prog8/compiler/src/prog8/functions/BuiltinFunctions.kt

483 lines
28 KiB
Kotlin

package prog8.functions
import prog8.ast.Program
import prog8.ast.base.*
import prog8.ast.expressions.*
import prog8.ast.statements.StructDecl
import prog8.ast.statements.VarDecl
import prog8.compiler.CompilerException
import prog8.compiler.target.C64Target
import prog8.compiler.target.CompilationTarget
import prog8.compiler.target.Cx16Target
import kotlin.math.*
class FParam(val name: String, val possibleDatatypes: Set<DataType>)
typealias ConstExpressionCaller = (args: List<Expression>, position: Position, program: Program) -> NumericLiteralValue
class ReturnConvention(val dt: DataType, val reg: RegisterOrPair?, val floatFac1: Boolean)
class ParamConvention(val dt: DataType, val reg: RegisterOrPair?, val variable: Boolean)
class CallConvention(val params: List<ParamConvention>, val returns: ReturnConvention) {
override fun toString(): String {
val paramConvs = params.mapIndexed { index, it ->
when {
it.reg!=null -> "$index:${it.reg}"
it.variable -> "$index:variable"
else -> "$index:???"
}
}
val returnConv =
when {
returns.reg!=null -> returns.reg.toString()
returns.floatFac1 -> "floatFAC1"
else -> "<no returnvalue>"
}
return "CallConvention[" + paramConvs.joinToString() + " ; returns: $returnConv]"
}
}
class FSignature(val name: String,
val pure: Boolean, // does it have side effects?
val parameters: List<FParam>,
val known_returntype: DataType?, // specify return type if fixed, otherwise null if it depends on the arguments
val constExpressionFunc: ConstExpressionCaller? = null) {
fun callConvention(actualParamTypes: List<DataType>): CallConvention {
val returns = when(known_returntype) {
DataType.UBYTE, DataType.BYTE -> ReturnConvention(known_returntype, RegisterOrPair.A, false)
DataType.UWORD, DataType.WORD -> ReturnConvention(known_returntype, RegisterOrPair.AY, false)
DataType.FLOAT -> ReturnConvention(known_returntype, null, true)
in PassByReferenceDatatypes -> ReturnConvention(known_returntype!!, RegisterOrPair.AY, false)
else -> {
val paramType = actualParamTypes.first()
if(pure)
// return type depends on arg type
when(paramType) {
DataType.UBYTE, DataType.BYTE -> ReturnConvention(paramType, RegisterOrPair.A, false)
DataType.UWORD, DataType.WORD -> ReturnConvention(paramType, RegisterOrPair.AY, false)
DataType.FLOAT -> ReturnConvention(paramType, null, true)
in PassByReferenceDatatypes -> ReturnConvention(paramType, RegisterOrPair.AY, false)
else -> ReturnConvention(paramType, null, false)
}
else {
ReturnConvention(paramType, null, false)
}
}
}
return when {
actualParamTypes.isEmpty() -> CallConvention(emptyList(), returns)
actualParamTypes.size==1 -> {
// one parameter? via register/registerpair
val paramConv = when(val paramType = actualParamTypes[0]) {
DataType.UBYTE, DataType.BYTE -> ParamConvention(paramType, RegisterOrPair.A, false)
DataType.UWORD, DataType.WORD -> ParamConvention(paramType, RegisterOrPair.AY, false)
DataType.FLOAT -> ParamConvention(paramType, RegisterOrPair.AY, false)
in PassByReferenceDatatypes -> ParamConvention(paramType, RegisterOrPair.AY, false)
else -> ParamConvention(paramType, null, false)
}
CallConvention(listOf(paramConv), returns)
}
else -> {
// multiple parameters? via variables
val paramConvs = actualParamTypes.map { ParamConvention(it, null, true) }
CallConvention(paramConvs, returns)
}
}
}
}
private val functionSignatures: List<FSignature> = listOf(
// this set of function have no return value and operate in-place:
FSignature("rol" , false, listOf(FParam("item", setOf(DataType.UBYTE, DataType.UWORD))), null),
FSignature("ror" , false, listOf(FParam("item", setOf(DataType.UBYTE, DataType.UWORD))), null),
FSignature("rol2" , false, listOf(FParam("item", setOf(DataType.UBYTE, DataType.UWORD))), null),
FSignature("ror2" , false, listOf(FParam("item", setOf(DataType.UBYTE, DataType.UWORD))), null),
FSignature("sort" , false, listOf(FParam("array", ArrayDatatypes)), null),
FSignature("reverse" , false, listOf(FParam("array", ArrayDatatypes)), null),
// these few have a return value depending on the argument(s):
FSignature("max" , true, listOf(FParam("values", ArrayDatatypes)), null) { a, p, prg -> collectionArg(a, p, prg, ::builtinMax) }, // type depends on args
