mirror of
https://github.com/irmen/prog8.git
synced 2024-12-25 08:29:25 +00:00
861 lines
18 KiB
Lua
861 lines
18 KiB
Lua
; Prog8 definitions for the Commodore-64
|
|
; These are the utility subroutines.
|
|
;
|
|
; Written by Irmen de Jong (irmen@razorvine.net) - license: GNU GPL 3.0
|
|
;
|
|
; indent format: TABS, size=8
|
|
|
|
|
|
%import c64lib
|
|
|
|
|
|
~ c64utils {
|
|
|
|
; ----- utility functions ----
|
|
|
|
asmsub init_system () -> clobbers(A,X,Y) -> () {
|
|
; ---- initializes the machine to a sane starting state
|
|
; This means that the BASIC, KERNAL and CHARGEN ROMs are banked in,
|
|
; the VIC, SID and CIA chips are reset, screen is cleared, and the default IRQ is set.
|
|
; Also a different color scheme is chosen to identify ourselves a little.
|
|
%asm {{
|
|
sei
|
|
cld
|
|
lda #%00101111
|
|
sta $00
|
|
lda #%00100111
|
|
sta $01
|
|
jsr c64.IOINIT
|
|
jsr c64.RESTOR
|
|
jsr c64.CINT
|
|
lda #6
|
|
sta c64.EXTCOL
|
|
lda #7
|
|
sta c64.COLOR
|
|
lda #0
|
|
sta c64.BGCOL0
|
|
tax
|
|
tay
|
|
clc
|
|
clv
|
|
cli
|
|
rts
|
|
}}
|
|
}
|
|
|
|
asmsub byte2decimal (ubyte: byte @ A) -> clobbers() -> (byte @ Y, byte @ X, byte @ A) {
|
|
; ---- A to decimal string in Y/X/A (100s in Y, 10s in X, 1s in A)
|
|
%asm {{
|
|
ldy #$2f
|
|
ldx #$3a
|
|
sec
|
|
- iny
|
|
sbc #100
|
|
bcs -
|
|
- dex
|
|
adc #10
|
|
bmi -
|
|
adc #$2f
|
|
rts
|
|
}}
|
|
}
|
|
|
|
asmsub byte2hex (ubyte: byte @ A) -> clobbers(A) -> (byte @ X, byte @ Y) {
|
|
; ---- A to hex string in XY (first hex char in X, second hex char in Y)
|
|
%asm {{
|
|
pha
|
|
and #$0f
|
|
tax
|
|
ldy hex_digits,x
|
|
pla
|
|
lsr a
|
|
lsr a
|
|
lsr a
|
|
lsr a
|
|
tax
|
|
lda hex_digits,x
|
|
tax
|
|
rts
|
|
|
|
hex_digits .str "0123456789abcdef" ; can probably be reused for other stuff as well
|
|
}}
|
|
}
|
|
|
|
|
|
str word2hex_output = "1234" ; 0-terminated, to make printing easier
|
|
asmsub word2hex (dataword: word @ XY) -> clobbers(A,X,Y) -> () {
|
|
; ---- convert 16 bit word in X/Y into 4-character hexadecimal string into memory 'word2hex_output'
|
|
%asm {{
|
|
stx c64.SCRATCH_ZP2
|
|
tya
|
|
jsr byte2hex
|
|
stx word2hex_output
|
|
sty word2hex_output+1
|
|
lda c64.SCRATCH_ZP2
|
|
jsr byte2hex
|
|
stx word2hex_output+2
|
|
sty word2hex_output+3
|
|
rts
|
|
}}
|
|
}
|
|
|
|
byte[3] word2bcd_bcdbuff = [0, 0, 0]
|
|
asmsub word2bcd (dataword: word @ XY) -> clobbers(A,X) -> () {
|
|
; Convert an 16 bit binary value to BCD
|
|
;
|
|
; This function converts a 16 bit binary value in X/Y into a 24 bit BCD. It
|
|
; works by transferring one bit a time from the source and adding it
|
|
; into a BCD value that is being doubled on each iteration. As all the
|
|
; arithmetic is being done in BCD the result is a binary to decimal
|
|
; conversion.
