2019-07-29 23:11:13 +02:00

960 lines
23 KiB
Lua

; Prog8 definitions for floating point handling on the Commodore-64
;
; Written by Irmen de Jong (irmen@razorvine.net) - license: GNU GPL 3.0
;
; indent format: TABS, size=8
%option enable_floats
c64flt {
; ---- this block contains C-64 floating point related functions ----
const float PI = 3.141592653589793
const float TWOPI = 6.283185307179586
; ---- C64 basic and kernal ROM float constants and functions ----
; note: the fac1 and fac2 are working registers and take 6 bytes each,
; floats in memory (and rom) are stored in 5-byte MFLPT packed format.
; constants in five-byte "mflpt" format in the BASIC ROM
&float FL_PIVAL = $aea8 ; 3.1415926...
&float FL_N32768 = $b1a5 ; -32768
&float FL_FONE = $b9bc ; 1
&float FL_SQRHLF = $b9d6 ; SQR(2) / 2
&float FL_SQRTWO = $b9db ; SQR(2)
&float FL_NEGHLF = $b9e0 ; -.5
&float FL_LOG2 = $b9e5 ; LOG(2)
&float FL_TENC = $baf9 ; 10
&float FL_NZMIL = $bdbd ; 1e9 (1 billion)
&float FL_FHALF = $bf11 ; .5
&float FL_LOGEB2 = $bfbf ; 1 / LOG(2)
&float FL_PIHALF = $e2e0 ; PI / 2
&float FL_TWOPI = $e2e5 ; 2 * PI
&float FL_FR4 = $e2ea ; .25
float FL_ZERO = 0.0 ; oddly enough 0.0 isn't available in the kernel
; note: fac1/2 might get clobbered even if not mentioned in the function's name.
; note: for subtraction and division, the left operand is in fac2, the right operand in fac1.
; checked functions below:
asmsub MOVFM (uword mflpt @ AY) clobbers(A,Y) = $bba2 ; load mflpt value from memory in A/Y into fac1
asmsub FREADMEM () clobbers(A,Y) = $bba6 ; load mflpt value from memory in $22/$23 into fac1
asmsub CONUPK (uword mflpt @ AY) clobbers(A,Y) = $ba8c ; load mflpt value from memory in A/Y into fac2
asmsub FAREADMEM () clobbers(A,Y) = $ba90 ; load mflpt value from memory in $22/$23 into fac2
asmsub MOVFA () clobbers(A,X) = $bbfc ; copy fac2 to fac1
asmsub MOVAF () clobbers(A,X) = $bc0c ; copy fac1 to fac2 (rounded)
asmsub MOVEF () clobbers(A,X) = $bc0f ; copy fac1 to fac2
asmsub MOVMF (uword mflpt @ XY) clobbers(A,Y) = $bbd4 ; store fac1 to memory X/Y as 5-byte mflpt
; fac1-> signed word in Y/A (might throw ILLEGAL QUANTITY)
; (tip: use c64flt.FTOSWRDAY to get A/Y output; lo/hi switched to normal little endian order)
asmsub FTOSWORDYA () clobbers(X) -> ubyte @ Y, ubyte @ A = $b1aa ; note: calls AYINT.
; fac1 -> unsigned word in Y/A (might throw ILLEGAL QUANTITY) (result also in $14/15)
; (tip: use c64flt.GETADRAY to get A/Y output; lo/hi switched to normal little endian order)
asmsub GETADR () clobbers(X) -> ubyte @ Y, ubyte @ A = $b7f7
asmsub QINT () clobbers(A,X,Y) = $bc9b ; fac1 -> 4-byte signed integer in 98-101 ($62-$65), with the MSB FIRST.
