; Monochrome Bitmap pixel graphics routines for the Virtual Machine ; Using the full-screen 640x480 and 320x240 screen modes, but just black/white. ; ; NOTE: For sake of speed, NO BOUNDS CHECKING is performed in most routines! ; You'll have to make sure yourself that you're not writing outside of bitmap boundaries! monogfx { %option ignore_unused ; read-only control variables: uword width = 0 uword height = 0 ubyte mode const ubyte MODE_NORMAL = %00000000 const ubyte MODE_STIPPLE = %00000001 const ubyte MODE_INVERT = %00000010 sub lores() { ; enable 320*240 bitmap mode sys.gfx_enable(0) width = 320 height = 240 mode = MODE_NORMAL clear_screen(0) } sub hires() { ; enable 640*480 bitmap mode sys.gfx_enable(1) width = 640 height = 480 mode = MODE_NORMAL clear_screen(0) } sub textmode() { ; back to normal text mode } sub drawmode(ubyte dm) { mode = dm } sub clear_screen(ubyte color) { if color!=0 color=255 sys.gfx_clear(color) } sub rect(uword xx, uword yy, uword rwidth, uword rheight, bool draw) { if rwidth==0 or rheight==0 return horizontal_line(xx, yy, rwidth, draw) if rheight==1 return horizontal_line(xx, yy+rheight-1, rwidth, draw) vertical_line(xx, yy+1, rheight-2, draw) if rwidth==1 return vertical_line(xx+rwidth-1, yy+1, rheight-2, draw) } sub fillrect(uword xx, uword yy, uword rwidth, uword rheight, bool draw) { ; Draw a filled rectangle of the given size and color. ; To fill the whole screen, use clear_screen(color) instead - it is much faster. if rwidth==0 return repeat rheight { horizontal_line(xx, yy, rwidth, draw) yy++ } } sub horizontal_line(uword xx, uword yy, uword length, bool draw) { uword xpos for xpos in xx to xx+length-1 plot(xpos, yy, draw) } sub safe_horizontal_line(uword xx, uword yy, uword length, bool draw) { ; does bounds checking and clipping if msb(yy)&$80!=0 or yy>=height return if msb(xx)&$80!=0 { length += xx xx = 0 } if xx>=width return if xx+length>width length = width-xx if length>width return horizontal_line(xx, yy, length, draw) } sub vertical_line(uword xx, uword yy, uword lheight, bool draw) { uword ypos for ypos in yy to yy+lheight-1 plot(xx, ypos, draw) } sub line(uword @zp x1, uword @zp y1, uword @zp x2, uword @zp y2, bool draw) { ; Bresenham algorithm. ; This code special-cases various quadrant loops to allow simple ++ and -- operations. if y1>y2 { ; make sure dy is always positive to have only 4 instead of 8 special cases cx16.r0 = x1 x1 = x2 x2 = cx16.r0 cx16.r0 = y1 y1 = y2 y2 = cx16.r0 } word @zp dx = (x2 as word)-x1 word @zp dy = (y2 as word)-y1 if dx==0 { vertical_line(x1, y1, abs(dy) as uword +1, draw) return } if dy==0 { if x1>x2 x1=x2 horizontal_line(x1, y1, abs(dx) as uword +1, draw) return } word @zp d = 0 cx16.r1L = 1 ; true ; 'positive_ix' if dx < 0 { dx = -dx cx16.r1L = 0 ; false } word @zp dx2 = dx*2 word @zp dy2 = dy*2 cx16.r14 = x1 ; internal plot X if dx >= dy { if cx16.r1L!=0 { repeat { plot(cx16.r14, y1, draw) if cx16.r14==x2 return cx16.r14++ d += dy2 if d > dx { y1++ d -= dx2 } } } else { repeat { plot(cx16.r14, y1, draw) if cx16.r14==x2 return cx16.r14-- d += dy2 if d > dx { y1++ d -= dx2 } } } } else { if cx16.r1L!