y) -> ubyte @Pc, ubyte @ A ; (via 810 ($32A)) get a character romsub $FFE7 = CLALL() clobbers(A,X) ; (via 812 ($32C)) close all files romsub $FFEA = UDTIM() clobbers(A,X) ; update the software clock romsub $FFED = SCREEN() -> ubyte @ X, ubyte @ Y ; read number of screen rows and columns romsub $FFF0 = PLOT(ubyte col @ Y, ubyte row @ X, ubyte dir @ Pc) -> ubyte @ X, ubyte @ Y ; read/set position of cursor on screen. Use txt.plot for a 'safe' wrapper that preserves X. romsub $FFF3 = IOBASE() -> uword @ XY ; read base address of I/O devices ; ---- end of C64 compatible ROM kernal routines ---- ; ---- utilities ----- asmsub STOP2() -> ubyte @A { ; -- check if STOP key was pressed, returns true if so. More convenient to use than STOP() because that only sets the carry status flag. %asm {{ txa pha jsr c64.STOP beq + pla tax lda #0 rts + pla tax lda #1 rts }} } asmsub RDTIM16() -> uword @AY { ; -- like RDTIM() but only returning the lower 16 bits in AY for convenience %asm {{ stx P8ZP_SCRATCH_REG jsr c64.RDTIM pha txa tay pla ldx P8ZP_SCRATCH_REG rts }} } ; ---- system utility routines that are essentially the same as on the C64: ----- asmsub disable_runstop_and_charsetswitch() clobbers(A) { %asm {{ lda #$80 sta 247 ; disable charset switching lda #112 sta 808 ; disable run/stop key rts }} } asmsub enable_runstop_and_charsetswitch() clobbers(A) { %asm {{ lda #0 sta 247 ; enable charset switching lda #110 sta 808 ; enable run/stop key rts }} } asmsub set_irq(uword handler @AY, ubyte useKernal @Pc) clobbers(A) { %asm {{ sta _modified+1 sty _modified+2 lda #0 rol a sta _use_kernal sei lda #<_irq_handler sta c64.CINV lda #>_irq_handler sta c64.CINV+1 cli rts _irq_handler jsr _irq_handler_init _modified jsr $ffff ; modified jsr _irq_handler_end lda _use_kernal bne + lda #$ff sta c64.VICIRQ ; acknowledge raster irq lda c64.CIA1ICR ; acknowledge CIA1 interrupt ; end irq processing - don't use kernal's irq handling pla tay pla tax pla rti + jmp c64.IRQDFRT ; continue with normal kernal irq routine _use_kernal .byte 0 _irq_handler_init ; save all zp scratch registers as these might be clobbered by the irq routine lda P8ZP_SCRATCH_B1 sta IRQ_SCRATCH_ZPB1 lda P8ZP_SCRATCH_REG sta IRQ_SCRATCH_ZPREG lda P8ZP_SCRATCH_W1 sta IRQ_SCRATCH_ZPWORD1 lda P8ZP_SCRATCH_W1+1 sta IRQ_SCRATCH_ZPWORD1+1 lda P8ZP_SCRATCH_W2 sta IRQ_SCRATCH_ZPWORD2 lda P8ZP_SCRATCH_W2+1 sta IRQ_SCRATCH_ZPWORD2+1 ; Set X to the bottom 32 bytes of the evaluation stack, to HOPEFULLY not clobber it. ; This leaves 128-32=96 stack entries for the main program, and 32 stack entries for the IRQ handler. ; We assume IRQ handlers don't contain complex expressions taking up more than that. ldx #32 cld rts _irq_handler_end ; restore all zp scratch registers lda IRQ_SCRATCH_ZPB1 sta P8ZP_SCRATCH_B1 lda IRQ_SCRATCH_ZPREG sta P8ZP_SCRATCH_REG lda IRQ_SCRATCH_ZPWORD1 sta P8ZP_SCRATCH_W1 lda IRQ_SCRATCH_ZPWORD1+1 sta P8ZP_SCRATCH_W1+1 lda IRQ_SCRATCH_ZPWORD2 sta P8ZP_SCRATCH_W2 lda IRQ_SCRATCH_ZPWORD2+1 sta P8ZP_SCRATCH_W2+1 rts IRQ_SCRATCH_ZPB1 .byte 0 IRQ_SCRATCH_ZPREG .byte 0 IRQ_SCRATCH_ZPWORD1 .word 0 IRQ_SCRATCH_ZPWORD2 .word 0 }} } asmsub restore_irq() clobbers(A) { %asm {{ sei lda #c64.IRQDFRT sta c64.CINV+1 lda #0 sta c64.IREQMASK ; disable raster irq lda #%10000001 sta c64.CIA1ICR ; restore CIA1 irq cli rts }} } asmsub set_rasterirq(uword handler @AY, uword rasterpos @R0, ubyte useKernal @Pc) clobbers(A) { %asm {{ sta _modified+1 sty _modified+2 lda #0 rol a sta set_irq._use_kernal lda cx16.r0 ldy cx16.r0+1 sei jsr _setup_raster_irq lda #<_raster_irq_handler sta c64.CINV lda #>_raster_irq_handler sta c64.CINV+1 cli rts _raster_irq_handler jsr set_irq._irq_handler_init _modified jsr $ffff ; modified jsr set_irq._irq_handler_end lda #$ff sta c64.VICIRQ ; acknowledge raster irq lda set_irq._use_kernal bne + ; end irq processing - don't use kernal's irq handling pla tay pla tax pla rti + jmp c64.IRQDFRT ; continue with kernal irq routine _setup_raster_irq pha lda #%01111111 sta c64.CIA1ICR ; "switch off" interrupts signals from cia-1 sta c64.CIA2ICR ; "switch off" interrupts signals from cia-2 and c64.SCROLY sta c64.SCROLY ; clear most significant bit of raster position lda c64.CIA1ICR ; ack previous irq lda c64.CIA2ICR ; ack previous irq pla sta c64.RASTER ; set the raster line number where interrupt should occur cpy #0 beq + lda c64.SCROLY ora #%10000000 sta c64.SCROLY ; set most significant bit of raster position + lda #%00000001 sta c64.IREQMASK ;enable raster interrupt signals from vic rts }} } } c128 { ; ---- C128 specific registers ---- &ubyte VM1 = $0A2C ; shadow for VUC $d018 in text mode &ubyte VM2 = $0A2D ; shadow for VIC $d018 in bitmap screen mode &ubyte VM3 = $0A2E ; starting page for VDC screen mem &ubyte VM4 = $0A2F ; starting page for VDC attribute mem ; ---- C128 specific system utility routines: ---- asmsub init_system() { ; Initializes the machine to a sane starting state. ; Called automatically by the loader program logic. ; This means that the BASIC, KERNAL and CHARGEN ROMs are banked in, ; the VIC, SID and CIA chips are reset, screen is cleared, and the default IRQ is set. ; Also a different color scheme is chosen to identify ourselves a little. ; Uppercase charset is activated, and all three registers set to 0, status flags cleared. %asm {{ sei cld lda #0 sta $ff00 ; select default bank 15 jsr c64.IOINIT jsr c64.RESTOR jsr c64.CINT lda #6 sta c64.EXTCOL lda #7 sta c64.COLOR lda #0 sta c64.BGCOL0 jsr c64.disable_runstop_and_charsetswitch clc clv cli rts }} } asmsub init_system_phase2() { %asm {{ rts ; no phase 2 steps on the C128 }} } asmsub cleanup_at_exit() { ; executed when the main subroutine does rts %asm {{ jmp c64.enable_runstop_and_charsetswitch }} } asmsub disable_basic() clobbers(A) { %asm {{ lda $0a04 ; disable BASIC shadow registers and #$fe sta $0a04 lda #$01 ; disable BASIC IRQ service routine sta $12fd lda #$ff ; disable screen editor IRQ setup sta $d8 lda #$b7 ; skip programmable function key check sta $033c lda #$0e ; bank out BASIC ROM sta $ff00 rts }} } ; ---- end of C128 specific system utility routines ---- } sys { ; ------- lowlevel system routines -------- const ubyte target = 128 ; compilation target specifier. 