asmsub AYINT () clobbers(A,X,Y) = $b1bf ; fac1-> signed word in 100-101 ($64-$65) MSB FIRST. (might throw ILLEGAL QUANTITY)
; GIVAYF: signed word in Y/A (note different lsb/msb order) -> float in fac1
; (tip: use c64flt.GIVAYFAY to use A/Y input; lo/hi switched to normal order)
; there is also c64flt.GIVUAYFAY - unsigned word in A/Y (lo/hi) to fac1
; there is also c64flt.FREADS32 that reads from 98-101 ($62-$65) MSB FIRST
; there is also c64flt.FREADUS32 that reads from 98-101 ($62-$65) MSB FIRST
; there is also c64flt.FREADS24AXY that reads signed int24 into fac1 from A/X/Y (lo/mid/hi bytes)
asmsub GIVAYF (ubyte lo @ Y, ubyte hi @ A) clobbers(A,X,Y) = $b391
asmsub FREADUY (ubyte value @ Y) clobbers(A,X,Y) = $b3a2 ; 8 bit unsigned Y -> float in fac1
asmsub FREADSA (byte value @ A) clobbers(A,X,Y) = $bc3c ; 8 bit signed A -> float in fac1
asmsub FREADSTR (ubyte length @ A) clobbers(A,X,Y) = $b7b5 ; str -> fac1, $22/23 must point to string, A=string length
asmsub FPRINTLN () clobbers(A,X,Y) = $aabc ; print string of fac1, on one line (= with newline) destroys fac1. (consider FOUT + STROUT as well)
asmsub FOUT () clobbers(X) -> uword @ AY = $bddd ; fac1 -> string, address returned in AY ($0100)
asmsub FADDH () clobbers(A,X,Y) = $b849 ; fac1 += 0.5, for rounding- call this before INT
asmsub MUL10 () clobbers(A,X,Y) = $bae2 ; fac1 *= 10
asmsub DIV10 () clobbers(A,X,Y) = $bafe ; fac1 /= 10 , CAUTION: result is always positive!
asmsub FCOMP (uword mflpt @ AY) clobbers(X,Y) -> ubyte @ A = $bc5b ; A = compare fac1 to mflpt in A/Y, 0=equal 1=fac1 is greater, 255=fac1 is less than
asmsub FADDT () clobbers(A,X,Y) = $b86a ; fac1 += fac2
asmsub FADD (uword mflpt @ AY) clobbers(A,X,Y) = $b867 ; fac1 += mflpt value from A/Y
asmsub FSUBT () clobbers(A,X,Y) = $b853 ; fac1 = fac2-fac1 mind the order of the operands
asmsub FSUB (uword mflpt @ AY) clobbers(A,X,Y) = $b850 ; fac1 = mflpt from A/Y - fac1
asmsub FMULTT () clobbers(A,X,Y) = $ba2b ; fac1 *= fac2
asmsub FMULT (uword mflpt @ AY) clobbers(A,X,Y) = $ba28 ; fac1 *= mflpt value from A/Y
asmsub FDIVT () clobbers(A,X,Y) = $bb12 ; fac1 = fac2/fac1 (remainder in fac2) mind the order of the operands
asmsub FDIV (uword mflpt @ AY) clobbers(A,X,Y) = $bb0f ; fac1 = mflpt in A/Y / fac1 (remainder in fac2)
asmsub FPWRT () clobbers(A,X,Y) = $bf7b ; fac1 = fac2 ** fac1
asmsub FPWR (uword mflpt @ AY) clobbers(A,X,Y) = $bf78 ; fac1 = fac2 ** mflpt from A/Y
asmsub NOTOP () clobbers(A,X,Y) = $aed4 ; fac1 = NOT(fac1)
asmsub INT () clobbers(A,X,Y) = $bccc ; INT() truncates, use FADDH first to round instead of trunc
asmsub LOG () clobbers(A,X,Y) = $b9ea ; fac1 = LN(fac1) (natural log)
asmsub SGN () clobbers(A,X,Y) = $bc39 ; fac1 = SGN(fac1), result of SIGN (-1, 0 or 1)
asmsub SIGN () -> ubyte @ A = $bc2b ; SIGN(fac1) to A, $ff, $0, $1 for negative, zero, positive
asmsub ABS () = $bc58 ; fac1 = ABS(fac1)
asmsub SQR () clobbers(A,X,Y) = $bf71 ; fac1 = SQRT(fac1)
asmsub SQRA () clobbers(A,X,Y) = $bf74 ; fac1 = SQRT(fac2)
asmsub EXP () clobbers(A,X,Y) = $bfed ; fac1 = EXP(fac1) (e ** fac1)
asmsub NEGOP () clobbers(A) = $bfb4 ; switch the sign of fac1
asmsub RND () clobbers(A,X,Y) = $e097 ; fac1 = RND(fac1) float random number generator
asmsub COS () clobbers(A,X,Y) = $e264 ; fac1 = COS(fac1)
asmsub SIN () clobbers(A,X,Y) = $e26b ; fac1 = SIN(fac1)
asmsub TAN () clobbers(A,X,Y) = $e2b4 ; fac1 = TAN(fac1)
asmsub ATN () clobbers(A,X,Y) = $e30e ; fac1 = ATN(fac1)
asmsub FREADS32 () clobbers(A,X,Y) {
; ---- fac1 = signed int32 from $62-$65 big endian (MSB FIRST)
%asm {{
lda $62
eor #$ff
asl a
lda #0
ldx #$a0
jmp $bc4f ; internal BASIC routine
}}
}
asmsub FREADUS32 () clobbers(A,X,Y) {
; ---- fac1 = uint32 from $62-$65 big endian (MSB FIRST)
%asm {{
sec
lda #0
ldx #$a0
jmp $bc4f ; internal BASIC routine
}}
}
asmsub FREADS24AXY (ubyte lo @ A, ubyte mid @ X, ubyte hi @ Y) clobbers(A,X,Y) {
; ---- fac1 = signed int24 (A/X/Y contain lo/mid/hi bytes)
; note: there is no FREADU24AXY (unsigned), use FREADUS32 instead.
