mirror of
https://github.com/irmen/prog8.git
synced 2025-01-10 20:30:23 +00:00
fddd390d31
MEMTOP is adjusted to $d000. This gives us 50 Kb of contiguous program RAM space. ($0801-$CFFF)
187 lines
9.1 KiB
Markdown
187 lines
9.1 KiB
Markdown
[![ko-fi](https://ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/H2H6S0FFF)
|
|
[![Documentation](https://readthedocs.org/projects/prog8/badge/?version=latest)](https://prog8.readthedocs.io/)
|
|
|
|
Prog8 - Structured Programming Language for 8-bit 6502/65c02 microprocessors
|
|
============================================================================
|
|
|
|
*Written by Irmen de Jong (irmen@razorvine.net)*
|
|
|
|
This is a structured programming language for the 8-bit 6502/6510/65c02 microprocessor from the late 1970's and 1980's
|
|
as used in many home computers from that era. It is a medium to low level programming language,
|
|
which aims to provide many conveniences over raw assembly code (even when using a macro assembler).
|
|
|
|
**Want to buy me a coffee or a pizza perhaps?**
|
|
|
|
This project was created over the last couple of years by dedicating thousands of hours of my free time to it, to make it the best I possibly can.
|
|
If you like Prog8, and think it's worth a nice cup of hot coffee or a delicious pizza,
|
|
you can help me out a little bit over at [ko-fi.com/irmen](https://ko-fi.com/irmen).
|
|
|
|
|
|
Documentation
|
|
-------------
|
|
Full documentation (syntax reference, how to use the language and the compiler, etc.) can be found at:
|
|
https://prog8.readthedocs.io/
|
|
|
|
How to get it/build it
|
|
----------------------
|
|
|
|
- Download the latest [official release](https://github.com/irmen/prog8/releases) from github.
|
|
- Or, if you want/need a bleeding edge development version, you can:
|
|
- download a build artifact zipfile from a recent [github action build](https://github.com/irmen/prog8/actions).
|
|
- you can also compile it yourself from source. [Instructions here](https://prog8.readthedocs.io/en/latest/compiling.html).
|
|
Note that if you are not using *gradle* to build it, you might have to perform some manual
|
|
tasks once to make it compile fully. These are explained in the linked instructions.
|
|
- Alternatively, you can also install the compiler as a package on some linux distros:
|
|
- Arch (via AUR): [`prog8`](https://aur.archlinux.org/packages/prog8)
|
|
|
|
Community
|
|
---------
|
|
Most of the development on Prog8 and the use of it is currently centered around
|
|
the [Commander X16](https://www.commanderx16.com/) retro computer. Their [discord server](https://discord.gg/nS2PqEC) contains a small channel
|
|
dedicated to Prog8. Other than that, use the issue tracker on github.
|
|
|
|
|
|
Software license
|
|
----------------
|
|
GNU GPL 3.0 (see file LICENSE), with exception for generated code:
|
|
|
|
- The compiler and its libraries are free to use according to the terms of the GNU GPL 3.0
|
|
- *exception:* the resulting files (intermediate source codes and resulting binary program) created by the compiler
|
|
are excluded from the GPL and are free to use in whatever way desired, commercially or not.
|
|
|
|
|
|
What does Prog8 provide?
|
|
------------------------
|
|
|
|
- all advantages of a higher level language over having to write assembly code manually
|
|
- programs run very fast because it's compiled to native machine code
|
|
- code often is smaller and faster than equivalent C code compiled with CC65 or even LLVM-MOS
|
|
- modularity, symbol scoping, subroutines. No need for forward declarations.
|
|
- various data types other than just bytes (16-bit words, floats, strings)
|
|
- floating point math is supported on certain targets
|
|
- strings can contain escaped characters but also many symbols directly if they have a petscii equivalent, such as "♠♥♣♦π▚●○╳". Characters like ^, _, \, {, } and | are also accepted and converted to the closest petscii equivalents.
|
|
- automatic static variable allocations, automatic string and array variables and string sharing
|
|
- high-level program optimizations
|
|
- programs can be run multiple times without reloading because of automatic variable (re)initializations.