|
|
%asm {{
|
|
stx c64.SCRATCH_ZP1
|
|
sty c64.SCRATCH_ZP2
|
|
sed ; switch to decimal mode
|
|
lda #0 ; ensure the result is clear
|
|
sta word2bcd_bcdbuff+0
|
|
sta word2bcd_bcdbuff+1
|
|
sta word2bcd_bcdbuff+2
|
|
ldx #16 ; the number of source bits
|
|
|
|
- asl c64.SCRATCH_ZP1 ; shift out one bit
|
|
rol c64.SCRATCH_ZP2
|
|
lda word2bcd_bcdbuff+0 ; and add into result
|
|
adc word2bcd_bcdbuff+0
|
|
sta word2bcd_bcdbuff+0
|
|
lda word2bcd_bcdbuff+1 ; propagating any carry
|
|
adc word2bcd_bcdbuff+1
|
|
sta word2bcd_bcdbuff+1
|
|
lda word2bcd_bcdbuff+2 ; ... thru whole result
|
|
adc word2bcd_bcdbuff+2
|
|
sta word2bcd_bcdbuff+2
|
|
dex ; and repeat for next bit
|
|
bne -
|
|
cld ; back to binary
|
|
rts
|
|
}}
|
|
}
|
|
|
|
|
|
byte[5] word2decimal_output = 0
|
|
asmsub word2decimal (dataword: word @ XY) -> clobbers(A,X,Y) -> () {
|
|
; ---- convert 16 bit word in X/Y into decimal string into memory 'word2decimal_output'
|
|
%asm {{
|
|
jsr word2bcd
|
|
lda word2bcd_bcdbuff+2
|
|
clc
|
|
adc #'0'
|
|
sta word2decimal_output
|
|
ldy #1
|
|
lda word2bcd_bcdbuff+1
|
|
jsr +
|
|
lda word2bcd_bcdbuff+0
|
|
|
|
+ pha
|
|
lsr a
|
|
lsr a
|
|
lsr a
|
|
lsr a
|
|
clc
|
|
adc #'0'
|
|
sta word2decimal_output,y
|
|
iny
|
|
pla
|
|
and #$0f
|
|
adc #'0'
|
|
sta word2decimal_output,y
|
|
iny
|
|
rts
|
|
}}
|
|
}
|
|
|
|
|
|
; @todo string to 32 bit unsigned integer http://www.6502.org/source/strings/ascii-to-32bit.html
|
|
|
|
|
|
} ; ------ end of block c64utils
|
|
|
|
|
|
~ c64flt {
|
|
; ---- this block contains C-64 floating point related functions ----
|
|
|
|
|
|
asmsub FREADS32 () -> clobbers(A,X,Y) -> () {
|
|
; ---- fac1 = signed int32 from $62-$65 big endian (MSB FIRST)
|
|
%asm {{
|
|
lda $62
|
|
eor #$ff
|
|
asl a
|
|
lda #0
|
|
ldx #$a0
|
|
jmp $bc4f ; internal BASIC routine
|
|
}}
|
|
}
|
|
|
|
asmsub FREADUS32 () -> clobbers(A,X,Y) -> () {
|
|
; ---- fac1 = uint32 from $62-$65 big endian (MSB FIRST)
|
|
%asm {{
|
|
sec
|
|
lda #0
|
|
ldx #$a0
|
|
jmp $bc4f ; internal BASIC routine
|
|
}}
|
|
}
|
|
|
|
asmsub FREADS24AXY (lo: byte @ A, mid: byte @ X, hi: byte @ Y) -> clobbers(A,X,Y) -> () {
|
|
; ---- fac1 = signed int24 (A/X/Y contain lo/mid/hi bytes)
|
|
; note: there is no FREADU24AXY (unsigned), use FREADUS32 instead.