FSignature("min" , true, listOf(FParam("values", ArrayDatatypes)), null) { a, p, prg -> collectionArg(a, p, prg, ::builtinMin) }, // type depends on args
FSignature("sum" , true, listOf(FParam("values", ArrayDatatypes)), null) { a, p, prg -> collectionArg(a, p, prg, ::builtinSum) }, // type depends on args
FSignature("abs" , true, listOf(FParam("value", NumericDatatypes)), null, ::builtinAbs), // type depends on argument
FSignature("len" , true, listOf(FParam("values", IterableDatatypes)), null, ::builtinLen), // type is UBYTE or UWORD depending on actual length
FSignature("sizeof" , true, listOf(FParam("object", DataType.values().toSet())), DataType.UBYTE, ::builtinSizeof),
// normal functions follow:
FSignature("sgn" , true, listOf(FParam("value", NumericDatatypes)), DataType.BYTE, ::builtinSgn ),
FSignature("sin" , true, listOf(FParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::sin) },
FSignature("sin8" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.BYTE, ::builtinSin8 ),
FSignature("sin8u" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.UBYTE, ::builtinSin8u ),
FSignature("sin16" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.WORD, ::builtinSin16 ),
FSignature("sin16u" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.UWORD, ::builtinSin16u ),
FSignature("cos" , true, listOf(FParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::cos) },
FSignature("cos8" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.BYTE, ::builtinCos8 ),
FSignature("cos8u" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.UBYTE, ::builtinCos8u ),
FSignature("cos16" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.WORD, ::builtinCos16 ),
FSignature("cos16u" , true, listOf(FParam("angle8", setOf(DataType.UBYTE))), DataType.UWORD, ::builtinCos16u ),
FSignature("tan" , true, listOf(FParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::tan) },
FSignature("atan" , true, listOf(FParam("rads", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::atan) },
FSignature("ln" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::log) },
FSignature("log2" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, ::log2) },
FSignature("sqrt16" , true, listOf(FParam("value", setOf(DataType.UWORD))), DataType.UBYTE) { a, p, prg -> oneIntArgOutputInt(a, p, prg) { sqrt(it.toDouble()).toInt() } },
FSignature("sqrt" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::sqrt) },
FSignature("rad" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::toRadians) },
FSignature("deg" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArg(a, p, prg, Math::toDegrees) },
FSignature("round" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArgOutputWord(a, p, prg, Math::round) },
FSignature("floor" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArgOutputWord(a, p, prg, Math::floor) },
FSignature("ceil" , true, listOf(FParam("value", setOf(DataType.FLOAT))), DataType.FLOAT) { a, p, prg -> oneDoubleArgOutputWord(a, p, prg, Math::ceil) },
FSignature("any" , true, listOf(FParam("values", ArrayDatatypes)), DataType.UBYTE) { a, p, prg -> collectionArg(a, p, prg, ::builtinAny) },
FSignature("all" , true, listOf(FParam("values", ArrayDatatypes)), DataType.UBYTE) { a, p, prg -> collectionArg(a, p, prg, ::builtinAll) },
FSignature("lsb" , true, listOf(FParam("value", setOf(DataType.UWORD, DataType.WORD))), DataType.UBYTE) { a, p, prg -> oneIntArgOutputInt(a, p, prg) { x: Int -> x and 255 }},
FSignature("msb" , true, listOf(FParam("value", setOf(DataType.UWORD, DataType.WORD))), DataType.UBYTE) { a, p, prg -> oneIntArgOutputInt(a, p, prg) { x: Int -> x ushr 8 and 255}},
FSignature("mkword" , true, listOf(FParam("msb", setOf(DataType.UBYTE)), FParam("lsb", setOf(DataType.UBYTE))), DataType.UWORD, ::builtinMkword),
FSignature("rnd" , false, emptyList(), DataType.UBYTE),
FSignature("rndw" , false, emptyList(), DataType.UWORD),
FSignature("rndf" , false, emptyList(), DataType.FLOAT),
FSignature("exit" , false, listOf(FParam("returnvalue", setOf(DataType.UBYTE))), null),
FSignature("rsave" , false, emptyList(), null),
FSignature("rrestore" , false, emptyList(), null),
FSignature("set_carry" , false, emptyList(), null),
FSignature("clear_carry" , false, emptyList(), null),
FSignature("set_irqd" , false, emptyList(), null),
