; optimized graphics routines for just the single screen mode: lores 320*240, 256c (8bpp) ; bitmap image needs to start at VRAM addres $00000. ; This is compatible with the CX16's screen mode 128. (void cx16.set_screen_mode(128)) %import syslib %import verafx gfx_lores { %option ignore_unused const uword WIDTH = 320 const ubyte HEIGHT = 240 sub graphics_mode() { ; enable 320x240 256c bitmap graphics mode cx16.VERA_CTRL=0 cx16.VERA_DC_VIDEO = (cx16.VERA_DC_VIDEO & %11001111) | %00100000 ; enable only layer 1 cx16.VERA_DC_HSCALE = 64 cx16.VERA_DC_VSCALE = 64 cx16.VERA_L1_CONFIG = %00000111 cx16.VERA_L1_MAPBASE = 0 cx16.VERA_L1_TILEBASE = 0 clear_screen(0) drawmode_eor(false) } sub text_mode() { ; back to normal text mode cx16.r15L = cx16.VERA_DC_VIDEO & %00000111 ; retain chroma + output mode cbm.CINT() cx16.VERA_DC_VIDEO = (cx16.VERA_DC_VIDEO & %11111000) | cx16.r15L } sub drawmode_eor(bool enabled) { ; with EOR drawing mode you can have non destructive drawing (2*EOR=restore original) eor_mode = enabled } bool eor_mode sub clear_screen(ubyte color) { if verafx.available() { ; use verafx cache writes to quicly clear the screen const ubyte vbank = 0 const uword vaddr = 0 cx16.VERA_CTRL = 0 cx16.VERA_ADDR_H = vbank | %00110000 ; 4-byte increment cx16.VERA_ADDR_M = msb(vaddr) cx16.VERA_ADDR_L = lsb(vaddr) cx16.VERA_CTRL = 6<<1 ; dcsel = 6, fill the 32 bits cache cx16.VERA_FX_CACHE_L = color cx16.VERA_FX_CACHE_M = color cx16.VERA_FX_CACHE_H = color cx16.VERA_FX_CACHE_U = color cx16.VERA_CTRL = 2<<1 ; dcsel = 2 cx16.VERA_FX_MULT = 0 cx16.VERA_FX_CTRL = %01000000 ; cache write enable repeat 320/4/4 { %asm {{ ldy #240 - stz cx16.VERA_DATA0 stz cx16.VERA_DATA0 stz cx16.VERA_DATA0 stz cx16.VERA_DATA0 dey bne - }} } cx16.VERA_FX_CTRL = 0 ; cache write disable cx16.VERA_CTRL = 0 return } ; fallback to cpu clear cx16.VERA_CTRL=0 cx16.VERA_ADDR=0 cx16.VERA_ADDR_H = 1<<4 ; 1 pixel auto increment repeat HEIGHT { %asm {{ lda p8v_color ldy #p8c_WIDTH/8 - .rept 8 sta cx16.VERA_DATA0 .endrept dey bne - }} } cx16.VERA_ADDR=0 cx16.VERA_ADDR_H = 0 } sub rect(uword xx, ubyte yy, uword rwidth, ubyte rheight, ubyte color) { if rwidth==0 or rheight==0 return horizontal_line(xx, yy, rwidth, color) if rheight==1 return horizontal_line(xx, yy+rheight-1, rwidth, color) vertical_line(xx, yy+1, rheight-2, color) if rwidth==1 return vertical_line(xx+rwidth-1, yy+1, rheight-2, color) } sub safe_rect(uword xx, ubyte yy, uword rwidth, ubyte rheight, ubyte color) { ; does bounds checking and clipping safe_horizontal_line(xx, yy, rwidth, color) if rheight==1 return uword bottomyy = yy as uword + rheight -1 if bottomyy=WIDTH or yy>=HEIGHT return if msb(xx)&$80!