|
|
%asm {{
|
|
sty $62
|
|
stx $63
|
|
sta $64
|
|
lda $62
|
|
eor #$FF
|
|
asl a
|
|
lda #0
|
|
sta $65
|
|
ldx #$98
|
|
jmp $bc4f ; internal BASIC routine
|
|
}}
|
|
}
|
|
|
|
asmsub GIVUAYF (uword: word @ AY) -> clobbers(A,X,Y) -> () {
|
|
; ---- unsigned 16 bit word in A/Y (lo/hi) to fac1
|
|
%asm {{
|
|
sty $62
|
|
sta $63
|
|
ldx #$90
|
|
sec
|
|
jmp $bc49 ; internal BASIC routine
|
|
}}
|
|
}
|
|
|
|
asmsub GIVAYFAY (sword: word @ AY) -> clobbers(A,X,Y) -> () {
|
|
; ---- signed 16 bit word in A/Y (lo/hi) to float in fac1
|
|
%asm {{
|
|
sta c64.SCRATCH_ZP1
|
|
tya
|
|
ldy c64.SCRATCH_ZP1
|
|
jmp c64.GIVAYF ; this uses the inverse order, Y/A
|
|
}}
|
|
}
|
|
|
|
asmsub FTOSWRDAY () -> clobbers(X) -> (word @ AY) {
|
|
; ---- fac1 to signed word in A/Y
|
|
%asm {{
|
|
jsr c64.FTOSWORDYA ; note the inverse Y/A order
|
|
sta c64.SCRATCH_ZP1
|
|
tya
|
|
ldy c64.SCRATCH_ZP1
|
|
rts
|
|
}}
|
|
}
|
|
|
|
asmsub GETADRAY () -> clobbers(X) -> (word @ AY) {
|
|
; ---- fac1 to unsigned word in A/Y
|
|
%asm {{
|
|
jsr c64.GETADR ; this uses the inverse order, Y/A
|
|
sta c64.SCRATCH_ZP1
|
|
tya
|
|
ldy c64.SCRATCH_ZP1
|
|
rts
|
|
}}
|
|
}
|
|
|
|
|
|
asmsub copy_mflt (source: word @ XY) -> clobbers(A,Y) -> () {
|
|
; ---- copy a 5 byte MFLT floating point variable to another place
|
|
; input: X/Y = source address, c64.SCRATCH_ZPWORD1 = destination address
|
|
%asm {{
|
|
stx c64.SCRATCH_ZP1
|
|
sty c64.SCRATCH_ZPWORD1+1
|
|
ldy #0
|
|
lda (c64.SCRATCH_ZP1),y
|
|
sta (c64.SCRATCH_ZPWORD1),y
|
|
iny
|
|
lda (c64.SCRATCH_ZP1),y
|
|
sta (c64.SCRATCH_ZPWORD1),y
|
|
iny
|
|
lda (c64.SCRATCH_ZP1),y
|
|
sta (c64.SCRATCH_ZPWORD1),y
|
|
iny
|
|
lda (c64.SCRATCH_ZP1),y
|
|
sta (c64.SCRATCH_ZPWORD1),y
|
|
iny
|
|
lda (c64.SCRATCH_ZP1),y
|
|
sta (c64.SCRATCH_ZPWORD1),y
|
|
ldy c64.SCRATCH_ZPWORD1+1
|
|
rts
|
|
}}
|
|
}
|
|
|
|
asmsub float_add_one (mflt: word @ XY) -> clobbers(A,X,Y) -> () {
|
|
; ---- add 1 to the MFLT pointed to by X/Y. Clobbers A, X, Y
|
|
%asm {{
|
|
stx c64.SCRATCH_ZP1
|
|