FSignature("clear_irqd" , false, emptyList(), null),
FSignature("read_flags" , true, emptyList(), DataType.UBYTE),
FSignature("progend" , true, emptyList(), DataType.UWORD),
FSignature("memory" , true, listOf(FParam("name", setOf(DataType.STR)), FParam("size", setOf(DataType.UWORD))), DataType.UWORD),
FSignature("target" , true, emptyList(), DataType.UBYTE, ::builtinTarget),
FSignature("swap" , false, listOf(FParam("first", NumericDatatypes), FParam("second", NumericDatatypes)), null),
FSignature("memcopy" , false, listOf(
FParam("from", IterableDatatypes + DataType.UWORD),
FParam("to", IterableDatatypes + DataType.UWORD),
FParam("numbytes", setOf(DataType.UBYTE, DataType.UWORD))), null),
FSignature("memset" , false, listOf(
FParam("address", IterableDatatypes + DataType.UWORD),
FParam("numbytes", setOf(DataType.UWORD)),
FParam("bytevalue", ByteDatatypes)), null),
FSignature("memsetw" , false, listOf(
FParam("address", IterableDatatypes + DataType.UWORD),
FParam("numwords", setOf(DataType.UWORD)),
FParam("wordvalue", setOf(DataType.UWORD, DataType.WORD))), null)
)
val BuiltinFunctions = functionSignatures.associateBy { it.name }
fun builtinMax(array: List<Number>): Number = array.maxByOrNull { it.toDouble() }!!
fun builtinMin(array: List<Number>): Number = array.minByOrNull { it.toDouble() }!!
fun builtinSum(array: List<Number>): Number = array.sumByDouble { it.toDouble() }
fun builtinAny(array: List<Number>): Number = if(array.any { it.toDouble()!=0.0 }) 1 else 0
fun builtinAll(array: List<Number>): Number = if(array.all { it.toDouble()!=0.0 }) 1 else 0
fun builtinFunctionReturnType(function: String, args: List<Expression>, program: Program): InferredTypes.InferredType {
fun datatypeFromIterableArg(arglist: Expression): DataType {
if(arglist is ArrayLiteralValue) {
val dt = arglist.value.map {it.inferType(program).typeOrElse(DataType.STRUCT)}.toSet()
if(dt.any { it !in NumericDatatypes }) {
throw FatalAstException("fuction $function only accepts array of numeric values")
}
if(DataType.FLOAT in dt) return DataType.FLOAT
if(DataType.UWORD in dt) return DataType.UWORD
if(DataType.WORD in dt) return DataType.WORD
if(DataType.BYTE in dt) return DataType.BYTE
return DataType.UBYTE
}
if(arglist is IdentifierReference) {
val idt = arglist.inferType(program)
if(!idt.isKnown)
throw FatalAstException("couldn't determine type of iterable $arglist")
return when(val dt = idt.typeOrElse(DataType.STRUCT)) {
DataType.STR, in NumericDatatypes -> dt
in ArrayDatatypes -> ArrayElementTypes.getValue(dt)
else -> throw FatalAstException("function '$function' requires one argument which is an iterable")
}
}
throw FatalAstException("function '$function' requires one argument which is an iterable")
}
val func = BuiltinFunctions.getValue(function)
if(func.known_returntype!=null)
return InferredTypes.knownFor(func.known_returntype)
// function has return values, but the return type depends on the arguments
return when (function) {
"abs" -> {
val dt = args.single().inferType(program)
return if(dt.typeOrElse(DataType.STRUCT) in NumericDatatypes)
dt
else
InferredTypes.InferredType.unknown()
}
"max", "min" -> {
when(val dt = datatypeFromIterableArg(args.single())) {
DataType.STR -> InferredTypes.knownFor(DataType.UBYTE)
in NumericDatatypes -> InferredTypes.knownFor(dt)
in ArrayDatatypes -> InferredTypes.knownFor(ArrayElementTypes.getValue(dt))
else -> InferredTypes.unknown()
}
}
"sum" -> {
when(datatypeFromIterableArg(args.single())) {
DataType.UBYTE, DataType.UWORD -> InferredTypes.knownFor(DataType.UWORD)
DataType.BYTE, DataType.WORD -> InferredTypes.knownFor(DataType.WORD)
DataType.FLOAT -> InferredTypes.knownFor(DataType.FLOAT)
DataType.ARRAY_UB, DataType.ARRAY_UW -> InferredTypes.knownFor(DataType.UWORD)
DataType.ARRAY_B, DataType.ARRAY_W -> InferredTypes.knownFor(DataType.WORD)
DataType.ARRAY_F -> InferredTypes.knownFor(DataType.FLOAT)
DataType.STR -> InferredTypes.knownFor(DataType.UWORD)
else -> InferredTypes.unknown()
}
}
"len" -> {
// a length can be >255 so in that case, the result is an UWORD instead of an UBYTE
// but to avoid a lot of code duplication we simply assume UWORD in all cases for now
return InferredTypes.knownFor(DataType.UWORD)
}
else -> return InferredTypes.unknown()
}
}