%asm {{
sty $62
stx $63
sta $64
lda $62
eor #$FF
asl a
lda #0
sta $65
ldx #$98
jmp $bc4f ; internal BASIC routine
}}
}
asmsub GIVUAYFAY (uword value @ AY) clobbers(A,X,Y) {
; ---- unsigned 16 bit word in A/Y (lo/hi) to fac1
%asm {{
sty $62
sta $63
ldx #$90
sec
jmp $bc49 ; internal BASIC routine
}}
}
asmsub GIVAYFAY (uword value @ AY) clobbers(A,X,Y) {
; ---- signed 16 bit word in A/Y (lo/hi) to float in fac1
%asm {{
sta c64.SCRATCH_ZPREG
tya
ldy c64.SCRATCH_ZPREG
jmp GIVAYF ; this uses the inverse order, Y/A
}}
}
asmsub FTOSWRDAY () clobbers(X) -> uword @ AY {
; ---- fac1 to signed word in A/Y
%asm {{
jsr FTOSWORDYA ; note the inverse Y/A order
sta c64.SCRATCH_ZPREG
tya
ldy c64.SCRATCH_ZPREG
rts
}}
}
asmsub GETADRAY () clobbers(X) -> uword @ AY {
; ---- fac1 to unsigned word in A/Y
%asm {{
jsr GETADR ; this uses the inverse order, Y/A
sta c64.SCRATCH_ZPB1
tya
ldy c64.SCRATCH_ZPB1
rts
}}
}
sub print_f (float value) {
; ---- prints the floating point value (without a newline) using basic rom routines.
%asm {{
stx c64.SCRATCH_ZPREGX
lda #<value
ldy #>value
jsr MOVFM ; load float into fac1
jsr FOUT ; fac1 to string in A/Y
jsr c64.STROUT ; print string in A/Y
ldx c64.SCRATCH_ZPREGX
rts
}}
}
sub print_fln (float value) {
; ---- prints the floating point value (with a newline at the end) using basic rom routines
%asm {{
stx c64.SCRATCH_ZPREGX
lda #<print_fln_value
ldy #>print_fln_value
jsr MOVFM ; load float into fac1
jsr FPRINTLN ; print fac1 with newline
ldx c64.SCRATCH_ZPREGX
rts
}}
}
; --- low level floating point assembly routines
%asm {{
ub2float .proc
; -- convert ubyte in SCRATCH_ZPB1 to float at address A/Y
; clobbers A, Y
stx c64.SCRATCH_ZPREGX
sta c64.SCRATCH_ZPWORD2
sty c64.SCRATCH_ZPWORD2+1
ldy c64.SCRATCH_ZPB1
jsr FREADUY
_fac_to_mem ldx c64.SCRATCH_ZPWORD2
ldy c64.SCRATCH_ZPWORD2+1
jsr MOVMF
ldx c64.SCRATCH_ZPREGX
rts
.pend
b2float .proc
; -- convert byte in SCRATCH_ZPB1 to float at address A/Y
; clobbers A, Y
stx c64.SCRATCH_ZPREGX
sta c64.SCRATCH_ZPWORD2
sty c64.SCRATCH_ZPWORD2+1
lda c64.SCRATCH_ZPB1
jsr FREADSA
jmp ub2float._fac_to_mem
.pend
uw2float .proc
; -- convert uword in SCRATCH_ZPWORD1 to float at address A/Y
stx c64.SCRATCH_ZPREGX
sta c64.SCRATCH_ZPWORD2
sty c64.SCRATCH_ZPWORD2+1
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr GIVUAYFAY
jmp ub2float._fac_to_mem
.pend
w2float .proc
; -- convert word in SCRATCH_ZPWORD1 to float at address A/Y
stx c64.SCRATCH_ZPREGX
sta c64.SCRATCH_ZPWORD2
sty c64.SCRATCH_ZPWORD2+1
ldy c64.SCRATCH_ZPWORD1
lda c64.SCRATCH_ZPWORD1+1
jsr GIVAYF
jmp ub2float._fac_to_mem
.pend
stack_b2float .proc
; -- b2float operating on the stack
inx
lda c64.ESTACK_LO,x
stx c64.SCRATCH_ZPREGX
jsr FREADSA
jmp push_fac1_as_result
.pend
stack_w2float .proc
; -- w2float operating on the stack
inx
ldy c64.ESTACK_LO,x
lda c64.ESTACK_HI,x
stx c64.SCRATCH_ZPREGX
jsr GIVAYF
jmp push_fac1_as_result