sty c64.SCRATCH_ZP2
|
|
txa
|
|
jsr c64.MOVFM ; fac1 = float XY
|
|
lda #<c64.FL_FONE
|
|
ldy #>c64.FL_FONE
|
|
jsr c64.FADD ; fac1 += 1
|
|
ldx c64.SCRATCH_ZP1
|
|
ldy c64.SCRATCH_ZP2
|
|
jmp c64.FTOMEMXY ; float XY = fac1
|
|
}}
|
|
}
|
|
|
|
asmsub float_sub_one (mflt: word @ XY) -> clobbers(A,X,Y) -> () {
|
|
; ---- subtract 1 from the MFLT pointed to by X/Y. Clobbers A, X, Y
|
|
%asm {{
|
|
stx c64.SCRATCH_ZP1
|
|
sty c64.SCRATCH_ZP2
|
|
lda #<c64.FL_FONE
|
|
ldy #>c64.FL_FONE
|
|
jsr c64.MOVFM ; fac1 = 1
|
|
txa
|
|
ldy c64.SCRATCH_ZP2
|
|
jsr c64.FSUB ; fac1 = float XY - 1
|
|
ldx c64.SCRATCH_ZP1
|
|
ldy c64.SCRATCH_ZP2
|
|
jmp c64.FTOMEMXY ; float XY = fac1
|
|
}}
|
|
}
|
|
|
|
asmsub float_add_SW1_to_XY (mflt: word @ XY) -> clobbers(A,X,Y) -> () {
|
|
; ---- add MFLT pointed to by SCRATCH_ZPWORD1 to the MFLT pointed to by X/Y. Clobbers A, X, Y
|
|
%asm {{
|
|
stx c64.SCRATCH_ZP1
|
|
sty c64.SCRATCH_ZP2
|
|
txa
|
|
jsr c64.MOVFM ; fac1 = float XY
|
|
lda c64.SCRATCH_ZPWORD1
|
|
ldy c64.SCRATCH_ZPWORD1+1
|
|
jsr c64.FADD ; fac1 += SCRATCH_ZPWORD1
|
|
ldx c64.SCRATCH_ZP1
|
|
ldy c64.SCRATCH_ZP2
|
|
jmp c64.FTOMEMXY ; float XY = fac1
|
|
}}
|
|
}
|
|
|
|
asmsub float_sub_SW1_from_XY (mflt: word @ XY) -> clobbers(A,X,Y) -> () {
|
|
; ---- subtract MFLT pointed to by SCRATCH_ZPWORD1 from the MFLT pointed to by X/Y. Clobbers A, X, Y
|
|
%asm {{
|
|
stx c64.SCRATCH_ZP1
|
|
sty c64.SCRATCH_ZP2
|
|
lda c64.SCRATCH_ZPWORD1
|
|
ldy c64.SCRATCH_ZPWORD1+1
|
|
jsr c64.MOVFM ; fac1 = SCRATCH_ZPWORD1
|
|
txa
|
|
ldy c64.SCRATCH_ZP2
|
|
jsr c64.FSUB ; fac1 = float XY - SCRATCH_ZPWORD1
|
|
ldx c64.SCRATCH_ZP1
|
|
ldy c64.SCRATCH_ZP2
|
|
jmp c64.FTOMEMXY ; float XY = fac1
|
|
}}
|
|
}
|
|
|
|
} ; ------ end of block c64flt
|
|
|
|
|
|
|
|
~ c64scr {
|
|
; ---- this block contains (character) Screen and text I/O related functions ----
|
|
|
|
|
|
asmsub clear_screen (char: byte @ A, color: byte @ Y) -> clobbers() -> () {
|
|
; ---- clear the character screen with the given fill character and character color.