class NotConstArgumentException: AstException("not a const argument to a built-in function")
class CannotEvaluateException(func:String, msg: String): FatalAstException("cannot evaluate built-in function $func: $msg")
private fun oneDoubleArg(args: List<Expression>, position: Position, program: Program, function: (arg: Double)->Number): NumericLiteralValue {
if(args.size!=1)
throw SyntaxError("built-in function requires one floating point argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val float = constval.number.toDouble()
return numericLiteral(function(float), args[0].position)
}
private fun oneDoubleArgOutputWord(args: List<Expression>, position: Position, program: Program, function: (arg: Double)->Number): NumericLiteralValue {
if(args.size!=1)
throw SyntaxError("built-in function requires one floating point argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val float = constval.number.toDouble()
return NumericLiteralValue(DataType.WORD, function(float).toInt(), args[0].position)
}
private fun oneIntArgOutputInt(args: List<Expression>, position: Position, program: Program, function: (arg: Int)->Number): NumericLiteralValue {
if(args.size!=1)
throw SyntaxError("built-in function requires one integer argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
if(constval.type != DataType.UBYTE && constval.type!= DataType.UWORD)
throw SyntaxError("built-in function requires one integer argument", position)
val integer = constval.number.toInt()
return numericLiteral(function(integer).toInt(), args[0].position)
}
private fun collectionArg(args: List<Expression>, position: Position, program: Program, function: (arg: List<Number>)->Number): NumericLiteralValue {
if(args.size!=1)
throw SyntaxError("builtin function requires one non-scalar argument", position)
val array= args[0] as? ArrayLiteralValue ?: throw NotConstArgumentException()
val constElements = array.value.map{it.constValue(program)?.number}
if(constElements.contains(null))
throw NotConstArgumentException()
return NumericLiteralValue.optimalNumeric(function(constElements.mapNotNull { it }), args[0].position)
}
private fun builtinAbs(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
// 1 arg, type = float or int, result type= isSameAs as argument type
if(args.size!=1)
throw SyntaxError("abs requires one numeric argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
return when (constval.type) {
in IntegerDatatypes -> numericLiteral(abs(constval.number.toInt()), args[0].position)
DataType.FLOAT -> numericLiteral(abs(constval.number.toDouble()), args[0].position)
else -> throw SyntaxError("abs requires one numeric argument", position)
}
}
private fun builtinSizeof(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
// 1 arg, type = anything, result type = ubyte
if(args.size!=1)
throw SyntaxError("sizeof requires one argument", position)
if(args[0] !is IdentifierReference)
throw SyntaxError("sizeof argument should be an identifier", position)
val dt = args[0].inferType(program)
if(dt.isKnown) {
val target = (args[0] as IdentifierReference).targetStatement(program.namespace)
?: throw CannotEvaluateException("sizeof", "no target")
fun structSize(target: StructDecl) =
NumericLiteralValue(DataType.UBYTE, target.statements.map { (it as VarDecl).datatype.memorySize() }.sum(), position)
return when {
dt.typeOrElse(DataType.STRUCT) in ArrayDatatypes -> {
val length = (target as VarDecl).arraysize!!.constIndex() ?: throw CannotEvaluateException("sizeof", "unknown array size")
val elementDt = ArrayElementTypes.getValue(dt.typeOrElse(DataType.STRUCT))
numericLiteral(elementDt.memorySize() * length, position)
}
dt.istype(DataType.STRUCT) -> {
when (target) {
is VarDecl -> structSize(target.struct!!)
is StructDecl -> structSize(target)
else -> throw CompilerException("weird struct type $target")
}
}
dt.istype(DataType.STR) -> throw SyntaxError("sizeof str is undefined, did you mean len?", position)
else -> NumericLiteralValue(DataType.UBYTE, dt.typeOrElse(DataType.STRUCT).memorySize(), position)
}
} else {
throw SyntaxError("sizeof invalid argument type", position)
}
}
private fun builtinLen(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
// note: in some cases the length is > 255 and then we have to return a UWORD type instead of a UBYTE.