.pend
stack_ub2float .proc
; -- ub2float operating on the stack
inx
lda c64.ESTACK_LO,x
stx c64.SCRATCH_ZPREGX
tay
jsr FREADUY
jmp push_fac1_as_result
.pend
stack_uw2float .proc
; -- uw2float operating on the stack
inx
lda c64.ESTACK_LO,x
ldy c64.ESTACK_HI,x
stx c64.SCRATCH_ZPREGX
jsr GIVUAYFAY
jmp push_fac1_as_result
.pend
stack_float2w .proc ; also used for float2b
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr AYINT
ldx c64.SCRATCH_ZPREGX
lda $64
sta c64.ESTACK_HI,x
lda $65
sta c64.ESTACK_LO,x
dex
rts
.pend
stack_float2uw .proc ; also used for float2ub
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr GETADR
ldx c64.SCRATCH_ZPREGX
sta c64.ESTACK_HI,x
tya
sta c64.ESTACK_LO,x
dex
rts
.pend
push_float .proc
; ---- push mflpt5 in A/Y onto stack
; (taking 3 stack positions = 6 bytes of which 1 is padding)
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
ldy #0
lda (c64.SCRATCH_ZPWORD1),y
sta c64.ESTACK_LO,x
iny
lda (c64.SCRATCH_ZPWORD1),y
sta c64.ESTACK_HI,x
dex
iny
lda (c64.SCRATCH_ZPWORD1),y
sta c64.ESTACK_LO,x
iny
lda (c64.SCRATCH_ZPWORD1),y
sta c64.ESTACK_HI,x
dex
iny
lda (c64.SCRATCH_ZPWORD1),y
sta c64.ESTACK_LO,x
dex
rts
.pend
func_rndf .proc
; -- put a random floating point value on the stack
stx c64.SCRATCH_ZPREG
lda #1
jsr FREADSA
jsr RND ; rng into fac1
ldx #<_rndf_rnum5
ldy #>_rndf_rnum5
jsr MOVMF ; fac1 to mem X/Y
ldx c64.SCRATCH_ZPREG
lda #<_rndf_rnum5
ldy #>_rndf_rnum5
jmp push_float
_rndf_rnum5 .byte 0,0,0,0,0
.pend
push_float_from_indexed_var .proc
; -- push the float from the array at A/Y with index on stack, onto the stack.
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
jsr prog8_lib.pop_index_times_5
jsr prog8_lib.add_a_to_zpword
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jmp push_float
.pend
pop_float .proc
; ---- pops mflpt5 from stack to memory A/Y
; (frees 3 stack positions = 6 bytes of which 1 is padding)
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
ldy #4
inx
lda c64.ESTACK_LO,x
sta (c64.SCRATCH_ZPWORD1),y
dey
inx
lda c64.ESTACK_HI,x
sta (c64.SCRATCH_ZPWORD1),y
dey
lda c64.ESTACK_LO,x
sta (c64.SCRATCH_ZPWORD1),y
dey
inx
lda c64.ESTACK_HI,x
sta (c64.SCRATCH_ZPWORD1),y
dey
lda c64.ESTACK_LO,x
sta (c64.SCRATCH_ZPWORD1),y
rts
.pend
pop_float_fac1 .proc
; -- pops float from stack into FAC1
lda #<fmath_float1
ldy #>fmath_float1
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jmp MOVFM
.pend
pop_float_to_indexed_var .proc
; -- pop the float on the stack, to the memory in the array at A/Y indexed by the byte on stack
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
jsr prog8_lib.pop_index_times_5
jsr prog8_lib.add_a_to_zpword
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jmp pop_float
.pend
copy_float .proc
; -- copies the 5 bytes of the mflt value pointed to by SCRATCH_ZPWORD1,
; into the 5 bytes pointed to by A/Y. Clobbers A,Y.