|
|
; (assumes screen is at $0400, could be altered in the future with self-modifying code)
|
|
; @todo some byte var to set the SCREEN ADDR HI BYTE
|
|
|
|
%asm {{
|
|
sta _loop + 1 ; self-modifying
|
|
stx c64.SCRATCH_ZP1
|
|
ldx #0
|
|
_loop lda #0
|
|
sta c64.Screen,x
|
|
sta c64.Screen+$0100,x
|
|
sta c64.Screen+$0200,x
|
|
sta c64.Screen+$02e8,x
|
|
tya
|
|
sta c64.Colors,x
|
|
sta c64.Colors+$0100,x
|
|
sta c64.Colors+$0200,x
|
|
sta c64.Colors+$02e8,x
|
|
inx
|
|
bne _loop
|
|
|
|
lda _loop+1 ; restore A and X
|
|
ldx c64.SCRATCH_ZP1
|
|
rts
|
|
}}
|
|
|
|
}
|
|
|
|
|
|
asmsub scroll_left_full (alsocolors: byte @ Pc) -> clobbers(A, X, Y) -> () {
|
|
; ---- scroll the whole screen 1 character to the left
|
|
; contents of the rightmost column are unchanged, you should clear/refill this yourself
|
|
; Carry flag determines if screen color data must be scrolled too
|
|
%asm {{
|
|
bcs +
|
|
jmp _scroll_screen
|
|
|
|
+ ; scroll the color memory
|
|
ldx #0
|
|
ldy #38
|
|
-
|
|
.for row=0, row<=12, row+=1
|
|
lda c64.Colors + 40*row + 1,x
|
|
sta c64.Colors + 40*row,x
|
|
.next
|
|
inx
|
|
dey
|
|
bpl -
|
|
|
|
ldx #0
|
|
ldy #38
|
|
-
|
|
.for row=13, row<=24, row+=1
|
|
lda c64.Colors + 40*row + 1,x
|
|
sta c64.Colors + 40*row,x
|
|
.next
|
|
inx
|
|
dey
|
|
bpl -
|
|
|
|
_scroll_screen ; scroll the screen memory
|
|
ldx #0
|
|
ldy #38
|
|
-
|
|
.for row=0, row<=12, row+=1
|
|
lda c64.Screen + 40*row + 1,x
|
|
sta c64.Screen + 40*row,x
|
|
.next
|
|
inx
|
|
dey
|
|
bpl -
|
|
|
|
ldx #0
|
|
ldy #38
|
|
-
|
|
.for row=13, row<=24, row+=1
|
|
lda c64.Screen + 40*row + 1,x
|
|
sta c64.Screen + 40*row,x
|
|
.next
|
|
inx
|
|
dey
|
|
bpl -
|
|
|
|
rts
|
|
}}
|
|
}
|
|
|
|
|
|
asmsub scroll_right_full (alsocolors: byte @ Pc) -> clobbers(A,X) -> () {
|
|
; ---- scroll the whole screen 1 character to the right
|
|
; contents of the leftmost column are unchanged, you should clear/refill this yourself
|
|
; Carry flag determines if screen color data must be scrolled too
|
|
%asm {{
|
|
bcs +
|
|
jmp _scroll_screen
|
|
|
|
+ ; scroll the color memory
|
|
ldx #38
|
|
-
|
|
.for row=0, row<=12, row+=1
|
|
lda c64.Colors + 40*row + 0,x
|
|
sta c64.Colors + 40*row + 1,x
|
|
.next
|
|
dex
|
|
bpl -
|
|
|
|
ldx #38
|
|
-
|
|
.for row=13, row<=24, row+=1
|
|
lda c64.Colors + 40*row,x
|
|
sta c64.Colors + 40*row + 1,x
|
|
.next
|
|
dex
|
|
bpl -
|
|
|
|
_scroll_screen ; scroll the screen memory
|
|
ldx #38
|
|
-
|
|
.for row=0, row<=12, row+=1
|
|
lda c64.Screen + 40*row + 0,x
|
|
sta c64.Screen + 40*row + 1,x
|
|
.next
|
|
dex
|
|
bpl -
|
|
|
|
ldx #38
|
|
-
|
|
.for row=13, row<=24, row+=1
|
|
lda c64.Screen + 40*row,x
|
|
sta c64.Screen + 40*row + 1,x
|
|
.next
|
|
dex
|
|
bpl -
|
|
|
|
rts
|
|
}}
|
|
}
|
|
|
|
|
|
asmsub scroll_up_full (alsocolors: byte @ Pc) -> clobbers(A,X) -> () {
|
|
; ---- scroll the whole screen 1 character up
|
|
; contents of the bottom row are unchanged, you should refill/clear this yourself
|
|
; Carry flag determines if screen color data must be scrolled too