if(args.size!=1)
throw SyntaxError("len requires one argument", position)
val directMemVar = ((args[0] as? DirectMemoryRead)?.addressExpression as? IdentifierReference)?.targetVarDecl(program.namespace)
var arraySize = directMemVar?.arraysize?.constIndex()
if(arraySize != null)
return NumericLiteralValue.optimalInteger(arraySize, position)
if(args[0] is ArrayLiteralValue)
return NumericLiteralValue.optimalInteger((args[0] as ArrayLiteralValue).value.size, position)
if(args[0] !is IdentifierReference)
throw SyntaxError("len argument should be an identifier", position)
val target = (args[0] as IdentifierReference).targetVarDecl(program.namespace)
?: throw CannotEvaluateException("len", "no target vardecl")
return when(target.datatype) {
DataType.ARRAY_UB, DataType.ARRAY_B, DataType.ARRAY_UW, DataType.ARRAY_W, DataType.ARRAY_F -> {
arraySize = target.arraysize?.constIndex()
if(arraySize==null)
throw CannotEvaluateException("len", "arraysize unknown")
NumericLiteralValue.optimalInteger(arraySize, args[0].position)
}
DataType.STR -> {
val refLv = target.value as StringLiteralValue
NumericLiteralValue.optimalInteger(refLv.value.length, args[0].position)
}
DataType.STRUCT -> throw SyntaxError("cannot use len on struct, did you mean sizeof?", args[0].position)
in NumericDatatypes -> throw SyntaxError("cannot use len on numeric value, did you mean sizeof?", args[0].position)
else -> throw CompilerException("weird datatype")
}
}
private fun builtinMkword(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 2)
throw SyntaxError("mkword requires msb and lsb arguments", position)
val constMsb = args[0].constValue(program) ?: throw NotConstArgumentException()
val constLsb = args[1].constValue(program) ?: throw NotConstArgumentException()
val result = (constMsb.number.toInt() shl 8) or constLsb.number.toInt()
return NumericLiteralValue(DataType.UWORD, result, position)
}
private fun builtinSin8(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("sin8 requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.BYTE, (127.0 * sin(rad)).toInt().toShort(), position)
}
private fun builtinSin8u(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("sin8u requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.UBYTE, (128.0 + 127.5 * sin(rad)).toInt().toShort(), position)
}
private fun builtinCos8(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("cos8 requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.BYTE, (127.0 * cos(rad)).toInt().toShort(), position)
}
private fun builtinCos8u(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("cos8u requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.UBYTE, (128.0 + 127.5 * cos(rad)).toInt().toShort(), position)
}
private fun builtinSin16(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("sin16 requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.WORD, (32767.0 * sin(rad)).toInt(), position)
}
private fun builtinSin16u(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("sin16u requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.UWORD, (32768.0 + 32767.5 * sin(rad)).toInt(), position)
}
private fun builtinCos16(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("cos16 requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.WORD, (32767.0 * cos(rad)).toInt(), position)
}
private fun builtinCos16u(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("cos16u requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
val rad = constval.number.toDouble() /256.0 * 2.0 * PI
return NumericLiteralValue(DataType.UWORD, (32768.0 + 32767.5 * cos(rad)).toInt(), position)
}
private fun builtinSgn(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.size != 1)
throw SyntaxError("sgn requires one argument", position)
val constval = args[0].constValue(program) ?: throw NotConstArgumentException()
return NumericLiteralValue(DataType.BYTE, constval.number.toDouble().sign.toInt().toShort(), position)
}
private fun builtinTarget(args: List<Expression>, position: Position, program: Program): NumericLiteralValue {
if (args.isNotEmpty())
throw SyntaxError("target requires no arguments", position)
val target = when(CompilationTarget.instance) {
is C64Target -> 64
is Cx16Target -> 16
else -> throw CompilerException("unrecognised compilation target")
}
return NumericLiteralValue(DataType.UBYTE, target, position)
}
private fun numericLiteral(value: Number, position: Position): NumericLiteralValue {
val floatNum=value.toDouble()
val tweakedValue: Number =
if(floatNum== floor(floatNum) && (floatNum>=-32768 && floatNum<=65535))
floatNum.toInt() // we have an integer disguised as a float.
else
floatNum
return when(tweakedValue) {
is Int -> NumericLiteralValue.optimalInteger(value.toInt(), position)
is Short -> NumericLiteralValue.optimalInteger(value.toInt(), position)
is Byte -> NumericLiteralValue(DataType.UBYTE, value.toShort(), position)
is Double -> NumericLiteralValue(DataType.FLOAT, value.toDouble(), position)
is Float -> NumericLiteralValue(DataType.FLOAT, value.toDouble(), position)
else -> throw FatalAstException("invalid number type ${value::class}")
}
}