sta c64.SCRATCH_ZPWORD2
sty c64.SCRATCH_ZPWORD2+1
ldy #0
lda (c64.SCRATCH_ZPWORD1),y
sta (c64.SCRATCH_ZPWORD2),y
iny
lda (c64.SCRATCH_ZPWORD1),y
sta (c64.SCRATCH_ZPWORD2),y
iny
lda (c64.SCRATCH_ZPWORD1),y
sta (c64.SCRATCH_ZPWORD2),y
iny
lda (c64.SCRATCH_ZPWORD1),y
sta (c64.SCRATCH_ZPWORD2),y
iny
lda (c64.SCRATCH_ZPWORD1),y
sta (c64.SCRATCH_ZPWORD2),y
rts
.pend
inc_var_f .proc
; -- add 1 to float pointed to by A/Y
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
stx c64.SCRATCH_ZPREGX
jsr MOVFM
lda #<FL_FONE
ldy #>FL_FONE
jsr FADD
ldx c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr MOVMF
ldx c64.SCRATCH_ZPREGX
rts
.pend
dec_var_f .proc
; -- subtract 1 from float pointed to by A/Y
sta c64.SCRATCH_ZPWORD1
sty c64.SCRATCH_ZPWORD1+1
stx c64.SCRATCH_ZPREGX
lda #<FL_FONE
ldy #>FL_FONE
jsr MOVFM
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr FSUB
ldx c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr MOVMF
ldx c64.SCRATCH_ZPREGX
rts
.pend
inc_indexed_var_f .proc
; -- add 1 to float in array pointed to by A/Y, at index X
pha
txa
sta c64.SCRATCH_ZPB1
asl a
asl a
clc
adc c64.SCRATCH_ZPB1
sta c64.SCRATCH_ZPB1
pla
clc
adc c64.SCRATCH_ZPB1
bcc +
iny
+ jmp inc_var_f
.pend
dec_indexed_var_f .proc
; -- subtract 1 to float in array pointed to by A/Y, at index X
pha
txa
sta c64.SCRATCH_ZPB1
asl a
asl a
clc
adc c64.SCRATCH_ZPB1
sta c64.SCRATCH_ZPB1
pla
clc
adc c64.SCRATCH_ZPB1
bcc +
iny
+ jmp dec_var_f
.pend
pop_2_floats_f2_in_fac1 .proc
; -- pop 2 floats from stack, load the second one in FAC1 as well
lda #<fmath_float2
ldy #>fmath_float2
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jsr pop_float
lda #<fmath_float2
ldy #>fmath_float2
jmp MOVFM
.pend
fmath_float1 .byte 0,0,0,0,0 ; storage for a mflpt5 value
fmath_float2 .byte 0,0,0,0,0 ; storage for a mflpt5 value
push_fac1_as_result .proc
; -- push the float in FAC1 onto the stack, and return from calculation
ldx #<fmath_float1
ldy #>fmath_float1
jsr MOVMF
lda #<fmath_float1
ldy #>fmath_float1
ldx c64.SCRATCH_ZPREGX
jmp push_float
.pend
pow_f .proc
; -- push f1 ** f2 on stack
lda #<fmath_float2
ldy #>fmath_float2
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jsr pop_float
stx c64.SCRATCH_ZPREGX
lda #<fmath_float1
ldy #>fmath_float1
jsr CONUPK ; fac2 = float1
lda #<fmath_float2
ldy #>fmath_float2
jsr FPWR
ldx c64.SCRATCH_ZPREGX
jmp push_fac1_as_result
.pend
div_f .proc
; -- push f1/f2 on stack
jsr pop_2_floats_f2_in_fac1
stx c64.SCRATCH_ZPREGX
lda #<fmath_float1
ldy #>fmath_float1
jsr FDIV
jmp push_fac1_as_result
.pend
add_f .proc
; -- push f1+f2 on stack
jsr pop_2_floats_f2_in_fac1
stx c64.SCRATCH_ZPREGX
lda #<fmath_float1
ldy #>fmath_float1
jsr FADD
jmp push_fac1_as_result
.pend
sub_f .proc
; -- push f1-f2 on stack
jsr pop_2_floats_f2_in_fac1
stx c64.SCRATCH_ZPREGX
lda #<fmath_float1
ldy #>fmath_float1
jsr FSUB
jmp push_fac1_as_result
.pend
mul_f .proc
; -- push f1*f2 on stack
jsr pop_2_floats_f2_in_fac1
stx c64.SCRATCH_ZPREGX
lda #<fmath_float1
ldy #>fmath_float1
jsr FMULT
jmp push_fac1_as_result
.pend
neg_f .proc
; -- push -flt back on stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr NEGOP
jmp push_fac1_as_result
.pend
abs_f .proc
; -- push abs(float) on stack (as float)
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr ABS
jmp push_fac1_as_result
.pend
equal_f .proc
; -- are the two mflpt5 numbers on the stack identical?