|
|
%asm {{
|
|
bcs +
|
|
jmp _scroll_screen
|
|
|
|
+ ; scroll the color memory
|
|
ldx #39
|
|
-
|
|
.for row=1, row<=11, row+=1
|
|
lda c64.Colors + 40*row,x
|
|
sta c64.Colors + 40*(row-1),x
|
|
.next
|
|
dex
|
|
bpl -
|
|
|
|
ldx #39
|
|
-
|
|
.for row=12, row<=24, row+=1
|
|
lda c64.Colors + 40*row,x
|
|
sta c64.Colors + 40*(row-1),x
|
|
.next
|
|
dex
|
|
bpl -
|
|
|
|
_scroll_screen ; scroll the screen memory
|
|
ldx #39
|
|
-
|
|
.for row=1, row<=11, row+=1
|
|
lda c64.Screen + 40*row,x
|
|
sta c64.Screen + 40*(row-1),x
|
|
.next
|
|
dex
|
|
bpl -
|
|
|
|
ldx #39
|
|
-
|
|
.for row=12, row<=24, row+=1
|
|
lda c64.Screen + 40*row,x
|
|
sta c64.Screen + 40*(row-1),x
|
|
.next
|
|
dex
|
|
bpl -
|
|
|
|
rts
|
|
}}
|
|
}
|
|
|
|
|
|
asmsub scroll_down_full (alsocolors: byte @ Pc) -> clobbers(A,X) -> () {
|
|
; ---- scroll the whole screen 1 character down
|
|
; contents of the top row are unchanged, you should refill/clear this yourself
|
|
; Carry flag determines if screen color data must be scrolled too
|
|
%asm {{
|
|
bcs +
|
|
jmp _scroll_screen
|
|
|
|
+ ; scroll the color memory
|
|
ldx #39
|
|
-
|
|
.for row=23, row>=12, row-=1
|
|
lda c64.Colors + 40*row,x
|
|
sta c64.Colors + 40*(row+1),x
|
|
.next
|
|
dex
|
|
bpl -
|
|
|
|
ldx #39
|
|
-
|
|
.for row=11, row>=0, row-=1
|
|
lda c64.Colors + 40*row,x
|
|
sta c64.Colors + 40*(row+1),x
|
|
.next
|
|
dex
|
|
bpl -
|
|
|
|
_scroll_screen ; scroll the screen memory
|
|
ldx #39
|
|
-
|
|
.for row=23, row>=12, row-=1
|
|
lda c64.Screen + 40*row,x
|
|
sta c64.Screen + 40*(row+1),x
|
|
.next
|
|
dex
|
|
bpl -
|
|
|
|
ldx #39
|
|
-
|
|
.for row=11, row>=0, row-=1
|
|
lda c64.Screen + 40*row,x
|
|
sta c64.Screen + 40*(row+1),x
|
|
.next
|
|
dex
|
|
bpl -
|
|
|
|
rts
|
|
}}
|
|
}
|
|
|
|
|
|
|
|
asmsub print_string (address: word @ XY) -> clobbers(A,Y) -> () {
|
|
; ---- print null terminated string from X/Y
|
|
; note: the compiler contains an optimization that will replace
|
|
; a call to this subroutine with a string argument of just one char,
|
|
; by just one call to c64.CHROUT of that single char.
|
|
%asm {{
|
|
stx c64.SCRATCH_ZP1
|
|
sty c64.SCRATCH_ZP2
|
|
ldy #0
|
|
- lda (c64.SCRATCH_ZP1),y
|
|
beq +
|
|
jsr c64.CHROUT
|
|
iny
|
|
bne -
|
|
+ rts
|
|
}}
|
|
}
|
|
|
|
|
|
asmsub print_pstring (address: word @ XY) -> clobbers(A,X) -> (byte @ Y) {
|
|
; ---- print pstring (length as first byte) from X/Y, returns str len in Y
|
|
%asm {{
|
|
stx c64.SCRATCH_ZP1
|
|
sty c64.SCRATCH_ZP2
|
|
ldy #0
|
|
lda (c64.SCRATCH_ZP1),y
|
|
beq +
|
|
tax
|
|
- iny
|
|
lda (c64.SCRATCH_ZP1),y
|
|
jsr c64.CHROUT
|
|
dex
|
|
bne -
|
|
+ rts ; output string length is in Y
|
|
}}
|
|
}
|
|
|
|
|
|
asmsub print_pimmediate () -> clobbers() -> () {
|
|
; ---- print pstring in memory immediately following the subroutine fast call instruction
|
|
; note that the clobbered registers (A,X,Y) are not listed ON PURPOSE
|
|
%asm {{
|
|
tsx
|
|
lda $102,x
|
|
tay ; put high byte in y
|
|
lda $101,x
|
|
tax ; and low byte in x.