=0 { repeat { plot(cx16.r14, y1, draw) if y1 == y2 return y1++ d += dx2 if d > dy { cx16.r14++ d -= dy2 } } } else { repeat { plot(cx16.r14, y1, draw) if y1 == y2 return y1++ d += dx2 if d > dy { cx16.r14-- d -= dy2 } } } } } sub circle(uword @zp xcenter, uword @zp ycenter, ubyte radius, bool draw) { ; Warning: NO BOUNDS CHECKS. Make sure circle fits in the screen. ; Midpoint algorithm. if radius==0 return ubyte @zp xx = radius ubyte @zp yy = 0 word @zp decisionOver2 = (1 as word)-xx ; R14 = internal plot X ; R15 = internal plot Y while xx>=yy { cx16.r14 = xcenter + xx cx16.r15 = ycenter + yy plotq() cx16.r14 = xcenter - xx plotq() cx16.r14 = xcenter + xx cx16.r15 = ycenter - yy plotq() cx16.r14 = xcenter - xx plotq() cx16.r14 = xcenter + yy cx16.r15 = ycenter + xx plotq() cx16.r14 = xcenter - yy plotq() cx16.r14 = xcenter + yy cx16.r15 = ycenter - xx plotq() cx16.r14 = xcenter - yy plotq() yy++ if decisionOver2>=0 { xx-- decisionOver2 -= xx*$0002 } decisionOver2 += yy*$0002 decisionOver2++ } sub plotq() { ; cx16.r14 = x, cx16.r15 = y, draw=draw plot(cx16.r14, cx16.r15, draw) } } sub safe_circle(uword @zp xcenter, uword @zp ycenter, ubyte radius, bool draw) { ; Does bounds checking and clipping. ; Midpoint algorithm. if radius==0 return ubyte @zp xx = radius ubyte @zp yy = 0 word @zp decisionOver2 = (1 as word)-xx ; R14 = internal plot X ; R15 = internal plot Y while xx>=yy { cx16.r14 = xcenter + xx cx16.r15 = ycenter + yy plotq() cx16.r14 = xcenter - xx plotq() cx16.r14 = xcenter + xx cx16.r15 = ycenter - yy plotq() cx16.r14 = xcenter - xx plotq() cx16.r14 = xcenter + yy cx16.r15 = ycenter + xx plotq() cx16.r14 = xcenter - yy plotq() cx16.r14 = xcenter + yy cx16.r15 = ycenter - xx plotq() cx16.r14 = xcenter - yy plotq() yy++ if decisionOver2>=0 { xx-- decisionOver2 -= xx*$0002 } decisionOver2 += yy*$0002 decisionOver2++ } sub plotq() { ; cx16.r14 = x, cx16.r15 = y, draw=draw safe_plot(cx16.r14, cx16.r15, draw) } } sub disc(uword @zp xcenter, uword @zp ycenter, ubyte @zp radius, bool draw) { ; Warning: NO BOUNDS CHECKS. Make sure circle fits in the screen. ; Midpoint algorithm, filled if radius==0 return ubyte @zp yy = 0 word @zp decisionOver2 = (1 as word)-radius while radius>=yy { horizontal_line(xcenter-radius, ycenter+yy, radius*$0002+1, draw) horizontal_line(xcenter-radius, ycenter-yy, radius*$0002+1, draw) horizontal_line(xcenter-yy, ycenter+radius, yy*$0002+1, draw) horizontal_line(xcenter-yy, ycenter-radius, yy*$0002+1, draw) yy++ if decisionOver2>=0 { radius-- decisionOver2 -= radius*$0002 } decisionOver2 += yy*$0002 decisionOver2++ } } sub safe_disc(uword @zp xcenter, uword @zp ycenter, ubyte @zp radius, bool draw) { ; Warning: NO BOUNDS CHECKS. Make sure circle fits in the screen. ; Midpoint algorithm, filled if radius==0 return ubyte @zp yy = 0 word @zp decisionOver2 = (1 as word)-radius while radius>=yy { safe_horizontal_line(xcenter-radius, ycenter+yy, radius*$0002+1, draw) safe_horizontal_line(xcenter-radius, ycenter-yy, radius*$0002+1, draw) safe_horizontal_line(xcenter-yy, ycenter+radius, yy*$0002+1, draw) safe_horizontal_line(xcenter-yy, ycenter-radius, yy*$0002+1, draw) yy++ if decisionOver2>=0 { radius-- decisionOver2 -= radius*$0002 } decisionOver2 += yy*$0002 decisionOver2++ } } sub plot(uword @zp xx, uword @zp yy, bool @zp draw) { if draw { when mode { MODE_NORMAL -> { sys.gfx_plot(xx, yy, 255) } MODE_STIPPLE -> { if (xx ^ yy)&1 !