inx
inx
inx
inx
lda c64.ESTACK_LO-3,x
cmp c64.ESTACK_LO,x
bne _equals_false
lda c64.ESTACK_LO-2,x
cmp c64.ESTACK_LO+1,x
bne _equals_false
lda c64.ESTACK_LO-1,x
cmp c64.ESTACK_LO+2,x
bne _equals_false
lda c64.ESTACK_HI-2,x
cmp c64.ESTACK_HI+1,x
bne _equals_false
lda c64.ESTACK_HI-1,x
cmp c64.ESTACK_HI+2,x
bne _equals_false
_equals_true lda #1
_equals_store inx
sta c64.ESTACK_LO+1,x
rts
_equals_false lda #0
beq _equals_store
.pend
notequal_f .proc
; -- are the two mflpt5 numbers on the stack different?
jsr equal_f
eor #1 ; invert the result
sta c64.ESTACK_LO+1,x
rts
.pend
less_f .proc
; -- is f1 < f2?
jsr compare_floats
cmp #255
beq compare_floats._return_true
bne compare_floats._return_false
.pend
lesseq_f .proc
; -- is f1 <= f2?
jsr compare_floats
cmp #255
beq compare_floats._return_true
cmp #0
beq compare_floats._return_true
bne compare_floats._return_false
.pend
greater_f .proc
; -- is f1 > f2?
jsr compare_floats
cmp #1
beq compare_floats._return_true
bne compare_floats._return_false
.pend
greatereq_f .proc
; -- is f1 >= f2?
jsr compare_floats
cmp #1
beq compare_floats._return_true
cmp #0
beq compare_floats._return_true
bne compare_floats._return_false
.pend
compare_floats .proc
lda #<fmath_float2
ldy #>fmath_float2
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jsr pop_float
lda #<fmath_float1
ldy #>fmath_float1
jsr MOVFM ; fac1 = flt1
lda #<fmath_float2
ldy #>fmath_float2
stx c64.SCRATCH_ZPREG
jsr FCOMP ; A = flt1 compared with flt2 (0=equal, 1=flt1>flt2, 255=flt1<flt2)
ldx c64.SCRATCH_ZPREG
rts
_return_false lda #0
_return_result sta c64.ESTACK_LO,x
dex
rts
_return_true lda #1
bne _return_result
.pend
func_sin .proc
; -- push sin(f) back onto stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr SIN
jmp push_fac1_as_result
.pend
func_cos .proc
; -- push cos(f) back onto stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr COS
jmp push_fac1_as_result
.pend
func_tan .proc
; -- push tan(f) back onto stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr TAN
jmp push_fac1_as_result
.pend
func_atan .proc
; -- push atan(f) back onto stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr ATN
jmp push_fac1_as_result
.pend
func_ln .proc
; -- push ln(f) back onto stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr LOG
jmp push_fac1_as_result
.pend
func_log2 .proc
; -- push log base 2, ln(f)/ln(2), back onto stack
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr LOG
jsr MOVEF
lda #<c64.FL_LOG2
ldy #>c64.FL_LOG2
jsr MOVFM
jsr FDIVT
jmp push_fac1_as_result
.pend
func_sqrt .proc
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr SQR
jmp push_fac1_as_result
.pend
func_rad .proc
; -- convert degrees to radians (d * pi / 180)
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
lda #<_pi_div_180