=0 { rwidth += xx xx = 0 } if xx>=WIDTH return if xx+rwidth>WIDTH rwidth = WIDTH-xx if rwidth>WIDTH return if yy as uword + rheight > HEIGHT rheight = HEIGHT-yy if rheight>HEIGHT return repeat rheight { horizontal_line(xx, yy, rwidth, color) yy++ } } sub horizontal_line(uword xx, ubyte yy, uword length, ubyte color) { if length==0 return position(xx, yy) ; set vera auto-increment to 1 pixel cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & %00000111 | (1<<4) if eor_mode { cx16.vaddr_clone(0) ; also setup port 1, for reading %asm {{ ldx p8v_length+1 beq + ldy #0 - lda p8v_color eor cx16.VERA_DATA1 sta cx16.VERA_DATA0 iny bne - dex bne - + ldy p8v_length ; remaining beq + - lda p8v_color eor cx16.VERA_DATA1 sta cx16.VERA_DATA0 dey bne - + }} } else { %asm {{ lda p8v_color ldx p8v_length+1 beq + ldy #0 - sta cx16.VERA_DATA0 iny bne - dex bne - + ldy p8v_length ; remaining beq + - sta cx16.VERA_DATA0 dey bne - + }} } } sub safe_horizontal_line(uword xx, ubyte yy, uword length, ubyte color) { ; does bounds checking and clipping if yy>=HEIGHT return if msb(xx)&$80!=0 { length += xx xx = 0 } if xx>=WIDTH return if xx+length>WIDTH length = WIDTH-xx if length>WIDTH return horizontal_line(xx, yy, length, color) } sub vertical_line(uword xx, ubyte yy, ubyte lheight, ubyte color) { if lheight==0 return position(xx, yy) ; set vera auto-increment to 320 pixel increment (=next line) cx16.VERA_ADDR_H = cx16.VERA_ADDR_H & %00000111 | (14<<4) if eor_mode { cx16.vaddr_clone(0) ; also setup port 1, for reading %asm {{ ldy p8v_lheight beq + - lda p8v_color eor cx16.VERA_DATA1 sta cx16.VERA_DATA0 dey bne - + }} } else { %asm {{ ldy p8v_lheight lda p8v_color - sta cx16.VERA_DATA0 dey bne - }} } } sub safe_vertical_line(uword xx, ubyte yy, ubyte lheight, ubyte color) { ; does bounds checking and clipping if yy>=HEIGHT return if msb(xx)&$80!=0 or xx>=WIDTH return if yy as uword + lheight > HEIGHT lheight = HEIGHT-yy if lheight>HEIGHT return vertical_line(xx, yy, lheight, color) } sub line(uword x1, ubyte y1, uword x2, ubyte y2, ubyte color) { ; Bresenham algorithm. ; This code special-cases various quadrant loops to allow simple ++ and -- operations. ; NOTE: this is about twice as fast as the kernal routine GRAPH_draw_line, and ~3-4 times as fast as gfx2.line() ; it trades memory for speed (uses inline plot routine and multiplication lookup tables) ; ; NOTE: is currently still a regular 6502 routine, could likely be made much faster with the VeraFX line helper. cx16.r3L = y2 ; ensure zeropage cx16.r1L = y1 ; ensure zeropage if cx16.r1L > cx16.r3L { ; make sure dy is always positive to have only 4 instead of 8 special cases cx16.r0 = x1 x1 = x2 x2 = cx16.r0 cx16.r0L = cx16.r1L cx16.r1L = cx16.r3L cx16.r3L = cx16.r0L } word @zp dx = x2 as word word @zp dy = cx16.r3L dx -= x1 dy -= cx16.r1L if dx==0 { vertical_line(x1, cx16.r1L, lsb(dy)+1, color) return } if dy==0 { if x1>x2 x1=x2 horizontal_line(x1, cx16.r1L, abs(dx) as uword +1, color) return } word @zp d = 0 bool positive_ix = true if dx < 0 { dx = -dx positive_ix = false } word @zp dx2 = dx*2 word @zp dy2 = dy*2 cx16.r0 = x1 ; ensure zeropage cx16.r2 = x2 ; ensure zeropage cx16.VERA_CTRL = 0 if dx >= dy { if positive_ix { repeat { plot() if cx16.r0==cx16.r2 return cx16.r0++ d += dy2 if d > dx { cx16.r1L++ d -= dx2 } } } else { repeat { plot() if cx16.r0==cx16.r2 return cx16.r0-- d += dy2 if d > dx { cx16.r1L++ d -= dx2 } } } } else { if positive_ix { repeat { plot() if cx16.r1L == cx16.r3L return cx16.r1L++ d += dx2 if d > dy { cx16.r0++ d -= dy2 } } } else { repeat { plot() if cx16.r1L == cx16.r3L return cx16.r1L++ d += dx2 if d > dy { cx16.r0-- d -= dy2 } } } } asmsub plot() { ; internal plot routine for the line algorithm: x in r0, y in r1, color in variable. %asm {{ ldy cx16.r1L clc lda times320_lo,y adc cx16.r0L sta cx16.VERA_ADDR_L lda times320_mid,y adc cx16.r0H sta cx16.VERA_ADDR_M lda #0 adc times320_hi,y sta cx16.VERA_ADDR_H lda p8v_eor_mode bne + lda p8v_color sta cx16.VERA_DATA0 rts + lda p8v_color eor cx16.VERA_DATA0 sta cx16.VERA_DATA0 rts }} } } sub circle(uword @zp xcenter, ubyte @zp ycenter, ubyte radius, ubyte color) { ; Warning: NO BOUNDS CHECKS. Make sure circle fits in the screen. ; Midpoint algorithm. if radius==0 return ubyte @zp xx = radius ubyte @zp yy = 0 word @zp decisionOver2 = (1 as word)-xx ; R14 = internal plot X ; R15 = internal plot Y while xx>=yy { cx16.r14 = xcenter + xx cx16.r15 = ycenter + yy plotq() cx16.r14 = xcenter - xx plotq() cx16.r14 = xcenter + xx cx16.r15 = ycenter - yy plotq() cx16.r14 = xcenter - xx plotq() cx16.r14 = xcenter + yy cx16.r15 = ycenter + xx plotq() cx16.r14 = xcenter - yy plotq() cx16.r14 = xcenter + yy cx16.r15 = ycenter - xx plotq() cx16.r14 = xcenter - yy plotq() yy++ if decisionOver2>=0 { xx-- decisionOver2 -= xx*$0002 } decisionOver2 += yy*$0002 decisionOver2++ } sub plotq() { ; cx16.r14 = x, cx16.r15 = y, color=color. plot(cx16.r14, cx16.r15L, color) } } sub safe_circle(uword @zp xcenter, uword @zp ycenter, ubyte radius, ubyte color) { ; This version does bounds checks and clipping, but is a lot slower. ; Midpoint algorithm. if radius==0 return ubyte @zp xx = radius ubyte @zp yy = 0 word @zp decisionOver2 = (1 as word)-xx ; R14 = internal plot X ; R15 = internal plot Y while xx>=yy { cx16.r14 = xcenter + xx cx16.r15 = ycenter + yy plotq() cx16.r14 = xcenter - xx plotq() cx16.r14 = xcenter + xx cx16.r15 = ycenter - yy plotq() cx16.r14 = xcenter - xx plotq() cx16.r14 = xcenter + yy cx16.r15 = ycenter + xx plotq() cx16.r14 = xcenter - yy plotq() cx16.r14 = xcenter + yy cx16.r15 = ycenter - xx plotq() cx16.r14 = xcenter - yy plotq() yy++ if decisionOver2>=0 { xx-- decisionOver2 -= xx*$0002 } decisionOver2 += yy*$0002 decisionOver2++ } sub plotq() { ; cx16.r14 = x, cx16.r15 = y, color=color. if cx16.r15 < HEIGHT safe_plot(cx16.r14, cx16.r15L, color) } } sub disc(uword @zp xcenter, ubyte @zp ycenter, ubyte @zp