|
|
- conditional branches that map 1:1 to cpu status flags
|
|
- ``when`` statement to provide a concise jump table alternative to if/elseif chains
|
|
- ``in`` expression for concise and efficient multi-value/containment check
|
|
- ``defer`` statement to help write concise and robust subroutine cleanup logic
|
|
- several specialized built-in functions such as ``lsb``, ``msb``, ``min``, ``max``, ``rol``, ``ror``
|
|
- various powerful built-in libraries to do I/O, number conversions, graphics and more
|
|
- inline assembly allows you to have full control when every cycle or byte matters
|
|
- supports the sixteen 'virtual' 16-bit registers R0 - R15 from the Commander X16 (also available on other targets)
|
|
- encode strings and characters into petscii or screencodes or even other encodings
|
|
- Automatic ROM/RAM bank switching on certain compiler targets when calling routines in other banks
|
|
- 50 Kb of available program RAM size on the C64 by default; because Basic ROM is banked out altogether
|
|
|
|
*Rapid edit-compile-run-debug cycle:*
|
|
|
|
- use a modern PC to do the work on, use nice editors and enjoy quick compilation times
|
|
- can automatically run the program in the Vice emulator after succesful compilation
|
|
- breakpoints, that let the Vice emulator drop into the monitor if execution hits them
|
|
- source code labels automatically loaded in Vice emulator so it can show them in disassembly
|
|
|
|
*Multiple supported compiler targets* (contributions to improve these or to add support for other machines are welcome!):
|
|
|
|
- "c64": Commodore-64 (6502 like CPU)
|
|
- "c128": Commodore-128 (6502 like CPU - the Z80 cpu mode is not supported)
|
|
- "cx16": [CommanderX16](https://www.commanderx16.com) (65c02 CPU)
|
|
- "pet32": Commodore PET (experimental)
|
|
- "atari": Atari 8 bit such as 800XL (experimental)
|
|
- If you only use standard kernal and prog8 library routines, it is possible to compile the *exact same program* for different machines (just change the compiler target flag)
|
|
|
|
|
|
|
|
Additional required tools
|
|
-------------------------
|
|
|
|
[64tass](https://sourceforge.net/projects/tass64/) - cross assembler. Install this on your shell path.
|
|
A recent .exe version of this tool for Windows can be obtained from my [clone](https://github.com/irmen/64tass/releases) of this project.
|
|
For other platforms it is very easy to compile it yourself (make ; make install).
|
|
|
|
A **Java runtime (jre or jdk), version 11 or newer** is required to run a prepackaged version of the compiler.
|
|
If you want to build it from source, you'll need a Java SDK + Kotlin 1.3.x SDK (or for instance,
|
|
IntelliJ IDEA with the Kotlin plugin).
|
|
|
|
It's handy to have an emulator (or a real machine perhaps!) to run the programs on. The compiler assumes the presence
|
|
of the [Vice emulator](http://vice-emu.sourceforge.net/) for the C64 target,
|
|
and a recent emulator version (R42 or newer) for the CommanderX16, such as [x16emu](https://cx16forum.com/forum/viewforum.php?f=30)
|
|
(preferred, this is the official emulator. If required, source code is [here](https://github.com/X16Community/x16-emulator/)).
|
|
There is also [Box16](https://github.com/indigodarkwolf/box16) which has powerful debugging features.
|
|
|
|
**Syntax highlighting:** for a few different editors, syntax highlighting definition files are provided.
|
|
Look in the [syntax-files](https://github.com/irmen/prog8/tree/master/syntax-files) directory in the github repository to find them.
|
|
|
|
|
|
Example code
|
|
------------
|
|
|
|
This code calculates prime numbers using the Sieve of Eratosthenes algorithm::
|
|
|
|
%import textio
|
|
%zeropage basicsafe
|
|
|
|
main {
|
|
bool[256] sieve
|
|
ubyte candidate_prime = 2 ; is increased in the loop
|
|
|
|
sub start() {
|
|
sys.memset(sieve, 256, 0) ; clear the sieve
|
|
txt.print("prime numbers up to 255:\n\n")
|
|
ubyte amount=0
|
|
repeat {
|
|
ubyte prime = find_next_prime()
|
|
if prime==0
|
|
break
|
|
txt.print_ub(prime)
|
|
txt.print(", ")
|
|
amount++
|
|
}
|
|
txt.nl()
|
|
txt.print("number of primes (expected 54): ")
|
|
txt.print_ub(amount)
|
|
txt.nl()
|
|
}
|
|
|
|
sub find_next_prime() -> ubyte {
|
|
while sieve[candidate_prime] {
|
|
candidate_prime++
|
|
if candidate_prime==0
|
|
return 0 ; we wrapped; no more primes
|
|
}
|
|
|
|
; found next one, mark the multiples and return it.
|
|
sieve[candidate_prime] = true
|
|
uword multiple = candidate_prime
|
|
|
|
while multiple < len(sieve) {
|
|
sieve[lsb(multiple)] = true
|
|
multiple += candidate_prime
|
|
}
|
|
return candidate_prime
|
|
}
|
|
}
|
|
|
|
when compiled an ran on a C-64 you'll get:
|
|
|
|
![c64 screen](docs/source/_static/primes_example.png)
|
|
|
|
One of the included examples (wizzine.p8) animates a bunch of sprite balloons and looks like this:
|
|
|
|
![wizzine screen](docs/source/_static/wizzine.png)
|
|
|
|
Another example (cube3d-sprites.p8) draws the vertices of a rotating 3d cube:
|
|
|
|
![cube3d screen](docs/source/_static/cube3d.png)
|
|
|
|
If you want to play a video game, a fully working Tetris clone is included in the examples:
|
|
|
|
![tehtriz_screen](docs/source/_static/tehtriz.png)
|
|
|
|
There are a couple of examples specially made for the CommanderX16 compiler target.
|
|
For instance here's a well known space ship animated in 3D with hidden line removal,
|
|
in the CommanderX16 emulator:
|
|
|
|
![cobra3d](docs/source/_static/cobra3d.png)
|