=0 sys.gfx_plot(xx, yy, 255) else sys.gfx_plot(xx, yy, 0) } MODE_INVERT -> { sys.gfx_plot(xx, yy, 255 ^ sys.gfx_getpixel(xx, yy)) } } } else sys.gfx_plot(xx, yy, 0) } sub safe_plot(uword xx, uword yy, bool draw) { ; A plot that does bounds checks to see if the pixel is inside the screen. if msb(xx)&$80!=0 or msb(yy)&$80!=0 return if xx >= width or yy >= height return plot(xx, yy, draw) } sub pget(uword @zp xx, uword yy) -> bool { return sys.gfx_getpixel(xx, yy) as bool } sub fill(uword x, uword y, bool draw) { ; Non-recursive scanline flood fill. ; based loosely on code found here https://www.codeproject.com/Articles/6017/QuickFill-An-efficient-flood-fill-algorithm ; with the fixes applied to the seedfill_4 routine as mentioned in the comments. const ubyte MAXDEPTH = 64 word @zp xx = x as word word @zp yy = y as word word[MAXDEPTH] @split @shared stack_xl word[MAXDEPTH] @split @shared stack_xr word[MAXDEPTH] @split @shared stack_y byte[MAXDEPTH] @shared stack_dy cx16.r12L = 0 ; stack pointer word x1 word x2 byte dy cx16.r10L = draw as ubyte sub push_stack(word sxl, word sxr, word sy, byte sdy) { if cx16.r12L==MAXDEPTH return cx16.r0s = sy+sdy if cx16.r0s>=0 and cx16.r0s<=height-1 { stack_xl[cx16.r12L] = sxl stack_xr[cx16.r12L] = sxr stack_y[cx16.r12L] = sy stack_dy[cx16.r12L] = sdy cx16.r12L++ } } sub pop_stack() { cx16.r12L-- x1 = stack_xl[cx16.r12L] x2 = stack_xr[cx16.r12L] yy = stack_y[cx16.r12L] dy = stack_dy[cx16.r12L] yy+=dy } cx16.r11L = pget(xx as uword, yy as uword) ; old_color if cx16.r11L == cx16.r10L return if xx<0 or xx>width-1 or yy<0 or yy>height-1 return push_stack(xx, xx, yy, 1) push_stack(xx, xx, yy + 1, -1) word left = 0 while cx16.r12L!=0 { pop_stack() xx = x1 while xx >= 0 { if pget(xx as uword, yy as uword) as ubyte != cx16.r11L break xx-- } if x1!=xx horizontal_line(xx as uword+1, yy as uword, x1-xx as uword, cx16.r10L as bool) else goto skip left = xx + 1 if left < x1 push_stack(left, x1 - 1, yy, -dy) xx = x1 + 1 do { cx16.r9 = xx as uword while xx <= width-1 { if pget(xx as uword, yy as uword) as ubyte != cx16.r11L break xx++ } if cx16.r9!=xx horizontal_line(cx16.r9, yy as uword, (xx as uword)-cx16.r9, cx16.r10L as bool) push_stack(left, xx - 1, yy, dy) if xx > x2 + 1 push_stack(x2 + 1, xx - 1, yy, -dy) skip: xx++ while xx <= x2 { if pget(xx as uword, yy as uword) as ubyte == cx16.r11L break xx++ } left = xx } until xx>x2 } } sub text_charset(ubyte charset) { ; -- select the text charset to use with the text() routine ; the charset number is the same as for the cx16.screen_set_charset() ROM function. ; 1 = ISO charset, 2 = PETSCII uppercase+graphs, 3= PETSCII uppercase+lowercase. ; TODO vm bitmap charset } sub text(uword @zp xx, uword yy, bool draw, str sctextptr) { ; -- Write some text at the given pixel position. The text string must be in screencode encoding (not petscii!). ; You must also have called text_charset() first to select and prepare the character set to use. ; TODO vm bitmap charset } }