radius, ubyte color) { ; Warning: NO BOUNDS CHECKS. Make sure circle fits in the screen. ; Midpoint algorithm, filled if radius==0 return ubyte @zp yy = 0 word @zp decisionOver2 = (1 as word)-radius ubyte last_y3 = ycenter+radius ubyte last_y4 = ycenter-radius ubyte new_y3, new_y4 while radius>=yy { horizontal_line(xcenter-radius, ycenter+yy, radius*$0002+1, color) horizontal_line(xcenter-radius, ycenter-yy, radius*$0002+1, color) new_y3 = ycenter+radius if new_y3 != last_y3 { horizontal_line(xcenter-yy, last_y3, yy*$0002+1, color) last_y3 = new_y3 } new_y4 = ycenter-radius if new_y4 != last_y4 { horizontal_line(xcenter-yy, last_y4, yy*$0002+1, color) last_y4 = new_y4 } yy++ if decisionOver2>=0 { radius-- decisionOver2 -= radius*$0002 } decisionOver2 += yy*$0002 decisionOver2++ } ; draw the final two spans yy-- horizontal_line(xcenter-yy, last_y3, yy*$0002+1, color) horizontal_line(xcenter-yy, last_y4, yy*$0002+1, color) } sub safe_disc(uword @zp xcenter, uword @zp ycenter, ubyte @zp radius, ubyte color) { ; This version does bounds checks and clipping, but is a lot slower. ; Midpoint algorithm, filled if radius==0 return ubyte @zp yy = 0 word @zp decisionOver2 = (1 as word)-radius uword last_y3 = ycenter+radius uword last_y4 = ycenter-radius uword new_y3, new_y4 while radius>=yy { uword liney = ycenter+yy if msb(liney)==0 safe_horizontal_line(xcenter-radius, lsb(ycenter+yy), radius*$0002+1, color) liney = ycenter-yy if msb(liney)==0 safe_horizontal_line(xcenter-radius, lsb(ycenter-yy), radius*$0002+1, color) new_y3 = ycenter+radius if new_y3 != last_y3 { if msb(last_y3)==0 safe_horizontal_line(xcenter-yy, lsb(last_y3), yy*$0002+1, color) last_y3 = new_y3 } new_y4 = ycenter-radius if new_y4 != last_y4 { if msb(last_y4)==0 safe_horizontal_line(xcenter-yy, lsb(last_y4), yy*$0002+1, color) last_y4 = new_y4 } yy++ if decisionOver2>=0 { radius-- decisionOver2 -= radius*$0002 } decisionOver2 += yy*$0002 decisionOver2++ } ; draw the final two spans yy-- if msb(last_y3)==0 safe_horizontal_line(xcenter-yy, lsb(last_y3), yy*$0002+1, color) if msb(last_y4)==0 safe_horizontal_line(xcenter-yy, lsb(last_y4), yy*$0002+1, color) } asmsub plot(uword x @AX, ubyte y @Y, ubyte color @R0) { ; x in r0, y in r1, color. %asm {{ clc adc times320_lo,y sta cx16.VERA_ADDR_L txa adc times320_mid,y sta cx16.VERA_ADDR_M lda #0 adc times320_hi,y sta cx16.VERA_ADDR_H lda p8v_eor_mode bne + lda cx16.r0L sta cx16.VERA_DATA0 rts + lda cx16.r0L eor cx16.VERA_DATA0 sta cx16.VERA_DATA0 rts }} } sub safe_plot(uword xx, ubyte yy, ubyte color) { ; A plot that does bounds checks to see if the pixel is inside the screen. if msb(xx)&$80!