|
|
inx
|
|
bne +
|
|
iny
|
|
+ jsr print_pstring ; print string in XY, returns string length in y.
|
|
tya
|
|
tsx
|
|
clc
|
|
adc $101,x ; add content of 1st (length) byte to return addr.
|
|
bcc + ; if that made the low byte roll over to 00,
|
|
inc $102,x ; then increment the high byte too.
|
|
+ clc
|
|
adc #1 ; now add 1 for the length byte itself.
|
|
sta $101,x
|
|
bne + ; if that made it (the low byte) roll over to 00,
|
|
inc $102,x ; increment the high byte of the return addr too.
|
|
+ rts
|
|
}}
|
|
}
|
|
|
|
|
|
asmsub print_byte_decimal0 (ubyte: byte @ A) -> clobbers(A,X,Y) -> () {
|
|
; ---- print the byte in A in decimal form, with left padding 0s (3 positions total)
|
|
%asm {{
|
|
jsr byte2decimal
|
|
pha
|
|
tya
|
|
jsr c64.CHROUT
|
|
txa
|
|
jsr c64.CHROUT
|
|
pla
|
|
jmp c64.CHROUT
|
|
}}
|
|
}
|
|
|
|
|
|
asmsub print_byte_decimal (ubyte: byte @ A) -> clobbers(A,X,Y) -> () {
|
|
; ---- print the byte in A in decimal form, without left padding 0s
|
|
%asm {{
|
|
jsr byte2decimal
|
|
pha
|
|
cpy #'0'
|
|
bne _print_hundreds
|
|
cpx #'0'
|
|
bne _print_tens
|
|
pla
|
|
jmp c64.CHROUT
|
|
_print_hundreds tya
|
|
jsr c64.CHROUT
|
|
_print_tens txa
|
|
jsr c64.CHROUT
|
|
pla
|
|
jmp c64.CHROUT
|
|
}}
|
|
}
|
|
|
|
|
|
asmsub print_byte_hex (prefix: byte @ Pc, ubyte: byte @ A) -> clobbers(A,X,Y) -> () {
|
|
; ---- print the byte in A in hex form (if Carry is set, a radix prefix '$' is printed as well)
|
|
%asm {{
|
|
bcc +
|
|
pha
|
|
lda #'$'
|
|
jsr c64.CHROUT
|
|
pla
|
|
+ jsr byte2hex
|
|
txa
|
|
jsr c64.CHROUT
|
|
tya
|
|
jmp c64.CHROUT
|
|
}}
|
|
}
|
|
|
|
|
|
asmsub print_word_hex (prefix: byte @ Pc, dataword: word @ XY) -> clobbers(A,X,Y) -> () {
|
|
; ---- print the (unsigned) word in X/Y in hexadecimal form (4 digits)
|
|
; (if Carry is set, a radix prefix '$' is printed as well)
|
|
%asm {{
|
|
stx c64.SCRATCH_ZP1
|
|
tya
|
|
jsr print_byte_hex
|
|
lda c64.SCRATCH_ZP1
|
|
clc
|
|
jmp print_byte_hex
|
|
}}
|
|
}
|
|
|
|
|
|
asmsub print_word_decimal0 (dataword: word @ XY) -> clobbers(A,X,Y) -> () {
|
|
; ---- print the (unsigned) word in X/Y in decimal form, with left padding 0s (5 positions total)
|
|
%asm {{
|
|
jsr word2decimal
|
|
lda word2decimal_output
|
|
jsr c64.CHROUT
|
|
lda word2decimal_output+1
|
|
jsr c64.CHROUT
|
|
lda word2decimal_output+2
|
|
jsr c64.CHROUT
|
|
lda word2decimal_output+3
|
|
jsr c64.CHROUT
|
|
lda word2decimal_output+4
|
|
jmp c64.CHROUT
|
|
}}
|
|
}
|
|
|
|
|
|