64 = C64, 128 = C128, 16 = CommanderX16. asmsub reset_system() { ; Soft-reset the system back to initial power-on Basic prompt. %asm {{ sei lda #0 sta $ff00 ; default bank 15 jmp (c64.RESET_VEC) }} } asmsub wait(uword jiffies @AY) { ; --- wait approximately the given number of jiffies (1/60th seconds) (N or N+1) ; note: the system irq handler has to be active for this to work as it depends on the system jiffy clock %asm {{ stx P8ZP_SCRATCH_B1 sta P8ZP_SCRATCH_W1 sty P8ZP_SCRATCH_W1+1 _loop lda P8ZP_SCRATCH_W1 ora P8ZP_SCRATCH_W1+1 bne + ldx P8ZP_SCRATCH_B1 rts + lda c64.TIME_LO sta P8ZP_SCRATCH_B1 - lda c64.TIME_LO cmp P8ZP_SCRATCH_B1 beq - lda P8ZP_SCRATCH_W1 bne + dec P8ZP_SCRATCH_W1+1 + dec P8ZP_SCRATCH_W1 jmp _loop }} } asmsub waitvsync() clobbers(A) { ; --- busy wait till the next vsync has occurred (approximately), without depending on custom irq handling. ; note: a more accurate way to wait for vsync is to set up a vsync irq handler instead. %asm {{ - bit c64.SCROLY bpl - - bit c64.SCROLY bmi - rts }} } inline asmsub waitrastborder() { ; --- busy wait till the raster position has reached the bottom screen border (approximately) ; note: a more accurate way to do this is by using a raster irq handler instead. %asm {{ - bit c64.SCROLY bpl - }} } asmsub internal_stringcopy(uword source @R0, uword target @AY) clobbers (A,Y) { ; Called when the compiler wants to assign a string value to another string. %asm {{ sta P8ZP_SCRATCH_W1 sty P8ZP_SCRATCH_W1+1 lda cx16.r0 ldy cx16.r0+1 jmp prog8_lib.strcpy }} } asmsub memcopy(uword source @R0, uword target @R1, uword count @AY) clobbers(A,X,Y) { ; note: only works for NON-OVERLAPPING memory regions! ; note: can't be inlined because is called from asm as well %asm {{ ldx cx16.r0 stx P8ZP_SCRATCH_W1 ; source in ZP ldx cx16.r0+1 stx P8ZP_SCRATCH_W1+1 ldx cx16.r1 stx P8ZP_SCRATCH_W2 ; target in ZP ldx cx16.r1+1 stx P8ZP_SCRATCH_W2+1 cpy #0 bne _longcopy ; copy <= 255 bytes tay bne _copyshort rts ; nothing to copy _copyshort ; decrease source and target pointers so we can simply index by Y lda P8ZP_SCRATCH_W1 bne + dec P8ZP_SCRATCH_W1+1 + dec P8ZP_SCRATCH_W1 lda P8ZP_SCRATCH_W2 bne + dec P8ZP_SCRATCH_W2+1 + dec P8ZP_SCRATCH_W2 - lda (P8ZP_SCRATCH_W1),y sta (P8ZP_SCRATCH_W2),y dey bne - rts _longcopy sta P8ZP_SCRATCH_B1 ; lsb(count) = remainder in last page tya tax ; x = num pages (1+) ldy #0 - lda (P8ZP_SCRATCH_W1),y sta (P8ZP_SCRATCH_W2),y iny bne - inc P8ZP_SCRATCH_W1+1 inc P8ZP_SCRATCH_W2+1 dex bne - ldy P8ZP_SCRATCH_B1 bne _copyshort rts }} } asmsub memset(uword mem @R0, uword numbytes @R1, ubyte value @A) clobbers(A,X,Y) { %asm {{ ldy cx16.r0 sty P8ZP_SCRATCH_W1 ldy cx16.r0+1 sty P8ZP_SCRATCH_W1+1 ldx cx16.r1 ldy cx16.r1+1 jmp prog8_lib.memset }} } asmsub memsetw(uword mem @R0, uword numwords @R1, uword value @AY) clobbers(A,X,Y) { %asm {{ ldx cx16.r0 stx P8ZP_SCRATCH_W1 ldx cx16.r0+1 stx P8ZP_SCRATCH_W1+1 ldx cx16.r1 stx P8ZP_SCRATCH_W2 ldx cx16.r1+1 stx