=0 return if xx >= WIDTH or yy >= HEIGHT return plot(xx, yy, color) } asmsub pget(uword x @AX, ubyte y @Y) -> ubyte @A { ; returns the color of the pixel %asm {{ jsr p8s_position lda cx16.VERA_DATA0 rts }} } sub fill(uword x, ubyte y, ubyte new_color) { ; reuse a few virtual registers in ZP for variables &ubyte fillm = &cx16.r7L &ubyte seedm = &cx16.r8L &ubyte cmask = &cx16.r8H &ubyte vub = &cx16.r13L &ubyte nvub = &cx16.r13H ubyte[4] amask = [$c0,$30,$0c,$03] ; array of cmask bytes ; Non-recursive scanline flood fill. ; based loosely on code found here https://www.codeproject.com/Articles/6017/QuickFill-An-efficient-flood-fill-algorithm ; with the fixes applied to the seedfill_4 routine as mentioned in the comments. const ubyte MAXDEPTH = 100 word @zp xx = x as word word @zp yy = y as word word[MAXDEPTH] @split @shared stack_xl word[MAXDEPTH] @split @shared stack_xr word[MAXDEPTH] @split @shared stack_y byte[MAXDEPTH] @shared stack_dy cx16.r12L = 0 ; stack pointer word x1 word x2 byte dy cx16.r10L = new_color sub push_stack(word sxl, word sxr, word sy, byte sdy) { if cx16.r12L==MAXDEPTH return cx16.r0s = sy+sdy if cx16.r0s>=0 and cx16.r0s<=HEIGHT-1 { ;; stack_xl[cx16.r12L] = sxl ;; stack_xr[cx16.r12L] = sxr ;; stack_y[cx16.r12L] = sy ;; stack_dy[cx16.r12L] = sdy ;; cx16.r12L++ %asm {{ ldy cx16.r12L lda p8v_sxl sta p8v_stack_xl_lsb,y lda p8v_sxl+1 sta p8v_stack_xl_msb,y lda p8v_sxr sta p8v_stack_xr_lsb,y lda p8v_sxr+1 sta p8v_stack_xr_msb,y lda p8v_sy sta p8v_stack_y_lsb,y lda p8v_sy+1 sta p8v_stack_y_msb,y ldy cx16.r12L lda p8v_sdy sta p8v_stack_dy,y inc cx16.r12L }} } } sub pop_stack() { ;; cx16.r12L-- ;; x1 = stack_xl[cx16.r12L] ;; x2 = stack_xr[cx16.r12L] ;; y = stack_y[cx16.r12L] ;; dy = stack_dy[cx16.r12L] %asm {{ dec cx16.r12L ldy cx16.r12L lda p8v_stack_xl_lsb,y sta p8v_x1 lda p8v_stack_xl_msb,y sta p8v_x1+1 lda p8v_stack_xr_lsb,y sta p8v_x2 lda p8v_stack_xr_msb,y sta p8v_x2+1 lda p8v_stack_y_lsb,y sta p8v_yy lda p8v_stack_y_msb,y sta p8v_yy+1 ldy cx16.r12L lda p8v_stack_dy,y sta p8v_dy }} yy+=dy } cx16.r11L = pget(xx as uword, lsb(yy)) ; old_color if cx16.r11L == cx16.r10L return if xx<0 or xx>WIDTH-1 or yy<0 or yy>HEIGHT-1 return push_stack(xx, xx, yy, 1) push_stack(xx, xx, yy + 1, -1) word left = 0 while cx16.r12L!=0 { pop_stack() xx = x1 if fill_scanline_left_8bpp() goto skip left = xx + 1 if left < x1 push_stack(left, x1 - 1, yy, -dy) xx = x1 + 1 do { fill_scanline_right_8bpp() push_stack(left, xx - 1, yy, dy) if xx > x2 + 1 push_stack(x2 + 1, xx - 1, yy, -dy) skip: xx++ while xx <= x2 { if pget(xx as uword, lsb(yy)) == cx16.r11L break xx++ } left = xx } until xx>x2 } sub set_vera_address(bool decr) { ; set both data0 and data1 addresses position(xx as uword, lsb(yy)) cx16.r0 = cx16.VERA_ADDR cx16.r1L = cx16.VERA_ADDR_H & 1 | if decr %00011000 else %00010000 cx16.VERA_ADDR_H = cx16.r1L cx16.VERA_CTRL = 1 cx16.VERA_ADDR = cx16.r0 cx16.VERA_ADDR_H = cx16.r1L cx16.VERA_CTRL = 0 } sub fill_scanline_left_8bpp() -> bool { set_vera_address(true) cx16.r9s = xx while xx >= 0 { if cx16.VERA_DATA0 != cx16.r11L break cx16.VERA_DATA1 = cx16.r10L xx-- } return xx==cx16.r9s } sub fill_scanline_right_8bpp() { set_vera_address(false) while xx <= WIDTH-1 { if cx16.VERA_DATA0 != cx16.r11L break cx16.VERA_DATA1 = cx16.r10L xx++ } } } sub text_charset(ubyte charset) { ; -- select the text charset to use with the text() routine ; the charset number is the same as for the cx16.screen_set_charset() ROM function. ; 1 = ISO charset, 2 = PETSCII uppercase+graphs, 3= PETSCII uppercase+lowercase etc. etc. cx16.screen_set_charset(charset, 0) } const ubyte charset_bank = $1 const uword charset_addr = $f000 ; in bank 1, so $1f000 sub text(uword @zp xx, uword yy, ubyte color, uword textptr) { ; -- Write some text at the given pixel position. The text string must be in an encoding approprite for the charset. ; You must also have called text_charset() first to select and prepare the character set to use. uword chardataptr ubyte[8] @shared char_bitmap_bytes_left ubyte[8] @shared char_bitmap_bytes_right while @(textptr)!=0 { chardataptr = charset_addr + (@(textptr) as uword)*8 cx16.vaddr(charset_bank, chardataptr, 1, 1) repeat 8 { position(xx,lsb(yy)) yy++ %asm {{ ldx p8v_color lda cx16.VERA_DATA1 sta P8ZP_SCRATCH_B1 ldy #8 - asl P8ZP_SCRATCH_B1 bcc + stx cx16.VERA_DATA0 ; write a pixel bra ++ + lda cx16.VERA_DATA0 ; don't write a pixel, but do advance to the next address + dey bne - }} } xx+=8 yy-=8 textptr++ } } asmsub position(uword x @AX, ubyte y @Y) { %asm {{ clc adc times320_lo,y sta cx16.VERA_ADDR_L txa adc times320_mid,y sta cx16.VERA_ADDR_M lda #%00010000 ; auto increment on adc times320_hi,y sta cx16.VERA_ADDR_H rts }} } inline asmsub next_pixel(ubyte color @A) { ; -- sets the next pixel byte to the graphics chip. ; for 8 bpp screens this will plot 1 pixel. ; for 2 bpp screens it will plot 4 pixels at once (color = bit pattern). %asm {{ sta cx16.VERA_DATA0 }} } asmsub next_pixels(uword pixels @AY, uword amount @R0) clobbers(A, X, Y) { ; -- sets the next bunch of pixels from a prepared array of bytes. ; for 8 bpp screens this will plot 1 pixel per byte. ; for 2 bpp screens it will plot 4 pixels at once (colors are the bit patterns per byte). %asm {{ sta P8ZP_SCRATCH_W1 sty P8ZP_SCRATCH_W1+1 ldx cx16.r0+1 beq + ldy #0 - lda (P8ZP_SCRATCH_W1),y sta cx16.VERA_DATA0 iny bne - inc P8ZP_SCRATCH_W1+1 ; next page of 256 pixels dex bne - + ldx cx16.r0 ; remaining pixels beq + ldy #0 - lda (P8ZP_SCRATCH_W1),y sta cx16.VERA_DATA0 iny dex bne - + rts }} } asmsub set_8_pixels_from_bits(ubyte bits @R0, ubyte oncolor @A, ubyte offcolor @Y) clobbers(X) { ; this is only useful in 256 color mode where one pixel equals one byte value. %asm {{ ldx #8 - asl cx16.r0 bcc + sta cx16.VERA_DATA0 bra ++ + sty cx16.VERA_DATA0 + dex bne - rts }} } %asm {{ ; multiplication by 320 lookup table times320 := 320*range(240) times320_lo .byte times320 times320_hi .byte `times320 }} }