asmsub print_word_decimal (dataword: word @ XY) -> clobbers(A,X,Y) -> () {
|
|
; ---- print the word in X/Y in decimal form, without left padding 0s
|
|
%asm {{
|
|
jsr word2decimal
|
|
ldy #0
|
|
lda word2decimal_output
|
|
cmp #'0'
|
|
bne _pr_decimal
|
|
iny
|
|
lda word2decimal_output+1
|
|
cmp #'0'
|
|
bne _pr_decimal
|
|
iny
|
|
lda word2decimal_output+2
|
|
cmp #'0'
|
|
bne _pr_decimal
|
|
iny
|
|
lda word2decimal_output+3
|
|
cmp #'0'
|
|
bne _pr_decimal
|
|
iny
|
|
|
|
_pr_decimal
|
|
lda word2decimal_output,y
|
|
jsr c64.CHROUT
|
|
iny
|
|
cpy #5
|
|
bcc _pr_decimal
|
|
rts
|
|
}}
|
|
}
|
|
|
|
|
|
asmsub input_chars (buffer: word @ AX) -> clobbers(A) -> (byte @ Y) {
|
|
; ---- Input a string (max. 80 chars) from the keyboard.
|
|
; It assumes the keyboard is selected as I/O channel!!
|
|
|
|
%asm {{
|
|
sta c64.SCRATCH_ZP1
|
|
stx c64.SCRATCH_ZP2
|
|
ldy #0 ; char counter = 0
|
|
- jsr c64.CHRIN
|
|
cmp #$0d ; return (ascii 13) pressed?
|
|
beq + ; yes, end.
|
|
sta (c64.SCRATCH_ZP1),y ; else store char in buffer
|
|
iny
|
|
bne -
|
|
+ lda #0
|
|
sta (c64.SCRATCH_ZP1),y ; finish string with 0 byte
|
|
rts
|
|
|
|
}}
|
|
}
|
|
|
|
} ; ---- end block c64scr
|
|
|
|
|
|
|
|
;asmsub memcopy_basic () -> clobbers(A,X,Y) -> () {
|
|
; ; ---- copy a memory block by using a BASIC ROM routine
|
|
; ; it calls a function from the basic interpreter, so:
|
|
; ; - BASIC ROM must be banked in
|
|
; ; - the source block must be readable (so no RAM hidden under BASIC, Kernal, or I/O)
|
|
; ; - the target block must be writable (so no RAM hidden under I/O)
|
|
; ; higher addresses are copied first, so:
|
|
; ; - moving data to higher addresses works even if areas overlap
|
|
; ; - moving data to lower addresses only works if areas do not overlap
|
|
; %asm {{
|
|
; lda #<src_start
|
|
; ldx #>src_start
|
|
; sta $5f
|
|
; stx $60
|
|
; lda #<src_end
|
|
; ldx #>src_end
|
|
; sta $5a
|
|
; stx $5b
|
|
; lda #<(target_start + src_end - src_start)
|
|
; ldx #>(target_start + src_end - src_start)
|
|
; sta $58
|
|
; stx $59
|
|
; jmp $a3bf
|
|
; }
|
|
;}
|
|
|
|
; macro version of the above memcopy_basic routine:
|
|
; MACRO PARAMS src_start, src_end, target_start
|
|
; lda #<src_start
|
|
; ldx #>src_start
|
|
; sta $5f
|
|
; stx $60
|
|
; lda #<src_end
|
|
; ldx #>src_end
|
|
; sta $5a
|
|
; stx $5b
|
|
; lda #<(target_start + src_end - src_start)
|
|
; ldx #>(target_start + src_end - src_start)
|
|
; sta $58
|
|
; stx $59
|
|
; jsr $a3bf
|
|
|