ldy #>_pi_div_180
jsr FMULT
jmp push_fac1_as_result
_pi_div_180 .byte 123, 14, 250, 53, 18 ; pi / 180
.pend
func_deg .proc
; -- convert radians to degrees (d * (1/ pi * 180))
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
lda #<_one_over_pi_div_180
ldy #>_one_over_pi_div_180
jsr FMULT
jmp push_fac1_as_result
_one_over_pi_div_180 .byte 134, 101, 46, 224, 211 ; 1 / (pi * 180)
.pend
func_round .proc
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr FADDH
jsr INT
jmp push_fac1_as_result
.pend
func_floor .proc
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
jsr INT
jmp push_fac1_as_result
.pend
func_ceil .proc
; -- ceil: tr = int(f); if tr==f -> return else return tr+1
jsr pop_float_fac1
stx c64.SCRATCH_ZPREGX
ldx #<fmath_float1
ldy #>fmath_float1
jsr MOVMF
jsr INT
lda #<fmath_float1
ldy #>fmath_float1
jsr FCOMP
cmp #0
beq +
lda #<FL_FONE
ldy #>FL_FONE
jsr FADD
+ jmp push_fac1_as_result
.pend
func_any_f .proc
inx
lda c64.ESTACK_LO,x ; array size
sta c64.SCRATCH_ZPB1
asl a
asl a
clc
adc c64.SCRATCH_ZPB1 ; times 5 because of float
jmp prog8_lib.func_any_b._entry
.pend
func_all_f .proc
inx
jsr prog8_lib.peek_address
lda c64.ESTACK_LO,x ; array size
sta c64.SCRATCH_ZPB1
asl a
asl a
clc
adc c64.SCRATCH_ZPB1 ; times 5 because of float
tay
dey
- lda (c64.SCRATCH_ZPWORD1),y
clc
dey
adc (c64.SCRATCH_ZPWORD1),y
dey
adc (c64.SCRATCH_ZPWORD1),y
dey
adc (c64.SCRATCH_ZPWORD1),y
dey
adc (c64.SCRATCH_ZPWORD1),y
dey
cmp #0
beq +
cpy #255
bne -
lda #1
sta c64.ESTACK_LO+1,x
rts
+ sta c64.ESTACK_LO+1,x
rts
.pend
func_max_f .proc
lda #255
sta _minmax_cmp+1
lda #<_largest_neg_float
ldy #>_largest_neg_float
_minmax_entry jsr MOVFM
jsr prog8_lib.pop_array_and_lengthmin1Y
stx c64.SCRATCH_ZPREGX
- sty c64.SCRATCH_ZPREG
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr FCOMP
_minmax_cmp cmp #255 ; modified
bne +
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr MOVFM
+ lda c64.SCRATCH_ZPWORD1
clc
adc #5
sta c64.SCRATCH_ZPWORD1
bcc +
inc c64.SCRATCH_ZPWORD1+1
+ ldy c64.SCRATCH_ZPREG
dey
cpy #255
bne -
jmp push_fac1_as_result
_largest_neg_float .byte 255,255,255,255,255 ; largest negative float -1.7014118345e+38
.pend
func_min_f .proc
lda #1
sta func_max_f._minmax_cmp+1
lda #<_largest_pos_float
ldy #>_largest_pos_float
jmp func_max_f._minmax_entry
_largest_pos_float .byte 255,127,255,255,255 ; largest positive float
rts
.pend
func_sum_f .proc
lda #<FL_ZERO
ldy #>FL_ZERO
jsr MOVFM
jsr prog8_lib.pop_array_and_lengthmin1Y
stx c64.SCRATCH_ZPREGX
- sty c64.SCRATCH_ZPREG
lda c64.SCRATCH_ZPWORD1
ldy c64.SCRATCH_ZPWORD1+1
jsr FADD
ldy c64.SCRATCH_ZPREG
dey
cpy #255
beq +
lda c64.SCRATCH_ZPWORD1
clc
adc #5
sta c64.SCRATCH_ZPWORD1
bcc -
inc c64.SCRATCH_ZPWORD1+1
bne -
+ jmp push_fac1_as_result
.pend
}}
} ; ------ end of block c64flt