P8ZP_SCRATCH_W2+1 jmp prog8_lib.memsetw }} } inline asmsub read_flags() -> ubyte @A { %asm {{ php pla }} } inline asmsub clear_carry() { %asm {{ clc }} } inline asmsub set_carry() { %asm {{ sec }} } inline asmsub clear_irqd() { %asm {{ cli }} } inline asmsub set_irqd() { %asm {{ sei }} } inline asmsub exit(ubyte returnvalue @A) { ; -- immediately exit the program with a return code in the A register %asm {{ lda #0 sta $ff00 ; default bank 15 jsr c64.CLRCHN ; reset i/o channels jsr c64.enable_runstop_and_charsetswitch ldx prog8_lib.orig_stackpointer txs rts ; return to original caller }} } inline asmsub progend() -> uword @AY { %asm {{ lda #prog8_program_end }} } } cx16 { ; the sixteen virtual 16-bit registers that the CX16 has defined in the zeropage ; they are simulated on the C128 as well but their location in memory is different ; (because there's no room for them in the zeropage) ; $1300-$1bff is unused RAM on C128. We'll use $1a00-$1bff as the lo/hi evalstack. ; the virtual registers are allocated at the bottom of the eval-stack (should be ample space unless ; you're doing insane nesting of expressions...) ; NOTE: the memory location of these registers can change based on the "-esa" compiler option &uword r0 = $1b00 &uword r1 = $1b02 &uword r2 = $1b04 &uword r3 = $1b06 &uword r4 = $1b08 &uword r5 = $1b0a &uword r6 = $1b0c &uword r7 = $1b0e &uword r8 = $1b10 &uword r9 = $1b12 &uword r10 = $1b14 &uword r11 = $1b16 &uword r12 = $1b18 &uword r13 = $1b1a &uword r14 = $1b1c &uword r15 = $1b1e &word r0s = $1b00 &word r1s = $1b02 &word r2s = $1b04 &word r3s = $1b06 &word r4s = $1b08 &word r5s = $1b0a &word r6s = $1b0c &word r7s = $1b0e &word r8s = $1b10 &word r9s = $1b12 &word r10s = $1b14 &word r11s = $1b16 &word r12s = $1b18 &word r13s = $1b1a &word r14s = $1b1c &word r15s = $1b1e &ubyte r0L = $1b00 &ubyte r1L = $1b02 &ubyte r2L = $1b04 &ubyte r3L = $1b06 &ubyte r4L = $1b08 &ubyte r5L = $1b0a &ubyte r6L = $1b0c &ubyte r7L = $1b0e &ubyte r8L = $1b10 &ubyte r9L = $1b12 &ubyte r10L = $1b14 &ubyte r11L = $1b16 &ubyte r12L = $1b18 &ubyte r13L = $1b1a &ubyte r14L = $1b1c &ubyte r15L = $1b1e &ubyte r0H = $1b01 &ubyte r1H = $1b03 &ubyte r2H = $1b05 &ubyte r3H = $1b07 &ubyte r4H = $1b09 &ubyte r5H = $1b0b &ubyte r6H = $1b0d &ubyte r7H = $1b0f &ubyte r8H = $1b11 &ubyte r9H = $1b13 &ubyte r10H = $1b15 &ubyte r11H = $1b17 &ubyte r12H = $1b19 &ubyte r13H = $1b1b &ubyte r14H = $1b1d &ubyte r15H = $1b1f &byte r0sL = $1b00 &byte r1sL = $1b02 &byte r2sL = $1b04 &byte r3sL = $1b06 &byte r4sL = $1b08 &byte r5sL = $1b0a &byte r6sL = $1b0c &byte r7sL = $1b0e &byte r8sL = $1b10 &byte r9sL = $1b12 &byte r10sL = $1b14 &byte r11sL = $1b16 &byte r12sL = $1b18 &byte r13sL = $1b1a &byte r14sL = $1b1c &byte r15sL = $1b1e &byte r0sH = $1b01 &byte r1sH = $1b03 &byte r2sH = $1b05 &byte r3sH = $1b07 &byte r4sH = $1b09 &byte r5sH = $1b0b &byte r6sH = $1b0d &byte r7sH = $1b0f &byte r8sH = $1b11 &byte r9sH = $1b13 &byte r10sH = $1b15 &byte r11sH = $1b17 &byte r12sH = $1b19 &byte r13sH = $1b1b &byte r14sH = $1b1d &byte r15sH = $1b1f }